240pin DDR3 SDRAM Unbuffered DIMM DDR3 SDRAM Unbuffered DIMMs Based on 4Gb M-Die HMT451U6MFR8C HMT41GU6MFR8C HMT41GU7MFR8C *SK hynix reserves the right to change products or specifications without notice. Rev.1.1 /Jul. 2013 1 Revision History Revision No. History Draft Date 0.1 Initial Release Jul. 2011 0.2 Added 4GB UDIMM Sep. 2011 0.3 JEDEC Spec Updated Nov. 2011 1.0 Module Dimension Updated Jul. 2012 1.1 Changed module maximum thickness to reflect the measured maximum Jul. 2013 Rev. 1.1 / Jul. 2013 Remark HMT451U6MFR8C 2 Description SK hynix Unbuffered DDR3 SDRAM DIMMs (Unbuffered Double Data Rate Synchronous DRAM Dual In-Line Memory Modules) are low power, high-speed operation memory modules that use DDR3 SDRAM devices. These Unbuffered SDRAM DIMMs are intended for use as main memory when installed in systems such as PCs and workstations. Feature • VDD=1.5V +/- 0.075V • VDDQ=1.5V +/- 0.075V • VDDSPD=3.0V to 3.6V • 8 internal banks • Data transfer rates: PC3-14900, PC3-12800, PC3-10600,PC3-8600 • Bi-directional Differential Data Strobe • 8 bit pre-fetch • Burst Length (BL) switch on-the-fly: BL 8 or BC (Burst Chop) 4 • Supports ECC error correction and detection • On Die Termination (ODT) supported • Temperature sensor with integrated SPD (Serial Presence Detect) EEPROM • This product is in Compliance with the RoHS directive Ordering Information Density Organization Component Composition # of ranks FDHS HMT451U6MFR8C-G7/H9/PB 4GB 512Mx64 512Mx8(H5TQ4G83MFR)*8 1 X HMT41GU6MFR8C-G7/H9/PB/RD 8GB 1Gx64 512Mx8(H5TQ4G83MFR)*16 2 X HMT41GU7MFR8C-G7/H9/PB 8GB 1Gx72 512Mx8(H5TQ4G83MFR)*18 2 X Part Number Rev. 1.1 / Jul. 2013 3 Key Parameters MT/s Grade tCK (ns) CAS Latency (tCK) tRCD (ns) tRP (ns) tRAS (ns) tRC (ns) CL-tRCD-tRP DDR3-1066 -G7 1.875 7 13.125 13.125 37.5 50.625 7-7-7 DDR3-1333 -H9 1.5 9 13.5 13.5 (13.125)* (13.125)* 36 49.5 (49.125)* 9-9-9 DDR3-1600 -PB 1.25 11 13.75 13.75 (13.125)* (13.125)* 35 48.75 (48.125)* 11-11-11 DDR3-1866 -RD 1.07 13 13.91 13.91 (13.125)* (13.125)* 34 47.91 (47.125)* 13-13-13 *SK hynix DRAM devices support optional downbinning to CL11, CL9 and CL7. SPD setting is programmed to match. Speed Grade Frequency [MHz] Grade Remark CL6 CL7 CL8 CL9 CL10 -G7 800 1066 1066 -H9 800 1066 -PB 800 -RD 800 CL11 1066 1333 1333 1066 1066 1333 1333 1600 1066 1066 1333 1333 1600 CL12 CL13 1866 Address Table 4GB(1Rx8) 8GB(2Rx8) 8GB(2Rx8) Refresh Method 8K/64ms 8K/64ms 8K/64ms Row Address A0-A15 A0-A15 A0-A15 Column Address A0-A9 A0-A9 A0-A9 Bank Address BA0-BA2 BA0-BA2 BA0-BA2 Page Size 1KB 1KB 1KB Rev. 1.1 / Jul. 2013 4 Pin Descriptions Pin Name Description Pin Name Description I2C serial bus clock for EEPROM A0–A15 SDRAM address bus SCL BA0–BA2 SDRAM bank select SDA I2C serial bus data line for EEPROM SA0–SA2 I2C slave address select for EEPROM RAS SDRAM row address strobe CAS SDRAM column address strobe WE SDRAM write enable VDDQ* SDRAM I/O Driver power supply DIMM Rank Select Lines VREFDQ SDRAM I/O reference supply CKE0–CKE1 SDRAM clock enable lines VREFCA SDRAM command/address reference supply ODT0–ODT1 On-die termination control lines S0–S1 DQ0–DQ63 CB0–CB7 DIMM memory data bus DIMM ECC check bits VDD* VSS VDDSPD NC SDRAM core power supply Power supply return (ground) Serial EEPROM positive power supply Spare pins (no connect) DQS0–DQS8 SDRAM data strobes (positive line of differential pair) TEST Memory bus analysis tools (unused on memory DIMMS) DQS0–DQS8 SDRAM data strobes (negative line of differential pair) RESET Set DRAMs to Known State DM0–DM8 SDRAM data masks/high data strobes (x8-based x72 DIMMs) CK0–CK1 SDRAM clocks (positive line of differential pair) RSVD CK0–CK1 SDRAM clocks (negative line of differential pair) - VTT SDRAM I/O termination supply Reserved for future use - *The VDD and VDDQ pins are tied common to a single power-plane on these designs Rev. 1.1 / Jul. 2013 5 Input/Output Functional Descriptions Symbol Type Polarity Function CK0–CK1 CK0–CK1 SSTL Differential crossing CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of crossing). CKE0–CKE1 SSTL Active High Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self Refresh mode. S0–S1 SSTL Active Low Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. This signal provides for external rank selection on systems with multiple ranks. RAS, CAS, WE SSTL Active Low RAS, CAS, and WE (ALONG WITH S) define the command being entered. ODT0–ODT1 SSTL Active High When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming this function is enabled in the Mode Register 1 (MR1). VREFDQ Supply Reference voltage for SSTL15 I/O inputs. VREFCA Supply Reference voltage for SSTL 15 command/address inputs. VDDQ Supply Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered DIMM designs, VDDQ shares the same power plane as VDD pins. BA0–BA2 SSTL — Selects which SDRAM bank of eight is activated. During a Bank Activate command cycle, Address input defines the row address (RA0–RA15). A0–A15 SSTL — DQ0–DQ63, CB0–CB7 SSTL — DM0–DM8 SSTL VDD, VSS Supply Rev. 1.1 / Jul. 2013 Active High During a Read or Write command cycle, Address input defines the column address. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop; LOW, burst chopped). Data and Check Bit Input/Output pins. DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading. Power and ground for the DDR3 SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD/VDDQ planes on these modules. 6 Symbol Type Polarity DQS0–DQS8 DQS0–DQS8 SSTL Differential crossing Function Data strobe for input and output data. SA0–SA2 — These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range. SDA — This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected from the SDA bus line to VDDSPD to act as a pullup on the system board. SCL — This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL bus time to VDDSPD to act as a pullup on the system board. VDDSPD Supply Rev. 1.1 / Jul. 2013 Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable from 3.0V to 3.6V. 7 Pin Assignments Front Side(left 1–60) Pin x64 # Non-ECC x72 ECC Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240) Pin x64 # Non-ECC x72 ECC Pin # x64 Non-ECC x72 ECC Pin # x64 Non-ECC x72 ECC VSS VSS 61 A2 A2 181 A1 A1 1 VREFDQ 2 VSS VSS 122 DQ4 DQ4 62 VDD VDD 182 VDD VDD 3 DQ0 DQ0 123 DQ5 DQ5 63 CK1 CK1 183 VDD VDD 4 DQ1 DQ1 124 VSS VSS 64 CK1 CK1 184 CK0 CK0 5 VSS VSS 125 DM0 DM0 65 VDD VDD 185 CK0 CK0 6 DQS0 DQS0 126 NC NC 66 VDD VDD 186 VDD VDD 7 DQS0 DQS0 127 VSS VSS 67 VREFCA VREFCA 187 NC EVENT 8 VSS VSS 128 DQ6 DQ6 68 NC NC 188 A0 A0 9 DQ2 DQ2 129 DQ7 DQ7 69 VDD VDD 189 VDD