ETC IDTQS3VH862Q

IDTQS3VH862
2.5V / 3.3V 10-BIT ACTIVE HIGH AND LOW ENABLE, HIGH BANDWIDTH BUS SWITCH
INDUSTRIAL TEMPERATURE RANGE
QUICKSWITCH® PRODUCTS
2.5V / 3.3V 10-BIT HIGH AND
LOW ENABLE, HIGH BANDWIDTH
BUS SWITCH
FEATURES:
IDTQS3VH862
PRELIMINARY
DESCRIPTION:
• N channel FET switches with no parasitic diode to VCC
– Isolation under power-off conditions
– No DC path to VCC or GND
– 5V tolerant in OFF and ON state
• 5V tolerant I/Os
Ω typical
• Low RON - 4Ω
• Flat RON characteristics over operating range
• Rail-to-rail switching 0 - 5V
• Bidirectional dataflow with near-zero delay: no added ground
bounce
• Excellent RON matching between channels
• VCC operation: 2.3V to 3.6V
• High bandwidth - up to 500MHz
• LVTTL-compatible control Inputs
• Undershoot Clamp Diodes on all switch and control Inputs
• Low I/O capacitance, 4pF typical
• Available in QSOP and TSSOP packages
The QS3VH862 HotSwitch with 10-bit active high and low enable is a high
bandwidth bus switch. The QS3VH862 has very low ON resistance,
resulting in under 250ps propagation delay through the switch. The
switches are controlled by independent active low enable (BE) and active
high enable (BE) controls. In the ON state, the switches can pass signals
up to 5V. In the OFF state, the switches offer very high impedence at the
terminals.
The combination of near-zero propagation delay, high OFF impedance,
and over-voltage tolerance makes the QS3VH862 ideal for high performance communications applications.
The QS3VH862 is characterized for operation from -40°C to +85°C.
APPLICATIONS:
•
•
•
•
•
Hot-swapping
10/100 Base-T, Ethernet LAN switch
Low distortion analog switch
Replaces mechanical relay
ATM 25/155 switching
FUNCTIONAL BLOCK DIAGRAM
A0
B0
A9
B9
BE
BE
The IDT logo is a registered trademark of Integrated Device Technology, Inc.
INDUSTRIAL TEMPERATURE RANGE
AUGUST 2001
1
c
2001 Integrated Device Technology, Inc.
DSC-5859/6
IDTQS3VH862
2.5V / 3.3V 10-BIT ACTIVE HIGH AND LOW ENABLE, HIGH BANDWIDTH BUS SWITCH
ABSOLUTE MAXIMUM RATINGS(1)
PIN CONFIGURATION
BE
1
24
VCC
A0
2
23
BE
A1
3
22
B0
A2
4
21
B1
A3
5
A4
6
20
B2
19
B3
A5
7
18
B4
A6
8
17
B5
A7
9
16
B6
A8
10
15
B7
A9
11
14
B8
GND
12
13
B9
SO24-8
SO24-9
INDUSTRIAL TEMPERATURE RANGE
Symbol
Description
VTERM(2)
Max
Unit
SupplyVoltage to Ground
–0.5 to +4.6
V
VTERM(3)
DC Switch Voltage VS
–0.5 to +5.5
V
VTERM(3)
DC Input Voltage VIN
–0.5 to +5.5
V
VAC
AC Input Voltage (pulse width ≤20ns)
–3
V
IOUT
DC Output Current (max. sink current/pin)
120
mA
TSTG
Storage Temperature
–65 to +150
°C
NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.
2. VCC terminals.
3. All terminals except VCC .
CAPACITANCE (TA = +25°C, F = 1MHz, VIN = 0V, VOUT = 0V)
Parameter(1)
Symbol
QSOP/ TSSOP
TOP VIEW
Typ.
Max.
Unit
CIN
Control Inputs
3
5
pF
CI/O
Quickswitch Channels (Switch OFF)
4
6
pF
CI/O
Quickswitch Channels (Switch ON)
8
12
pF
NOTE:
1. This parameter is guaranteed but not production tested.
PIN DESCRIPTION
