DAC904 904 DAC DAC90 4 SBAS095B – DECEMBER 2001 14-Bit, 165MSPS DIGITAL-TO-ANALOG CONVERTER FEATURES APPLICATIONS ● ● ● ● ● ● COMMUNICATION TRANSMIT CHANNELS WLL, Cellular Base Station Digital Microwave Links Cable Modems ● WAVEFORM GENERATION Direct Digital Synthesis (DDS) Arbitrary Waveform Generation (ARB) ● MEDICAL/ULTRASOUND ● HIGH-SPEED INSTRUMENTATION AND CONTROL ● VIDEO, DIGITAL TV SINGLE +5V OR +3V OPERATION HIGH SFDR: 20MHz Output at 100MSPS: 64dBc LOW GLITCH: 3pV-s LOW POWER: 170mW at +5V INTERNAL REFERENCE: Optional Ext. Reference Adjustable Full-Scale Range Multiplying Option DESCRIPTION The DAC904 is a high-speed, Digital-to-Analog Converter (DAC) offering a 14-bit resolution option within the family of highperformance converters. Featuring pin compatibility among family members, the DAC908, DAC900, and DAC902 provide a component selection option to an 8-, 10-, and 12-bit resolution, respectively. All models within this family of DACs support update rates in excess of 165MSPS with excellent dynamic performance, and are especially suited to fulfill the demands of a variety of applications. The advanced segmentation architecture of the DAC904 is optimized to provide a high Spurious-Free Dynamic Range (SFDR) for single-tone, as well as for multi-tone signals— essential when used for the transmit signal path of communication systems. battery-operated systems. Further optimization can be realized by lowering the output current with the adjustable full-scale option. For noncontinuous operation of the DAC904, a power-down mode results in only 45mW of standby power. The DAC904 comes with an integrated 1.24V bandgap reference and edge-triggered input latches, offering a complete converter solution. Both +3V and +5V CMOS logic families can be interfaced to the DAC904. The reference structure of the DAC904 allows for additional flexibility by utilizing the on-chip reference, or applying an external reference. The full-scale output current can be adjusted over a span of 2-20mA, with one external resistor, while maintaining the specified dynamic performance. The DAC904 is available in SO-28 and TSSOP-28 packages. The DAC904 has a high impedance (200kΩ) current output with a nominal range of 20mA and an output compliance of up to 1.25V. The differential outputs allow for both a differential or single-ended analog signal interface. The close matching of the current outputs ensures superior dynamic performance in the differential configuration, which can be implemented with a transformer. Utilizing a small geometry CMOS process, the monolithic DAC904 can be operated on a wide, single-supply range of +2.7V to +5.5V. Its low power consumption allows for use in portable and +VA +VD BW DAC904 FSA Current Sources REFIN IOUT LSB Switches IOUT BYP Segmented Switches INT/EXT Latches PD +1.24V Ref. 14-Bit Data Input AGND CLK D13...D0 DGND Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2000, Texas Instruments Incorporated www.ti.com ELECTROSTATIC DISCHARGE SENSITIVITY ABSOLUTE MAXIMUM RATINGS +VA to AGND ......................................................................... –0.3V to +6V +VD to DGND ........................................................................ –0.3V to +6V AGND to DGND ................................................................. –0.3V to +0.3V +VA to +VD ............................................................................... –6V to +6V CLK, PD to DGND ....................................................... –0.3V to VD + 0.3V D0-D13 to DGND ......................................................... –0.3V to VD + 0.3V IOUT, IOUT to AGND .......................................................... –1V to VA + 0.3V BW, BYP to AGND ....................................................... –0.3V to VA + 0.3V REFIN, FSA to AGND ................................................... –0.3V to VA + 0.3V INT/EXT to AGND ........................................................ –0.3V to VA + 0.3V Junction Temperature .................................................................... +150°C Case Temperature ......................................................................... +100°C Storage Temperature ..................................................................... +125°C This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. PACKAGE/ORDERING INFORMATION SPECIFIED TEMPERATURE RANGE PACKAGE MARKING ORDERING NUMBER TRANSPORT MEDIA, QUANTITY DAC904U DAC904U/1K DAC904E DAC904E/2K5 Rails, 28 Tape and Reel, 1000 Rails, 52 Tape and Reel, 2500 PRODUCT PACKAGE-LEAD PACKAGE DESIGNATOR(1) DAC904U SO-28 DW –40°C to +85°C DAC904U " " " " TSSOP-28 PW –40°C to +85°C DAC904E " " " " " DAC904E " NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com. DEMO BOARD ORDERING INFORMATION PRODUCT DEMO BOARD ORDERING NUMBER DAC904U DAC904E DEM-DAC90xU DEM-DAC904E COMMENT Populated evaluation board without DAC. Order sample of desired DAC90x model separately. Populated evaluation board including the DAC904E. ELECTRICAL CHARACTERISTICS At TA = full specified temperature range, +VA = +5V, +VD = +5V, differential transformer coupled output, 50Ω doubly terminated, unless otherwise specified. DAC904U, E PARAMETER CONDITIONS MIN TYP 2.7V to 3.3V 4.5V to 5.5V Ambient, TA 125 165 –40 RESOLUTION OUTPUT UPDATE RATE Output Update Rate (fCLOCK) Full Specified Temperature Range, Operating STATIC ACCURACY(1) Differential Nonlinearity (DNL) Integral Nonlinearity (INL) DYNAMIC PERFORMANCE Spurious-Free Dynamic Range (SFDR) fOUT = 1.0MHz, fCLOCK = 25MSPS fOUT = 2.1MHz, fCLOCK = 50MSPS fOUT = 5.04MHz, fCLOCK = 50MSPS fOUT = 5.04MHz, fCLOCK = 100MSPS fOUT = 20.2MHz, fCLOCK = 100MSPS fOUT = 25.3MHz, fCLOCK = 125MSPS fOUT = 41.5MHz, fCLOCK = 125MSPS fOUT = 27.4MHz, fCLOCK = 165MSPS fOUT = 