VDD 10 DQ3 DQ3 130 VSS VSS 70 A10 A10 190 BA12 BA12 11 VSS VSS 131 DQ12 DQ12 71 BA02 BA02 191 VDD VDD 12 DQ8 DQ8 132 DQ13 DQ13 72 VDD VDD 192 RAS RAS 13 DQ9 DQ9 133 VSS VSS 73 WE WE 193 S0 S0 14 VSS VSS 134 DM1 DM1 74 CAS CAS 194 VDD VDD 15 DQS1 DQS1 135 NC NC 75 VDD VDD 195 ODT0 ODT0 16 DQS1 DQS1 136 VSS VSS 76 S1 S1 196 A13 A13 17 VSS VSS 137 DQ14 DQ14 77 ODT1 ODT1 197 VDD VDD 18 DQ10 DQ10 138 DQ15 DQ15 78 VDD VDD 198 NC NC 19 DQ11 DQ11 139 VSS VSS 79 NC NC 199 VSS VSS 20 VSS VSS 140 DQ20 DQ20 80 VSS VSS 200 DQ36 DQ36 21 DQ16 DQ16 141 DQ21 DQ21 81 DQ32 DQ32 201 DQ37 DQ37 22 DQ17 DQ17 142 VSS VSS 82 DQ33 DQ33 202 VSS VSS 23 VSS VSS 143 DM2 DM2 83 VSS VSS 203 DM4 DM4 24 DQS2 DQS2 144 NC NC 84 DQS4 DQS4 204 NC NC 25 DQS2 DQS2 145 VSS VSS 85 DQS4 DQS4 205 VSS VSS 26 VSS VSS 146 DQ22 DQ22 86 VSS VSS 206 DQ38 DQ38 27 DQ18 DQ18 147 DQ23 DQ23 87 DQ34 DQ34 207 DQ39 DQ39 28 DQ19 DQ19 148 VSS VSS 88 DQ35 DQ35 208 VSS VSS 29 VSS VSS 149 DQ28 DQ28 89 VSS VSS 209 DQ44 DQ44 30 DQ24 DQ24 150 DQ29 DQ29 90 DQ40 DQ40 210 DQ45 DQ45 VREFDQ 121 NC = No Connect; RFU = Reserved Future Use 1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group. 2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Rev. 1.1 / Jul. 2013 8 Front Side(left 1–60) Back Side(right 121–180) Front Side(left 61–120) Back Side(right 181–240) x72 ECC Pin # x64 Non-ECC x72 ECC Pin # x64 Non-ECC x72 ECC Pin x64 # Non-ECC x72 ECC Pin x64 # Non-ECC 31 DQ25 DQ25 151 VSS VSS 91 DQ41 DQ41 211 VSS VSS 32 VSS VSS 152 DM3 DM3 92 VSS VSS 212 DM5 DM5 33 DQS3 DQS3 153 NC NC 93 DQS5 DQS5 213 NC NC 34 DQS3 DQS3 154 VSS VSS 94 DQS5 DQS5 214 VSS VSS 35 VSS VSS 155 DQ30 DQ30 95 VSS VSS 215 DQ46 DQ46 36 DQ26 DQ26 156 DQ31 DQ31 96 DQ42 DQ42 216 DQ47 DQ47 37 DQ27 DQ27 157 VSS VSS 97 DQ43 DQ43 217 VSS VSS 38 VSS VSS 158 NC CB4 98 VSS VSS 218 DQ52 DQ52 39 NC CB0 159 NC CB5 99 DQ48 DQ48 219 DQ53 DQ53 40 NC CB1 160 VSS VSS 100 DQ49 DQ49 220 VSS VSS 41 VSS VSS 161 DM8 DM8 101 VSS VSS 221 DM6 DM6 42 NC DQS8 162 NC NC 102 DQS6 DQS6 222 NC NC 43 NC DQS8 163 VSS VSS 103 DQS6 DQS6 223 VSS VSS 44 VSS VSS 164 NC CB6 104 VSS VSS 224 DQ54 DQ54 45 NC CB2 165 NC CB7 105 DQ50 DQ50 225 DQ55 DQ55 46 NC CB3 166 VSS VSS 106 DQ51 DQ51 226 VSS VSS 47 VSS VSS 167 NC NC 107 VSS VSS 227 DQ60 DQ60 48 NC NC 168 Reset Reset 108 DQ56 DQ56 228 DQ61 DQ61 109 DQ57 DQ57 229 VSS VSS KEY KEY 49 NC NC 169 CKE1/NC CKE1/NC 110 VSS VSS 230 DM7 DM7 50 CKE0 CKE0 170 VDD VDD 111 DQS7 DQS7 231 NC NC 51 VDD VDD 171 NC NC 112 DQS7 DQS7 232 VSS VSS 52 BA2 BA2 172 A14 A14 113 VSS VSS 233 DQ62 DQ62 53 NC NC 173 VDD VDD 114 DQ58 DQ58 234 DQ63 DQ63 54 VDD VDD 174 A12 A12 115 DQ59 DQ59 235 VSS VSS 55 All All 175 A9 A9 116 VSS VSS 236 VDDSPD VDDSPD 56 A72 A72 176 VDD VDD 117 SA0 SA0 237 SA1 SA1 57 VDD VDD 177 A82 A82 118 SCL SCL 238 SDA SDA 58 A52 A52 178 A62 A62 119 SA2 SA2 239 VSS VSS 59 A42 A42 179 VDD VDD 120 VTT VTT 240 VTT VTT 60 VDD VDD 180 A32 A32 NC = No Connect; RFU = Reserved Future Use 1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group. 2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Rev. 1.1 / Jul. 2013 9 On DIMM Thermal Sensor The DDR3 SDRAM DIMM temperature is monitored by integrated thermal sensor. The integrated thermal sensor comply with JEDEC “TSE2002av, Serial Presence Detect with Temperature Sensor”. Connection of Thermal Sensor EVENT SCL SDA SA0 EVENT SPD with SA1 SCL Integrated SA2 SDA TS SA0 SA1 SA2 Temperature-to-Digital Conversion Performance Parameter Temperature Sensor Accuracy (Grade B) Resolution Rev. 1.1 / Jul. 2013 Condition Min Typ Max Unit Active Range, 75°C < TA < 95°C - ± 0.5 ± 1.0 °C Monitor Range, 40°C < TA < 125°C - ± 1.0 ± 2.0 °C -20°C < TA < 125°C - ± 2.0 ± 3.0 °C 0.25 °C 10 Functional Block Diagram 4GB, 512Mx64 Module(1Rank of x8) S0 DQS0 DQS0 DM0 DQS1 DQS1 DM1 DQS2 DQS2 DM2 DQS3 DQS3 DM3 DQS4 DQS4 DM4 DM CS DQS DQS 0 1 D0 2 3 4 5 6 ZQ 7 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 I/O I/O I/O I/O I/O I/O I/O I/O DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM CS DQS DQS I/O 0 I/O 1 D1 I/O 2 I/O 3 I/O 4 I/O 5 ZQ I/O 6 I/O 7 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 I/O I/O I/O I/O I/O I/O I/O I/O DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DM CS DQS DQS I/O 0 I/O 1 D3 I/O 2 I/O 3 I/O 4 I/O 5 DQS5 DQS5 DM5 DQS6 DQS6 DM6 DM CS DQS DQS 0 1 D2 2 3 4 5 6 7 ZQ DQS7 DQS7 DM7 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 Serial PD SCL BA0–BA2: SDRAMs D0–D7 A0–A15: SDRAMs D0–D7 RAS RAS: SDRAMs D0–D7 CAS CAS: SDRAMs D0–D7 CKE0 CKE: SDRAMs D0–D7 WE ODT0 WE: SDRAMs D0–D7 CK0 CK0 CK: SDRAMs D0–D7 CK: SDRAMs D0–D7 RESET ODT: SDRAMs D0–D7 RESET: SDRAMs D0-D7 Rev. 1.1 / Jul. 2013 VDDSPD VDD/VDDQ SDA WP A0 A1 A2 SA0 SA1 SA2 SPD D0–D7 VREFDQ D0–D7 VSS D0–D7 VREFCA D0–D7 D4 ZQ D5 ZQ D6 ZQ D7 ZQ Notes: 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,DM,DQS/DQS resistors;Refer to associated topology diagram. 4. Refer to the appropriate clock wiring topology under the DIMM wiring details section of this document. 5. Refer to Section 3.1 of this document for details on address mirroring. 6. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is 240ohm+-1% 7. One SPD exists per module. 11 8GB, 1Gx64 Module(2Rank of x8) S1 S0 DQS0 DQS0 DM0 DQS1 DQS1 DM1 DQS2 DQS2 DM2 DQS3 DQS3 DM3 DQS4 DQS4 DM4 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM CS DQS DQS D0 ZQ D1 ZQ D2 ZQ CS DQS DQS D3 ZQ DM CS DQS DQS I/O 0 I/O 1 D8 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 ZQ I/O 7 DM CS DQS DQS I/O 0 I/O 1 D9 I/O 2 I/O 3 I/O 4 I/O 5 ZQ I/O 6 I/O 7 DQS6 DQS6 DM6 DM CS DQS DQS I/O 0 I/O 1 D10 I/O 2 I/O 3 I/O 4 I/O 5 ZQ I/O 6 I/O 7 RESET DM CS DQS DQS I/O 0 I/O 1 D12 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM CS DQS DQS I/O 0 I/O 1 D5 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM CS DQS DQS I/O 0 I/O 1 D13 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DM CS DQS DQS I/O 0 I/O 1 D6 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM CS DQS DQS I/O 0 I/O 1 D14 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM CS DQS DQS I/O 0 I/O 1 D7 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM CS DQS DQS I/O 0 I/O 1 D15 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQS7 DQS7 DM7 DM CS DQS DQS I/O 0 I/O 1 D11 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 ZQ I/O 7 BA0–BA2: SDRAMs D0–D15 SCL A0-A15: SDRAMs D0–D15 WP CKE: SDRAMs D8–D15 A0 CKE: SDRAMs D0–D7 SA0 RAS: SDRAMs D0–D15 CAS: SDRAMs D0–D15 VDDSPD WE: SDRAMs D0–D15 VDD/VDDQ ODT: SDRAMs D0–D7 VREFDQ ODT: SDRAMs D8–D15 CK: SDRAMs D0–D7 CK: SDRAMs D0–D7 CK: SDRAMs D8–D15 CK: SDRAMs D8–D15 DM CS DQS DQS I/O 0 I/O 1 D4 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQS5 DQS5 DM5 Serial PD BA0–BA2 A0–A15 CKE1 CKE0 RAS CAS WE ODT0 ODT1 CK0 CK0 CK1 CK1 DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 VSS VREFCA A1 A2 SA1 SA2 ZQ ZQ ZQ ZQ ZQ ZQ Notes: 1. DQ-to-I/O wiring is shown as recomSDA mended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,DM,DQS,DQS resistors;Refer to associated topology diagram. SPD 4. Refer to Section 3.1 of this document for D0–D15 details on address mirroring. 