Pin Names
Description
BE
Active HIGH Bus Enable
BE
Active LOW Bus Enable
A0 - A9
Bus A
B0 - B9
Bus B
FUNCTION TABLE(1)
BE
BE
A0 - A9
Function
L
L
Z
Disconnect
L
H
Z
Disconnect
H
L
B0 - B9
H
H
Z
NOTE:
1. H = HIGH Voltage Level
L = LOW Voltage Level
Z = High-Impedence
2
Connect
Disconnect
IDTQS3VH862
2.5V / 3.3V 10-BIT ACTIVE HIGH AND LOW ENABLE, HIGH BANDWIDTH BUS SWITCH
INDUSTRIAL TEMPERATURE RANGE
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: TA = –40°C to +85°C, VCC = 3.3V ±0.3V
Symbol
VIH
VIL
Parameter
Test Conditions
Input HIGH Voltage
Input LOW Voltage
Min.
Typ.(1) Max.
Guaranteed Logic HIGH
VCC = 2.3V to 2.7V
1.7
—
—
for Control Inputs
VCC = 2.7V to 3.6V
2
—
—
Guaranteed Logic LOW
VCC = 2.3V to 2.7V
—
—
0.7
for Control Inputs
VCC = 2.7V to 3.6V
—
—
0.8
Unit
V
V
IIN
Input Leakage Current (Control Inputs)
0V ≤ VIN ≤ VCC
—
—
±1
µA
IOZ
Off-State Current (Hi-Z)
0V ≤ VOUT ≤ 5V, Switches OFF
—
—
±1
µA
I OFF
Data Input/Output Power Off Leakage
VIN or VOUT 0V to 5V, VCC = 0V
—
—
±1
µA
VCC = 2.3V
VIN = 0V
ION = 30mA
—
6
8
RON
Switch ON Resistance
Typical at VCC = 2.5V
VIN = 1.7V
ION = 15mA
—
7
9
VIN = 0V
ION = 30mA
—
4
6
VIN = 2.4V
ION = 15mA
—
5
8
VCC = 3V
NOTE:
1. Typical values are at VCC = 3.3V and TA = 25°C.
TYPICAL ON RESISTANCE vs VIN AT VCC = 3.3V
16
14
R ON
(ohms)
12
10
8
6
4
2
0
0.0
0.5
1.0
1.5
2.0
2.5
V IN
(Volts)
3
3.0
3.5
4.0
4.5
5.0
Ω
IDTQS3VH862
2.5V / 3.3V 10-BIT ACTIVE HIGH AND LOW ENABLE, HIGH BANDWIDTH BUS SWITCH
INDUSTRIAL TEMPERATURE RANGE
POWER SUPPLY CHARACTERISTICS
Symbol
Test Conditions(1)
Parameter
Min.
Typ.
Max.
Unit
ICCQ
Quiescent Power Supply Current
VCC = Max., VIN = GND or VCC, f = 0
—
1
3
mA
∆ICC
Power Supply Current (2,3) per Input HIGH
VCC = Max., VIN = 3V, f = 0 per Control Input
—
—
30
µA
ICCD
Dynamic Power Supply Current
(4)
VCC = 3.3V, A and B Pins Open, Control Inputs
See Typical ICCD vs Enable Frequency graph below
Toggling @ 50% Duty Cycle
NOTES:
1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per input driven at the specified level. A and B pins do not contribute to ∆Icc.
3. This parameter is guaranteed but not tested.
4. This parameter represents the current required to switch internal capacitance at the specified frequency. The A and B inputs do not contribute to the Dynamic Power Supply
Current. This parameter is guaranteed but not production tested.
TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT VCC = 3.3V
12
10
ICCD (mA)
8
6
4
2
0
0
2
4
6
8
10
12
ENABLE FREQUENCY (MHz)
4
14
16
18
20
IDTQS3VH862
2.5V / 3.3V 10-BIT ACTIVE HIGH AND LOW ENABLE, HIGH BANDWIDTH BUS SWITCH
INDUSTRIAL TEMPERATURE RANGE
SWITCHING CHARACTERISTICS OVER OPERATING RANGE
TA = -40°C to +85°C
VCC = 2.5 ± 0.2V (1)
Symbol
tPLH
tPHL
tPZH
tPZL
tPHZ
tPLZ
Parameter
Data Propagation Delay(2,3)
A to B or B to A
Switch Turn-On Delay
BE or BE to xA or xB
Switch Turn-Off Delay
BE or BE to xA or xB
fBE or BE
Operating Frequency - Enable(2,5)
VCC = 3.3 ± 0.3V (1)
Min. (4)