54.8MHz, fCLOCK = 165MSPS Spurious-Free Dynamic Range within a Window fOUT = 5.04MHz, fCLOCK = 50MSPS fOUT = 5.04MHz, fCLOCK = 100MSPS Total Harmonic Distortion (THD) fOUT = 2.1MHz, fCLOCK = 50MSPS fOUT = 2.1MHz, fCLOCK = 125MSPS Two Tone fOUT1 = 13.5MHz, fOUT2 = 14.5MHz, fCLOCK = 100MSPS 2 fCLOCK TA = +25°C = 25MSPS, fOUT = 1.0MHz MAX UNITS 14 Bits 165 200 +85 MSPS MSPS °C ±2.5 ±3.0 LSB LSB 79 76 68 68 64 60 55 60 55 dBc dBc dBc dBc dBc dBc dBc dBc dBc 82 82 dBc dBc –75 –74 dBc dBc 63 dBc TA = +25°C To Nyquist 72 2MHz Span 4MHz Span DAC904 www.ti.com SBAS095B ELECTRICAL CHARACTERISTICS (Cont.) At TA = +25°C, +VA = +5V, +VD = +5V, differential transformer coupled output, 50Ω doubly terminated, unless otherwise specified. DAC904U, E PARAMETER DYNAMIC PERFORMANCE (Cont.) Output Settling Time(2) Output Rise Time(2) Output Fall Time(2) Glitch Impulse DC-ACCURACY Full-Scale Output Range(3)(FSR) Output Compliance Range Gain Error Gain Error Gain Drift Offset Error Offset Drift Power-Supply Rejection, +VA Power-Supply Rejection, +VD Output Noise Output Resistance Output Capacitance CONDITIONS to 0.1% 10% to 90% 10% to 90% All Bits HIGH, IOUT With Internal Reference With External Reference With Internal Reference With Internal Reference With Internal Reference POWER SUPPLY Supply Voltages +VA +VD Supply Current(6) IVA IVA, Power-Down Mode IVD Power Dissipation TYP MAX 30 2 2 3 2.0 –1.0 –10 –10 ±1 ±2 ±120 –0.025 IOUT = 20mA, RLOAD = 50Ω 20.0 +1.25 +10 +10 +0.025 +0.2 +0.025 50 200 12 IOUT, IOUT to Ground +1.24 ±10 ±50 10 1 0.1 1.25 1.3 +VD +VD +VD +VD +VD +VD = = = = = = +5V +5V +3V +3V +5V +5V 3.5 2 +2.7 +2.7 +5V, IOUT = 20mA +3V, IOUT = 2mA Power Dissipation, Power-Down Mode Thermal Resistance, θJA SO-28 TSSOP-28 Straight Binary Rising Edge of Clock 5 0 3 0 ±20 ±20 5 UNITS ns ns ns pV-s ±0.1 –0.2 –0.025 REFERENCE Reference Voltage Reference Tolerance Reference Voltage Drift Reference Output Current Reference Input Resistance Reference Input Compliance Range Reference Small-Signal Bandwidth(4) DIGITAL INPUTS Logic Coding Latch Command Logic HIGH Voltage, VIH Logic LOW Voltage, VIL Logic HIGH Voltage, VIH Logic LOW Voltage, VIL Logic HIGH Current, IIH(5) Logic LOW Current, IIL Input Capacitance MIN mA V %FSR %FSR ppmFSR/°C %FSR ppmFSR/°C %FSR/V %FSR/V pA/√Hz kΩ pF V % ppmFSR/°C µA MΩ V MHz 0.8 V V V V µA µA pF +5 +5 +5.5 +5.5 V V 24 1.1 8 170 50 45 30 2 15 230 mA mA mA mW mW mW 75 50 1.2 °C/W °C/W NOTES: (1) At output IOUT, while driving a virtual ground. (2) Measured single-ended into 50Ω Load. (3) Nominal full-scale output current is 32x IREF; see Application Section for details. (4) Reference bandwidth depends on size of external capacitor at the BW pin and signal level. (5) Typically 45µA for the PD pin, which has an internal pull-down resistor. (6) Measured at fCLOCK = 50MSPS and fOUT = 1.0MHz. DAC904 SBAS095B www.ti.com 3 PIN CONFIGURATION PIN