5. For each DRAM, a unique ZQ resistor is D0–D15 connected to ground.The ZQ resistor is D0–D15 240ohm+-1% 6. One SPD exists per module. D0–D15 RESET: SDRAMs D0-D3 Rev. 1.1 / Jul. 2013 12 8GB, 1Gx72 Module(2Rank of x8) DQS1 DQS1 DM1 S1 S0 DQS0 DQS0 DM0 DQS4 DQS4 DM4 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM CS DQS DQS I/O 0 I/O 1 D0 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM CS DQS DQS I/O 0 I/O 1 D2 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM CS DQS DQS I/O 0 I/O 1 D3 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM DQS2 DQS2 DM2 DQS3 DQS3 DM3 D1 ZQ ZQ DQS5 DQS5 DM5 D10 ZQ DQS6 DQS6 DM6 D11 ZQ DQS7 DQS7 DM7 ZQ DQS8 DQS8 DM8 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DM CS DQS DQS I/O 0 I/O 1 D5 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM CS DQS DQS I/O 0 I/O 1 D6 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 DM CS DQS DQS I/O 0 I/O 1 D7 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS CS DQS DQS D12 ZQ ZQ ZQ VDDSPD SPD(TS integrated) DM CS DQS DQS I/O 0 I/O 1 D8 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 ZQ BA0-BA2: SDRAMs D0–D17 A0-A15: SDRAMs D0–D17 CKE: SDRAMs D0–D8 CKE: SDRAMs D9–D17 RAS: SDRAMs D0–D17 CAS: SDRAMs D0–D17 WE: SDRAMs D0–D17 Rev. 1.1 / Jul. 2013 CS DQS DQS ODT0 ODT1 CK0 CK0 CK1 CK1 RESET D17 EVENT EVENT A0 SA0 SA1 A2 SA2 ZQ ODT: SDRAMs D0–D8 ODT: SDRAMs D9–D17 CK: SDRAMs D0–D8 CK: SDRAMs D0–D8 CK: SDRAMs D9–D17 CK: SDRAMs D9–D17 RESET: SDRAMs D0-D17 ZQ D14 ZQ D15 ZQ D16 ZQ SPD D0–D17 VREFDQ D0–D17 Vss D0–D17 VREFCA D0–D17 SDA A1 D13 VDD/VDDQ SCL CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 BA0–BA2 A0–A15 CKE0 CKE1 RAS CAS WE CS DQS DQS D9 DM CS DQS DQS I/O 0 I/O 1 D4 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 Notes: 1. DQ-to-I/O wiring is shown as recommended but may be changed. 2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown. 3. DQ,CB,DM/DQS/DQS resistors;Refer to associated topology diagram. 4. Refer to Section 3.1 of this document for details on address mirroring. 5. For each DRAM, a unique ZQ resistor is connected to ground.The ZQ resistor is 240ohm+-1% 6. One SPD exists per module. 13 Absolute Maximum Ratings Absolute Maximum DC Ratings Absolute Maximum DC Ratings Symbol VDD VDDQ Parameter Rating Units Notes Voltage on VDD pin relative to Vss - 0.4 V ~ 1.8 V V 1, 3 Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.8 V V 1, 3 V 1 VIN, VOUT Voltage on any pin relative to Vss TSTG - 0.4 V ~ 1.8 V -55 to +100 Storage Temperature o C 1, 2 Notes: 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. DRAM Component Operating Temperature Range Temperature Range Symbol TOPER Parameter Normal Operating Temperature Range Extended Temperature Range Rating Units Notes 0 to 85 oC 1,2 85 to 95 oC 1,3 Notes: 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions. 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability b. If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b). DDR3 SDRAMs support Extended Temperature Range and please refer to component datasheet and/or the DIMM SPD for tFEFI requirements in the Extended Temperature Range. Rev. 1.1 / Jul. 2013 14 AC & DC Operating Conditions Recommended DC Operating Conditions Recommended DC Operating Conditions Symbol VDD VDDQ Parameter Rating Units Notes 1.575 V 1,2 1.575 V 1,2 Min. Typ. Max. Supply Voltage 1.425 1.500 Supply Voltage for Output 1.425 1.500 Notes: 1. Under all conditions, VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. Rev. 1.1 / Jul. 2013 15 AC & DC Input Measurement Levels AC and DC Logic Input Levels for Single-Ended Signals AC and DC Input Levels for Single-Ended Command and Address Signals Single Ended AC and DC Input Levels for Command and ADDress Symbol VIH.CA(DC100) VIL.CA(DC100) VIH.CA(AC175) VIL.CA(AC175) VIH.CA(AC150) VIL.CA(AC150) VIH.CA(AC135) VIL.CA(AC135) VIH.CA(AC125) VIL.CA(AC125) VRefCA(DC) Parameter DDR3-800/1066/1333/1600 Min DC input logic high Vref + 0.100 DC input logic low VSS AC input logic high Vref + 0.175 AC input logic low Note2 AC Input logic high Vref + 0.150 AC input logic low Note2 AC input logic high AC input logic low AC Input logic high AC input logic low Reference Voltage for 0.49 * VDD ADD, CMD inputs DDR3-1866 Unit Notes VDD Vref - 0.100 Note2 Vref - 0.135 Note2 Vref - 0.125 V V V V V V V V mV mV 1, 5 1, 6 1, 2, 7 1, 2, 8 1, 2, 7 1, 2, 8 1, 2, 7 1, 2, 8 1, 2, 7 1, 2, 8 0.51 * VDD V 3, 4 Max Min Max VDD Vref - 0.100 Note2 Vref - 0.175 Note2 Vref - 0.150 - Vref + 0.100 VSS Vref + 0.135 Note2 Vref + 0.125 Note2 0.51 * VDD 0.49 * VDD Notes: 1. For input only pins except RESET, Vref = VrefCA (DC). 2. Refer to "Overshoot and Undershoot Specifications" on page 29. 3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for ence: approx. +/- 15 mV). refer- 4. For reference: approx. VDD/2 +/- 15 mV. 5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100) 7. VIH(ac) is used as simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135), and VIH.CA(AC125); VIH.CA(AC175) value is used when Vref + 0.175V is referenced, VIH.CA(AC150) value is used when Vref + 0.150V is referenced, VIH.CA(AC135) value is used when Vref + 0.135V is referenced, and VIH.CA(AC125) value is used when Vref + 0.125V is referenced. 8. VIL(ac) is used as simplified symbol for VIL.CA(AC175), VIL.CA(AC150), VIL.CA(AC135), and VIL.CA(AC125); VIL.CA(AC175) value is used when Vref - 0.175V is referenced, VIL.CA(AC150) value is used when Vref - 0.150V is referenced, VIL.CA(AC135) value is used when Vref - 0.135V is referenced, and VIL.CA(AC125) value is used when Vref - 0.125V is referenced. Rev. 1.1 / Jul. 2013 16 AC and DC Input Levels for Single-Ended Signals DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066 as specified in the table below. DDR3 SDRAM will also support corresponding tDS values (Table 43 and Table 51 in “ DDR3 Device Operation”) as well as derating tables in Table 46 of “DDR3 Device Operation” depending on Vih/Vil AC levels. Single Ended AC and DC Input Levels for DQ and DM Symbol Parameter VIH.DQ(DC100) VIL.DQ(DC100) VIH.DQ(AC175) VIL.DQ(AC175) VIH.DQ(AC150) VIL.DQ(AC150) VIH.CA(AC135) VIL.CA(AC135) DC input logic high DC input logic low AC input logic high AC input logic low AC Input logic high AC input logic low AC input logic high AC input logic low Reference Voltage for DQ, DM inputs VRefDQ(DC) DDR3-800/1066 DDR3-1333/1600 Min Min Max Max DDR3-1866 Min Max Unit Notes Vref + 0.100 VDD Vref + 0.100 VDD Vref + 0.100 VDD V 1, 5 VSS Vref - 0.100 VSS Vref - 0.100 VSS Vref - 0.100 V 1, 6 Vref + 0.175 Note2 V 1, 2, 7 Note2 Vref - 0.175 V 1, 2, 8 Vref + 0.150 Note2 Vref + 0.150 Note2 Vref + 0.150 Note2 V 1, 2, 7 Note2 Vref - 0.150 Note2 Vref - 0.150 Note2 Vref - 0.150 V 1, 2, 8 Vref + 0.135 Note2 mV 1, 2, 7 Note2 Vref - 0.135 mV 1, 2, 8 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD V Notes: 1. Vref = VrefDQ (DC). 