Max.
0.2
Min. (4)

Max.
0.2
Unit
ns
1.5
8
1.5
7
ns
1.5
7
1.5
6.5
ns

10

20
MHz
NOTES:
1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone
is of the order of 0.2ns at CL = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the
system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on
the driven side.
4. Minimums are guaranteed but not production tested.
5. Maximum toggle frequency for BE or BE control input (pass voltage > VCC, VIN = 5V, RLOAD ≥ 1MΩ, no CLOAD).
5
IDTQS3VH862
2.5V / 3.3V 10-BIT ACTIVE HIGH AND LOW ENABLE, HIGH BANDWIDTH BUS SWITCH
INDUSTRIAL TEMPERATURE RANGE
SOME APPLICATIONS FOR HOTSWITCH PRODUCTS
NFET
0 to +5V
Vcc = 3.3V
+6.5V
CHARGE PUMP
OE
0 to +5V
DRIVER
SINGLE HOT
SW ITCH
Rail-to-Rail Switching
PHY
3VH
SW ITCH
4.5V P P
LOGIC
SIDE
10Mbps to 100Mbps
Z = 100 Ω
Z = 100 Ω
>100m
4.5V P P
TWISTED PAIR
LOGIC
SIDE
2V PP
Fast Ethernet Data Switching (LAN Switch)
ZERO DOWN TIME SYSTEM
PLUGGABLE CARD/ LIVE SYSTEM
CARD I/O
ON CARD
LOGIC
CONNECTOR
QS3VH XXX
CARD I/O
ON CARD
LOGIC
CONNECTOR
QS3VH XXX
CPU
RAM
BUS
Hot-Swapping
6
IDTQS3VH862
2.5V / 3.3V 10-BIT ACTIVE HIGH AND LOW ENABLE, HIGH BANDWIDTH BUS SWITCH
INDUSTRIAL TEMPERATURE RANGE
TEST CIRCUITS AND WAVEFORMS
TEST CONDITIONS
(1)
(2)
Symbol
VCC = 3.3V ± 0.3V
VCC = 2.5V ± 0.2V
Unit
VLOAD
6
2 x Vcc
V
VIH
3
Vcc
V
VT
1.5
VCC/2
V
VLZ
300
150
mV
VHZ
300
150
mV
CL
50
30
pF
SAME PHASE
INPUT TRANSITION
tPLH
t PHL
tPLH
tPHL
OUTPUT
V IH
VT
0V
V OH
VT
V OL
V IH
VT
0V
OPPOSITE PHASE
INPUT TRANSITION
Propagation Delay
V LOAD
V CC
500 Ω
(1, 2)
Pulse
Generator
V IN
CONTROL
INPUT
GND
tPZL
V OUT
D.U.T.
RT
DISABLE
ENABLE
Open
OUTPUT
SW ITCH
NORMALLY
CLO SED
LOW
tPZ H
OUTPUT SW ITCH
NORMALLY
OPEN
HIGH
500 Ω
CL
tPLZ
V IH
VT
0V
V LOAD/2
V LO A D /2
VT
VOL
VOL
t PHZ
+
V LZ
VT
VOH
V O H -V H Z
0V
0V
Test Circuits for All Outputs
NOTE:
1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
Enable and Disable Times
DEFINITIONS:
CL = Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.
NOTES:
1. Pulse Generator for All Pulses: Rate ≤ 10MHz; tF ≤ 2.5ns; tR ≤ 2.5ns.
2. Pulse Generator for All Pulses: Rate ≤ 10MHz; tF ≤ 2ns; tR ≤ 2ns.
SWITCH POSITION
Test
Switch
tPLZ/tPZL
VLOAD
tPHZ/tPZH
GND
tPD
Open
7
IDTQS3VH862
2.5V / 3.3V 10-BIT ACTIVE HIGH AND LOW ENABLE, HIGH BANDWIDTH BUS SWITCH
INDUSTRIAL TEMPERATURE RANGE
ORDERING INFORMATION
IDTQS
XXXXX
XX
Device Type
Package
CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054
Q
PG
Quarter Size Outline Package (SO24-8)
Thin Shrink Small Outline Package (SO24-9)
3VH862
2.5V / 3.3V 10-Bit Active High and Low Enable,
High Bandwidth Switch
for SALES:
800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com
8
for Tech Support:
[email protected]
(408) 654-6459