DESCRIPTIONS Top View SO, TSSOP Bit 1 1 28 CLK Bit 2 2 27 +VD Bit 3 3 26 DGND Bit 4 4 25 NC Bit 5 5 24 +VA Bit 6 6 23 BYP Bit 7 7 22 IOUT Bit 8 8 21 IOUT Bit 9 9 20 AGND Bit 10 10 19 BW Bit 11 11 18 FSA Bit 12 12 17 REFIN Bit 13 13 16 INT/EXT Bit 14 14 15 PD DAC904 PIN DESIGNATOR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 PD 16 INT/EXT 17 REFIN 18 19 FSA BW 20 21 22 23 24 25 26 27 28 AGND IOUT IOUT BYP +VA NC DGND +VD CLK DESCRIPTION Data Bit 1 (D13), MSB Data Bit 2 (D12) Data Bit 3 (D11) Data Bit 4 (D10) Data Bit 5 (D9) Data Bit 6 (D8) Data Bit 7 (D7) Data Bit 8 (D6) Data Bit 9 (D5) Data Bit 10 (D4) Data Bit 11 (D3) Data Bit 12 (D2) Data Bit 13 (D1) Data Bit 14 (D0), LSB Power Down, Control Input; Active HIGH. Contains internal pull-down circuit; may be left unconnected if not used. Reference Select Pin; Internal ( = 0) or External ( = 1) Reference Operation Reference Input/Ouput. See Applications section for further details. Full-Scale Output Adjust Bandwidth/Noise Reduction Pin: Bypass with 0.1µF to +VA for Optimum Performance. (Optional) Analog Ground Complementary DAC Current Output DAC Current Output Bypass Node: Use 0.1µF to AGND Analog Supply Voltage, 2.7V to 5.5V No Internal Connection Digital Ground Digital Supply Voltage, 2.7V to 5.5V Clock Input TYPICAL CONNECTION CIRCUIT +5V +5V 0.1µF(1) +VA +VD BW DAC904 IOUT LSB Switches FSA Current Sources REFIN RSET 0.1µF 1:1 IOUT VOUT BYP Segmented MSB Switches 0.1µF 50Ω 20pF(1) 50Ω 20pF(1) INT/EXT PD Latches +1.24V Ref. 14-Bit Data Input AGND CLK D13.......D0 DGND NOTE: (1) Optional components. 4 DAC904 www.ti.com SBAS095B TIMING DIAGRAM t1 t2 CLK tS tH D13-D0 tPD tSET IOUT or IOUT SYMBOL t1 t2 tS tH tPD tSET DESCRIPTION MIN Clock Pulse HIGH Time Clock Pulse LOW Time Data Setup Time Data Hold Time Propagation Delay Time Output Settling Time to 0.1% DAC904 SBAS095B www.ti.com TYP 3 3 1.0 1.5 1 30 MAX UNITS ns ns ns ns ns ns 5 TYPICAL CHARACTERISTICS: VD = VA = +5V At TA = +25°C, Differential IOUT = 20mA, 50Ω double-terminated load, SFDR up to Nyquist, unless otherwise specified. TYPICAL INL 10 8 8 6 6 4 4 0 DAC Code 0 16k 16384 14k 12k 10k 8k 6k 4k 2k –10 0 –8 –10 DAC Code SFDR vs fOUT AT 50MSPS 90 85 85 80 80 SFDR (dBc) SFDR (dBc) SFDR vs fOUT AT 25MSPS 16k 16384 –6 –8 14k –4 –6 12k –4 10k –2 8k –2 2 6k 0 4k 2 2k Error (LSBs) Error (LSBs) TYPICAL DNL 10 –6dBFS 75 70 75 –6dBFS 70 65 0dBFS 65 0dBFS 60 60 55 0 2.0 4.0 6.0 8.0 Frequency (MHz) 10.0 12.0 0 5.0 20.0 25.0 SFDR vs fOUT AT 125MSPS 85 85 80 80 75 75 SFDR (dBc) SFDR (dBc) SFDR vs fOUT AT 100MSPS 10.0 15.0 Frequency (MHz) 70 –6dBFS 65 60 55 –6dBFS 70 65 60 0dBFS 55 0dBFS 50 50 45 45 0 6 10.0 20.0 30.0 Frequency (MHz) 40.0 50.0 0 10.0 20.0 30.0 40.0 Frequency (MHz) 50.0 60.0 DAC904 www.ti.com SBAS095B TYPICAL CHARACTERISTICS: VD = VA = +5V (Cont.) At TA = +25°C, Differential IOUT = 20mA, 50Ω double-terminated load, SFDR up to