2. Refer to "Overshoot and Undershoot Specifications" on page 29. 3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV). 4. For reference: approx. VDD/2 +/- 15 mV. 5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100) 6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100) 7. VIH(ac) is used as simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150), and VIH.DQ(AC135); VIH.DQ(AC175) value is used when Vref + 0.175V is referenced, VIH.DQ(AC150) value is used when Vref + 0.150V is referenced, and VIH.DQ(AC135) value is used when Vref + 0.135V is referenced. 8. VIL(ac) is used as simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150), and VIL.DQ(AC135); VIL.DQ(AC175) value is used when Vref - 0.175V is referenced, VIL.DQ(AC150) value is used when Vref - 0.150V is referenced, and VIL.DQ(AC135) value is used when Vref - 0.135V is referenced. Rev. 1.1 / Jul. 2013 17 3, 4 Vref Tolerances The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure below. It shows a valid reference voltage VRef (t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise). VRef (DC) is the linear average of VRef (t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in the table "Differential Input Slew Rate Definition" on page 24. Furthermore VRef (t) may temporarily deviate from VRef (DC) by no more than +/- 1% VDD. voltage VDD VRef ac-noise VRef(DC) VRef(t) VRef(DC)max VDD/2 VRef(DC)min VSS time Illustration of VRef(DC) tolerance and VRef ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are dependent on VRef. “VRef ” shall be understood as VRef(DC), as defined in figure above. This clarifies that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VRef(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRefac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings. Rev. 1.1 / Jul. 2013 18 AC and DC Logic Input Levels for Differential Signals Differential signal definition tDVAC Differential Input Voltage(i.e.DQS - DQS#, CK - CK#) VIL.DIFF.AC.MIN VIL.DIFF.MIN 0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Definition of differential ac-swing and “time above ac-level” tDVAC Rev. 1.1 / Jul. 2013 19 Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS) Differential AC and DC Input Levels DDR3-800, 1066, 1333, 1600, 1866 Symbol Parameter VIHdiff VILdiff VIHdiff (ac) VILdiff (ac) Differential input high Differential input logic low Differential input high ac Differential input low ac Min Max + 0.180 Note 3 2 x (VIH (ac) - Vref) Note 3 Note 3 - 0.180 Note 3 2 x (VIL (ac) - Vref) Unit Notes V V V V 1 1 2 2 Notes: 1. Used to define a differential signal slew-rate. 2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL (ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level applies also here. 3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 29. Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS DDR3-800/1066/1333/1600 Slew Rate [V/ns] tDVAC [ps] @ VIH/Ldiff (ac) = 350mV tDVAC [ps] @ VIH/Ldiff (ac) = 300mV DDR3-1866 tDVAC [ps] @ VIH/Ldiff (ac) tDVAC [ps] tDVAC [ps] = 270mV @ VIH/Ldiff (ac)| @ VIH/Ldiff (ac)| (DQS-DQS)only = 300mV = (CK-CK)only (Optional) min max min max min max min max min max > 4.0 75 - 175 - 214 - 134 - 139 - 4.0 57 - 170 - 214 - 134 - 139 - 3.0 50 - 167 - 191 - 112 - 118 - 2.0 38 - 119 1.8 34 - 102 - 131 - 52 - 63 - 1.6 29 - 81 - 113 - 33 - 45 - 1.4 22 - 54 - 88 - 9 - 23 - 1.2 13 - 19 - 56 - note - note - 1.0 0 - note - 11 - note - note - < 1.0 0 - note - note - note - note - 146 67 77 note : Rising input differential signal shall become equal to or greater than VIHdiff(ac) level and Falling input differential signal shall become equal to or less than VIL(ac) level. Rev. 1.1 / Jul. 2013 20 Single-ended requirements for differential signals Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) also has to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH (ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac) / VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the singleended signals CK and CK. VDD or VDDQ VSEHmin VSEH VDD/2 or VDDQ/2 CK or DQS VSELmax VSS or VSSQ VSEL time Single-ended requirements for differential signals. Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. Rev. 1.1 / Jul. 2013 21 Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU Symbol VSEH VSEL Parameter Single-ended high level for strobes Single-ended high level for Ck, CK Single-ended low level for strobes Single-ended low level for CK, CK DDR3-800, 1066, 1333, 1600 & 1866 Min Max (VDD / 2) + 0.175 (VDD /2) + 0.175 Note 3 Note 3 Note 3 Note 3 (VDD / 2) - 0.175 (VDD / 2) - 0.175 Unit Notes V V V V 1,2 1,2 1,2 1,2 Notes: 1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac) of DQs. 2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 29. Rev. 1.1 / Jul. 2013 22 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in table below. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS Vix Definition Cross point voltage for differential input signals (CK, DQS) Symbol Parameter VIX(CK) VIX(DQS) DDR3-800, 1066, 1333, 1600, 1866 Unit Notes Min Max Differential Input Cross Point Voltage relative to VDD/2 for CK, CK -150 -175 150 175 mV mV 2 1 Differential Input Cross Point Voltage relative to VDD/2 for DQS, DQS -150 150 mV 2 Notes: 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic with a single-ended swing VSEL / VSEH of at least VDD/2 +/-250 mV, and when the differential slew rate of CK CK is larger than 3 V/ns. 2. The relation between Vix Min/Max and VSEL/VSEH should satisfy following. (VDD/2) + Vix (Min) - VSEL 25mV VSEH - ((VDD/2) + Vix (Max)) 25mV Rev. 1.1 / Jul. 2013 23 Slew Rate Definitions for Single-Ended Input Signals See 7.5 “Address / Command Setup, Hold and Derating” in “DDR3 Device Operation” for single-ended slew rate definitions for address and command signals. See 7.6 “Data Setup, Hold and Slew Rate Derating” in “DDR3 Device Operation” for single-ended slew rate definition for data signals. Slew Rate Definitions for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in table and figure below. Differential Input Slew Rate Definition Measured Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Defined by Min Max VILdiffmax VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff VIHdiffmin VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff Notes: Differential Input Voltage (i.e. DQS-DQS; CK-CK) The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds. Delta TRdiff VIHdiffmin 0 VILdiffmax Delta TFdiff Differential Input Slew Rate Definition for DQS, DQS and CK, CK Rev. 1.1 / Jul. 2013 24 AC & DC Output Measurement Levels Single Ended AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals. Single-ended AC and DC Output Levels Symbol Parameter VOH(DC) DC output high measurement level (for IV curve linearity) VOM(DC) DC output mid measurement level (for IV curve linearity) VOL(DC) DC output low measurement level (for IV curve linearity) VOH(AC) AC output high measurement level (for output SR) VOL(AC) AC output low measurement level (for output SR) DDR3-800, 1066, 1333, 1600, 1866 0.8 x VDDQ Unit Notes V 0.5 x VDDQ 0.2 x VDDQ V VTT + 0.1 x VDDQ VTT - 0.1 x VDDQ V 1 V 1 V Notes: 1. The swing of ±0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ / 2. Differential AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals. Differential AC and DC Output Levels Symbol VOHdiff (AC) VOLdiff (AC) Parameter DDR3-800, 1066, 1333, 1600, 1866 + 0.2 x VDDQ AC differential output high measurement level (for output SR) - 0.2 x VDDQ AC differential output low measurement level (for output SR) Unit Notes V 1 V 1 Notes: 1. The swing of ±0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ/2 at each of the differential outputs. Rev. 1.1 / Jul. 2013 25 Single Ended Output Slew Rate When the Reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals are shown in table and Figure below. Single-ended Output slew Rate Definition Measured Description Defined by From To Single-ended output slew rate for rising edge VOL(AC) VOH(AC) [VOH(AC)-VOL(AC)] / DeltaTRse Single-ended output slew rate for falling edge VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / DeltaTFse Notes: 1. Output slew rate is verified by design and characterisation, and may not be subject to production test. Single Ended Output Voltage(l.e.DQ) Delta TRse VOH(AC) V∏ VOl(AC) Delta TFse Single Ended Output slew Rate Definition Output Slew Rate (single-ended) DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Symbol Min Max Min Max Min Max Min Max Min Max Single-ended Output Slew Rate SRQse 2.5 5 2.5 5 2.5 5 2.5 5 2.5 51) Parameter Units V/ns Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting Note 1): In two cases, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane. Case 1 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low). Case 2 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane switching into the opposite direction (i.e. from low to high of high to low respectively). For the remaining DQ signal switching in to the opposite direction, the regular maximum limite of 5 V/ns applies. Rev. 1.1 / Jul. 2013 26 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure below. Differential Output Slew Rate Definition Measured Description Defined by From To Differential output slew rate for rising edge VOLdiff (AC) VOHdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTRdiff Differential output slew rate for falling edge VOHdiff (AC) VOLdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTFdiff Notes: 1. Output slew rate is verified by design and characterization, and may not be subject to production test. Differential Output Voltage(i.e. DQS-DQS) Delta TRdiff VOHdiff(AC) O VOLdiff(AC) Delta TFdiff Differential Output slew Rate Definition Differential Output Slew Rate DDR3-800 Parameter Symbol Min Max DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Min Max Min Differential Output Slew Rate SRQdiff 5 12 5 12 5 Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting Rev. 1.1 / Jul. 2013 Max Min Max Min Max 12 5 12 5 12 Units V/ns 27 Reference Load for AC Timing and Output Slew Rate Figure Below represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VDDQ CK, CK DUT DQ DQS DQS 25 Ohm VTT = VDDQ/2 Reference Load for AC Timing and Output Slew Rate Rev. 1.1 / Jul. 2013 28 Overshoot and Undershoot Specifications Address and Control Overshoot and Undershoot Specifications AC Overshoot/Undershoot Specification for Address and Control Pins DDR3- DDR3- DDR3- DDR3- DDR3- Parameter 800 Maximum peak amplitude allowed for overshoot area. (See Figure below) 0.4 Maximum peak amplitude allowed for undershoot area. (See Figure below) 0.4 Maximum overshoot area above VDD (See Figure below) 0.67 Maximum undershoot area below VSS (See Figure below) 0.67 (A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT) See figure below for each parameter definition 1066 1333 0.4 0.4 0.5 0.5 0.4 0.4 0.4 0.4 1600 1866 0.4 0.4 0.33 0.33 Units 0.4 V 0.4 V 0.28 V-ns 0.28 V-ns Maximum Amplitude Overshoot Area Volts (V) VDD VSS Undershoot Area Maximum Amplitude Time (ns) Address and Control Overshoot and Undershoot Definition Rev. 1.1 / Jul. 2013 29 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask DDR3- DDR3- DDR3- DDR3- DDR3- Parameter 800 Maximum peak amplitude allowed for overshoot area. (See Figure below) 0.4 Maximum peak amplitude allowed for undershoot area. (See Figure below) 0.4 Maximum overshoot area above VDD (See Figure below) 0.25 Maximum undershoot area below VSS (See Figure below) 0.25 (CK, CK, DQ, DQS, DQS, DM) See figure below for each parameter definition 1066 1333 1600 1866 0.4 0.4 0.19 0.19 0.4 0.4 0.15 0.15 0.4 0.4 0.13 0.13 Units 0.4 V 0.4 V 0.11 V-ns 0.11 V-ns Maximum Amplitude Overshoot Area Volts (V) VDDQ VSSQ Undershoot Area Maximum Amplitude Time (ns) Clock, Data, Strobe and Mask Overshoot and Undershoot Definition Rev. 1.1 / Jul. 2013 30 Refresh parameters by device density Refresh parameters by device density Parameter REF command ACT or REF command time Average periodic refresh interval RTT_Nom Setting 512Mb 1Gb 2Gb 4Gb 8Gb tRFC 90 110 160 260 350 ns 7.8 7.8 7.8 7.8 7.8 us 3.9 3.9 3.9 3.9 3.9 us tREFI 0 C TCASE 85 C 85 C TCASE 95 C Units Notes Notes: 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this materia. Rev. 1.1 / Jul. 2013 31 Standard Speed Bins DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. DDR3-800 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 37. Speed Bin DDR3-800E CL - nRCD - nRP 6-6-6 Unit Parameter Symbol min max Internal read command to first data tAA 15 20 ns ACT to internal read or write delay time tRCD 15 — ns PRE command period tRP 15 — ns ACT to ACT or REF command period tRC 52.5 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns tCK(AVG) 2.5 3.3 ns CL = 6 CWL = 5 Supported CL Settings 6 nCK Supported CWL Settings 5 nCK Rev. 1.1 / Jul. 2013 Notes 1, 2, 3 32 DDR3-1066 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 37. Speed Bin DDR3-1066F CL - nRCD - nRP Parameter Symbol Unit 7-7-7 min max Note Internal read command to first data tAA 13.125 20 ns ACT to internal read or write delay time tRCD 13.125 — ns PRE command period tRP 13.125 — ns ACT to ACT or REF command period tRC 50.625 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1, 2, 3, 6 CWL = 6 tCK(AVG) Reserved ns 1, 2, 3, 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1, 2, 3, 4 CWL = 5 tCK(AVG) ns 4 CWL = 6 tCK(AVG) ns 1, 2, 3 CL = 6 CL = 7 CL = 8 1.875 < 2.5 Reserved 1.875 < 2.5 Supported CL Settings 6, 7, 8 nCK Supported CWL Settings 5, 6 nCK Rev. 1.1 / Jul. 2013 33 DDR3-1333 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 37. Speed Bin DDR3-1333H CL - nRCD - nRP Parameter Symbol Unit 9-9-9 min max 20 ns Note Internal read command to first data tAA 13.5 (13.125)5,10 ACT to internal read or write delay time tRCD 13.5 (13.125)5,10 — ns PRE command period tRP 13.5 (13.125)5,10 — ns ACT to ACT or REF command period tRC 49.5 (49.125)5,10 — ns ACT to PRE command period tRAS 36 9 * tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1, 2, 3, 7 CWL = 6 tCK(AVG) Reserved ns 1, 2, 3, 4, 7 CWL = 7 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1, 2, 3, 4, 7 CWL = 7 tCK(AVG) Reserved ns 1, 2, 3, 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1, 2, 3, 7 CWL = 7 tCK(AVG) Reserved ns 1, 2, 3, 4 CWL = 5, 6 tCK(AVG) Reserved ns 4 CWL = 7 tCK(AVG) ns 1, 2, 3, 4 CWL = 5, 6 tCK(AVG) CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 1.875 < 2.5 (Optional)5,10 1.875 < 2.5 1.5 <1.875 Reserved 4 1, 2, 3 (Optional) Supported CL Settings 6, (7), 8, 9, (10) nCK Supported CWL Settings 5, 6, 7 nCK Rev. 1.1 / Jul. 2013 tCK(AVG) <1.875 ns ns ns CWL = 7 1.5 34 DDR3-1600 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 37. Speed Bin CL - nRCD - nRP Parameter DDR3-1600K Unit 11-11-11 Symbol min max Internal read command to first data tAA 13.75 (13.125)5,10 20 ns ACT to internal read or write delay time tRCD 13.75 (13.125)5,10 — ns PRE command period tRP 13.75 (13.125)5,10 — ns ACT to ACT or REF command period tRC 48.75 (48.125)5,10 — ns ACT to PRE command period tRAS 35 9 * tREFI ns tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) 2.5 CWL = 5 CL = 6 CWL = 6 CWL = 7 CWL = 5 CL = 7 CWL = 6 tCK(AVG) CWL = 7 CWL = 5, 6 tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) CWL = 7 tCK(AVG) CWL = 8 tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) CWL = 8 CWL = 5 CWL = 6 CL = 8 CWL = 7 CWL = 8 CL = 9 CWL = 5, 6 CL = 10 CWL = 7 CWL = 8 CL = 11 CWL = 5, 6,7 CWL = 8 3.3 ns 1, 2, 3, 8 Reserved ns 1, 2, 3, 4, 8 Reserved ns 4 ns 4 ns 1, 2, 3, 4, 8 ns 1, 2, 3, 4, 8 Reserved 1.875 < 2.5 (Optional)5,10 Reserved Reserved Reserved 1.875 < 2.5 Reserved Reserved Reserved 1.5 <1.875 (Optional)5,10 Reserved Reserved 1.5 <1.875 Reserved Reserved 1.25 <1.5 Supported CL Settings 6, (7), 8, (9), 10, 11 Supported CWL Settings 5, 6, 7, 8 Rev. 1.1 / Jul. 2013 Note ns 4 ns 4 ns 1, 2, 3, 8 ns 1, 2, 3, 4, 8 ns 1, 2, 3, 4 ns 4 ns 1, 2, 3, 4, 8 ns 1, 2, 3, 4 ns 4 ns 1, 2, 3, 8 ns 1,2,3,4 ns 4 ns nCK nCK 1, 2, 3 35 DDR3-1866 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 37. Speed Bin DDR3-1866M CL - nRCD - nRP Parameter Symbol Internal read command to first data tAA ACT to internal read or write delay time tRCD PRE command period tRP ACT to PRE command period tRAS ACT to ACT or PRE command period tRC CWL = 5 CL = 6 CWL = 6 CWL = 7,8,9 CWL = 5 CL = 7 CWL = 6 tCK(AVG) CWL = 7,8,9 tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) CWL = 5 CL = 8 CWL = 6 CWL = 7 CWL = 8,9 CWL = 5, 6 CL = 9 CWL = 7 tCK(AVG) CWL = 8 CWL = 5,6,7 tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) CWL = 8 tCK(AVG) CWL = 9 CWL = 5, 6 CL = 10 CWL = 7 CWL = 8 CL = 11 tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) CWL = 5,6,7,8 tCK(AVG) CL = 12 tCK(AVG) CWL = 9 CWL = 5,6,7,8 tCK(AVG) CL = 13 tCK(AVG) CWL = 9 Supported CL Settings Supported CWL Settings min 13.91 (13.125)5,11 13.91 (13.125)5,11 13.91 (13.125)5,11 34 Note max 20 ns — ns — ns 9 * tREFI ns - ns 3.3 47.91 (47.125)5,11 2.5 ns 1, 2, 3, 9 Reserved ns 1, 2, 3, 4, 9 Reserved ns 4 ns 4 ns 1, 2, 3, 4, 9 Reserved ns 4 Reserved ns 4 Reserved 1.875 < 2.5 (Optinal) 1.875 ns 1, 2, 3, 9 Reserved < 2.5 ns 1, 2, 3, 4, 9 Reserved ns 4 Reserved ns 4 ns 1, 2, 3, 4, 9 Reserved ns 1, 2, 3, 4, 9 Reserved ns 4 Reserved ns 4 ns 1, 2, 3, 9 Reserved ns 1, 2, 3, 4, 9 Reserved ns 4 ns 1, 2, 3, 4, 9 Reserved ns 1, 2, 3, 4 Reserved ns 4 Reserved ns 1,2,3,4 1.5 <1.875 (Optinal) 1.5 <1.875 1.25 <1.5 (Optinal) CWL = 9 Rev. 1.1 / Jul. 2013 Unit 13-13-13 Reserved 1.07 <1.25 6, 7, 8, 9, 10, 11, 13 5, 6, 7, 8, 9 ns 4 ns 1, 2, 3 nCK nCK 36 Speed Bin Table Notes Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V); 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL’, where tCK(AVG) = 3.0 ns should only be used for CL = 5 calculation. 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED. 4. ‘Reserved’ settings are not allowed. User must program a different value. 5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to DIMM data sheet and/or the DIMM SPD information if and how this setting is supported. 6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 9. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 10. DDR3 SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K. 11. DDR3 SDRAM devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example, DDR3-1866 devices supporting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for tAAmin(byte 16), tRCDmin(byte 18) and tRPmin(byte 20) is programmed to 13.125ns, tRCmin(byte 21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin = 34ns + 13.125ns) Rev. 1.1 / Jul. 2013 37 Environmental Parameters Symbol Parameter Rating Units TOPR Operating temperature (ambient) 0 to +55 o HOPR Operating humidity (relative) 10 to 90 % TSTG Storage temperature HSTG Storage humidity (without condensation) PBAR Barometric Pressure (operating & storage) o -50 to +100 C Notes 3 C 1 5 to 95 % 1 105 to 69 K Pascal 1, 2 Note: 1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only, and device functional operation at or above the conditions indicated is not implied. Expousure to absolute maximum rating conditions for extended periods may affect reliablility. 2. Up to 9850 ft. 3. The designer must meet the case temperature specifications for individual module components. Rev. 1.1 / Jul. 2013 38 IDD and IDDQ Specification Parameters and Test Conditions IDD and IDDQ Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure below (Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements) shows the setup and test load for IDD and IDDQ measurements. • IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. • IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in the Figure below (Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement). In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using on merged-power layer in Module PCB. For IDD and IDDQ measurements, the following definitions apply: • ”0” and “LOW” is defined as VIN <= VILAC(max). • ”1” and “HIGH” is defined as VIN >= VIHAC(max). • “MID_LEVEL” is defined as inputs are VREF = VDD/2. • Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1. • Basic IDD and IDDQ Measurement Conditions are described in Table 2. • Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10. • IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 • Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. • Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW} • Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH} Rev. 1.1 / Jul. 2013 39 IDDQ (optional) IDD VDD VDDQ RESET CK/CK DDR3 SDRAM CKE CS RAS, CAS, WE DQS, DQS DQ, DM, TDQS, TDQS A, BA ODT ZQ VSS RTT = 25 Ohm VDDQ/2 VSSQ Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements [Note: DIMM level Output test load condition may be different from above Application specific memory channel environment IDDQ Test Load Channel IO Power Simulation IDDQ Simulation IDDQ Simulation Correction Channel IO Power Number Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement Rev. 1.1 / Jul. 2013 40 Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns Symbol tCK DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 7-7-7 9-9-9 11-11-11 13-13-13 1.875 1.5 1.25 1.07 Unit ns CL 7 9 11 13 nCK nRCD 7 9 11 13 nCK nRC 27 33 39 45 nCK nRAS 20 24 28 32 nCK nRP 7 9 11 13 nCK 1KB page size 20 20 24 26 nCK 2KB page size 27 30 32 33 nCK 1KB page size 4 4 5 5 nCK nFAW nRRD 6 5 6 6 nCK nRFC -512Mb 2KB page size 48 60 72 85 nCK nRFC-1 Gb 59 74 88 103 nCK nRFC- 2 Gb 86 107 128 150 nCK nRFC- 4 Gb 139 174 208 243 nCK nRFC- 8 Gb 187 234 280 328 nCK Table 2 -Basic IDD and IDDQ Measurement Conditions Symbol Description Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and IDD0 PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3. Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT, IDD1 RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4. Rev. 1.1 / Jul. 2013 41 Symbol Description Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD2N Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5. Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD2NT Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6; Pattern Details: see Table 6. Precharge Power-Down Current Slow Exit IDD2P0 CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc) Precharge Power-Down Current Fast Exit IDD2P1 CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD3N Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5. Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Rev. 1.1 / Jul. 2013 42 Symbol Description Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command, Address, IDD4R Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7. Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command, Address, IDD4W Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8. Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Command, IDD5B Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 9. Self-Refresh Current: Normal Temperature Range TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE: IDD6 Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL Self-Refresh Current: Extended Temperature Range TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede); IDD6ET CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL Rev. 1.1 / Jul. 2013 43 Symbol Description Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a),f); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table IDD7 10; Data IO: read data burst with different data between one burst and the next one according to Table 10; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different addressing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 10. a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B Rev. 1.1 / Jul. 2013 44 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 0 - 0 F 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 3 - IDD0 Measurement-Loop Patterna) 0 3,4 ... nRAS ... Static High toggling 1*nRC+0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary ACT 0 0 1 1 0 0 00 0 1*nRC+1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 - 1*nRC+3, 4 D, D 1 1 1 1 0 0 00 0 0 F 0 - 0 - ... 1*nRC+nRAS repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 ... repeat pattern 1...4 until 2*nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead F a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 1.1 / Jul. 2013 45 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 00000000 0 0 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 4 - IDD1 Measurement-Loop Patterna) 0 3,4 ... nRCD ... nRAS Static High toggling ... repeat pattern 1...4 until nRCD - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC+1,2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 1*nRC+3,4 ... 1*nRC+nRCD ... 1*nRC+nRAS repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 F 0 00110011 repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 F ... repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead 0 - a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL. Rev. 1.1 / Jul. 2013 46 Static High CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 3 D 1 1 1 1 0 0 0 0 0 F 0 - Cycle Number Command 0 toggling Datab) Sub-Loop CKE CK, CK Table 5 - IDD2N and IDD3N Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-17 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Static High CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 3 D 1 1 1 1 0 0 0 0 0 F 0 - Cycle Number Command 0 toggling Datab) Sub-Loop CKE CK, CK Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-17 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 1.1 / Jul. 2013 47 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 RD 0 1 0 1 0 0 00 0 0 0 0 00000000 1 D 1 0 0 0 0 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 0 0 00 0 0 0 0 - 4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 D 1 0 0 0 0 0 00 0 0 F 0 - D,D 1 1 1 1 0 0 00 0 0 F 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 7 - IDD4R and IDDQ4R Measurement-Loop Patterna) 0 Static High toggling 5 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. A[2:0] 1 1 1 1 1 1 = = = = = = = A[6:3] ODT WE CAS RAS CS 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1 Sub-Loop 0, but BA[2:0] Sub-Loop 0, but BA[2:0] Sub-Loop 0, but BA[2:0] Sub-Loop 0, but BA[2:0] Sub-Loop 0, but BA[2:0] Sub-Loop 0, but BA[2:0] Sub-Loop 0, but BA[2:0] A[9:7] WR D D,D WR D D,D repeat repeat repeat repeat repeat repeat repeat A[10] 1 2 3 4 5 6 7 1 2,3 4 5 6,7 8-15 16-23 24-31 32-39 40-47 48-55 56-63 A[15:11] 0 BA[2:0] 0 Command Cycle Number Sub-Loop CKE Static High toggling CK, CK Table 8 - IDD4W Measurement-Loop Patterna) Datab) 0 0 0 0 0 0 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F F 0 0 0 0 0 0 00000000 00110011 - 1 2 3 4 5 6 7 a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. Rev. 1.1 / Jul. 2013 48 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 0 REF 0 0 0 1 0 0 0 0 0 0 0 - 1 1.2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 9 - IDD5B Measurement-Loop Patterna) Static High toggling 3,4 2 5...8 repeat cycles 1...4, but BA[2:0] = 1 9...12 repeat cycles 1...4, but BA[2:0] = 2 13...16 repeat cycles 1...4, but BA[2:0] = 3 17...20 repeat cycles 1...4, but BA[2:0] = 4 21...24 repeat cycles 1...4, but BA[2:0] = 5 25...28 repeat cycles 1...4, but BA[2:0] = 6 29...32 repeat cycles 1...4, but BA[2:0] = 7 33...nRFC-1 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 1.1 / Jul. 2013 49 Table 10 - IDD7 Measurement-Loop Patterna) 2 3 4 Static High 5 6 7 8 9 10 4*nRRD nFAW nFAW+nRRD nFAW+2*nRRD nFAW+3*nRRD nFAW+4*nRRD 2*nFAW+0 2*nFAW+1 2&nFAW+2 11 2*nFAW+nRRD 2*nFAW+nRRD+1 2&nFAW+nRRD+2 12 13 2*nFAW+2*nRRD 2*nFAW+3*nRRD 14 2*nFAW+4*nRRD 15 16 17 18 3*nFAW 3*nFAW+nRRD 3*nFAW+2*nRRD 3*nFAW+3*nRRD 19 3*nFAW+4*nRRD 00110011 - 0 - 0 - 0 0 0 00110011 - 0 0 0 00000000 - 0 - 0 - A[10] 0 0 0 ODT 00000000 - WE 0 0 0 CAS ACT 0 0 1 1 0 0 00 0 0 0 RDA 0 1 0 1 0 0 00 1 0 0 D 1 0 0 0 0 0 00 0 0 0 repeat above D Command until nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 F RDA 0 1 0 1 0 1 00 1 0 F D 1 0 0 0 0 1 00 0 0 F repeat above D Command until 2* nRRD - 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 1, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 F Assert and repeat above D Command until nFAW - 1, if necessary repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 1, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 1, but BA[2:0] = 7 0 0 7 00 0 0 F D 1 0 0 Assert and repeat above D Command until 2* nFAW - 1, if necessary ACT 0 0 1 1 0 0 00 0 0 F RDA 0 1 0 1 0 0 00 1 0 F D 1 0 0 0 0 0 00 0 0 F Repeat above D Command until 2* nFAW + nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 0 RDA 0 1 0 1 0 1 00 1 0 0 D 1 0 0 0 0 1 00 0 0 0 Repeat above D Command until 2* nFAW + 2* nRRD - 1 repeat Sub-Loop 10, but BA[2:0] = 2 repeat Sub-Loop 11, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 0 Assert and repeat above D Command until 3* nFAW - 1, if necessary repeat Sub-Loop 10, but BA[2:0] = 4 repeat Sub-Loop 11, but BA[2:0] = 5 repeat Sub-Loop 10, but BA[2:0] = 6 repeat Sub-Loop 11, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 0 Assert and repeat above D Command until 4* nFAW - 1, if necessary RAS Datab) CS A[9:7] A[15:11] BA[2:0] Command A[2:0] 1 0 1 2 ... nRRD nRRD+1 nRRD+2 ... 2*nRRD 3*nRRD A[6:3] 0 toggling Cycle Number Sub-Loop CKE CK, CK ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. Rev. 1.1 / Jul. 2013 50 IDD Specifications (Tcase: 0 to 95oC) * Module IDD values in the datasheet are only a calculation based on the component IDD spec. The actual measurements may vary according to DQ loading cap. 4GB, 512M x 64 U-DIMM: HMT451U6MFR8C Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q DDR3 1066 360 440 200 240 160 176 200 DDR3 1333 400 480 240 280 160 176 240 DDR3 1600 400 480 240 280 160 176 240 Unit mA mA mA mA mA mA mA IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD7 280 200 760 800 1120 160 176 1280 280 200 880 920 1160 160 176 1400 280 200 1000 1040 1160 160 176 1440 mA mA mA mA mA mA mA mA note 8GB, 1G x 64 U-DIMM: HMT41GU6MFR8C Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDDET IDD7 Rev. 1.1 / Jul. 2013 DDR3 1066 560 640 400 480 320 352 400 560 400 960 1000 1320 320 352 1480 DDR3 1333 640 720 480 560 320 352 480 560 400 1120 1160 1400 320 352 1640 DDR3 1600 680 760 480 560 320 352 480 560 400 1280 1320 1440 320 352 1720 DDR3 1866 760 840 560 640 320 352 560 640 400 1440 1440 1480 320 352 1840 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note 51 8GB, 1G x 72 U-DIMM: HMT41GU7MFR8C Symbol IDD0 DDR3 1066 630 DDR3 1333 720 DDR3 1600 765 Unit mA IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W 720 450 540 360 396 450 630 450 1080 1125 1485 360 396 1665 810 540 630 360 396 540 630 450 1260 1305 1575 360 396 1845 855 540 630 360 396 540 630 450 1440 1485 1620 360 396 1935 mA mA mA mA mA mA mA mA mA mA mA mA mA mA IDD5B IDD6 IDDET IDD7 Rev. 1.1 / Jul. 2013 note 52 Module Dimensions 512Mx64 - HMT451U6MFR8C Front 2.10 0.15 Min 1.45 Max R0.70 4 x 3.00 0.10 SPD 17.30 DETAIL-A 2 x 2.50 0.10 DETAIL-B 9.50 2 x 2.30 0.10 47.00 5.175 71.00 128.95 133.35 Back Detail - A Detail - B 2.51mm Max 2.50 0.20 3.80 0.35 0.05 FULL R 2.50 0.80 0.05 0.3 0.15 Side 1.00 1.27±0.10 0.3~1.0 1.50 0.10 5.00 Note: 1. 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 1.1 / Jul. 2013 53 1Gx64 - HMT41GU6MFR8C Front 2.10 0.15 Min 1.45 Max R0.70 4 x 3.00 0.10 30.00 SPD 17.30 DETAIL-A 2 x 2.50 0.10 DETAIL-B 9.50 2 x 2.30 0.10 47.00 5.175 71.00 128.95 133.35 Back Detail - A Detail - B 3.64mm Max 2.50 0.20 3.80 0.35 0.05 FULL R 2.50 0.80 0.05 0.3 0.15 Side 1.00 1.27±0.10 0.3~1.0 1.50 0.10 5.00 Note: 1. 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 1.1 / Jul. 2013 54 1Gx72 - HMT41GU7MFR8C Front 2.10 0.15 Min 1.45 Max R0.70 30.00 SPD 4 x 3.00 0.10 17.30 DETAIL-B DETAIL-A 2 x 2.50 0.10 9.50 2 x 2.30 0.10 47.00 5.175 71.00 128.95 133.35 Back Detail - B FULL R 2.50 2.50 0.20 3.80 0.80 0.05 0.35 0.05 3.64mm Max Detail - A 0.3 0.15 Side 1.00 1.27±0.10 0.3~1.0 1.50 0.10 5.00 Note: 1. 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 1.1 / Jul. 2013 55