Nyquist, unless otherwise specified. SFDR vs fOUT AT 165MSPS SFDR vs fOUT AT 200MSPS 80 80 75 75 70 70 SFDR (dBc) SFDR (dBc) –6dBFS 65 60 55 –6dBFS 65 60 55 0dBFS 0dBFS 50 50 45 45 40 40 0 10.0 20.0 30.0 40.0 50.0 Frequency (MHz) 60.0 70.0 80.0 0 DIFFERENTIAL vs SINGLE-ENDED SFDR vs fOUT AT 100MSPS 80 80 75 SFDR (dBc) SFDR (dBc) Diff (–6dBFS) X X 65 IOUT (–6dBFS) X 60 X 65 X 5.04MHz X 40.4MHz * 55 X X 45 45 40 0 10.0 20.0 30.0 Frequency (MHz) 40.0 50.0 2 5 10 20 IOUTFS (mA) SFDR vs TEMPERATURE AT 100MSPS, 0dBFS THD vs fCLOCK AT fOUT = 2.1MHz 85 –70 80 –75 SFDR (dBc) 4HD –85 X X X 2.1MHz 75 2HD –80 THD (dBc) * 20.2MHz X IOUT (0dBFS) 10.1MHz 50 X 50 * * 60 Diff (0dBFS) 55 90.0 2.1MHz 70 X 70 30.0 40.0 50.0 60.0 70.0 80.0 Frequency (MHz) SFDR vs IOUTFS and fOUT AT 100MSPS, 0dBFS 85 75 10.0 20.0 X –90 70 65 10.1MHz 60 55 3HD –95 40.4MHz 50 45 –40 –100 0 25 50 100 fCLOCK (MSPS) 125 150 DAC904 SBAS095B X www.ti.com X X –20 0 X X 25 50 Temperature (°C) X X 70 85 7 TYPICAL CHARACTERISTICS: VD = VA = +5V (Cont.) At TA = +25°C, Differential IOUT = 20mA, 50Ω double-terminated load, SFDR up to Nyquist, unless otherwise specified. DUAL-TONE OUTPUT SPECTRUM FOUR-TONE OUTPUT SPECTRUM 0 0 –10 –10 fCLOCK = 100MSPS fOUT1 = 13.5MHz fOUT2 = 14.5MHz SFDR = 63dBc Amplitude = 0dBFS Magnitude (dBm) –30 –40 –50 fCLOCK = 50MSPS fOUT1 = 6.25MHz fOUT2 = 6.75MHz fOUT3 = 7.25MHz fOUT4 = 7.75MHz SFDR = 66dBc Amplitude = 0dBFS –20 –30 Magnitude (dBm) –20 –60 –70 –40 –50 –60 –70 –80 –80 –90 –90 –100 –100 0 5 10 15 20 25 30 35 40 45 50 0 5 10 Frequency (MHz) 15 20 25 20.0 25.0 Frequency (MHz) TYPICAL CHARACTERISTICS: VD = VA = +3V At TA = +25°C, Differential IOUT = 20mA, 50Ω double-terminated load, SFDR up to Nyquist, unless otherwise specified. SFDR vs fOUT AT 25MSPS SFDR vs fOUT AT 50MSPS 85 85 80 80 –6dBFS 75 SFDR (dBc) SFDR (dBc) –6dBFS 70 0dBFS 65 75 70 65 0dBFS 60 60 55 55 0 2.0 4.0 6.0 8.0 Frequency (MHz) 10.0 12.0 0 5.0 SFDR vs fOUT AT 125MSPS 85 85 80 80 75 75 SFDR (dBc) SFDR (dBc) SFDR vs fOUT AT 100MSPS 70 –6dBFS 65 60 70 65 –6dBFS 60 55 55 0dBFS 0dBFS 50 50 45 45 0 8 10.0 15.0 Frequency (MHz) 10.0 20.0 30.0 Frequency (MHz) 40.0 50.0 0 10.0 20.0 30.0 40.0 Frequency (MHz) 50.0 60.0 DAC904 www.ti.com SBAS095B TYPICAL CHARACTERISTICS: VD = VA = +3V (Cont.) At TA = +25°C, Differential IOUT = 20mA, 50Ω double-terminated load, SFDR up to Nyquist, unless otherwise specified. DIFFERENTIAL vs SINGLE-ENDED SFDR vs fOUT AT 100MSPS SFDR vs fOUT AT 165MSPS 80 85 75 80 75 Diff (–6dBFS) –6dBFS SFDR (dBc) SFDR (dBc) 70 65 60 55 70 65 IOUT (–6dBFS) 60 Diff (0dBFS) 0dBFS 50 55 45 50 40 45 IOUT (0dBFS) 0 10.0 20.0 30.0 40.0 50.0 Frequency (MHz) 60.0 70.0 0 80.0 10.0 SFDR vs IOUTFS and fOUT AT 100MSPS 20.0 30.0 Frequency (MHz) –70 2.1MHz 2HD 75 –75 5.04MHz 70 X X X –80 10.1MHz THD (dBc) SFDR (dBc) X 65 20.2MHz 60 55 * * 4HD –85 –90 40.4MHz * * 3HD –95 45 40 –100 2 5 10 20 0 25 50 100 fCLOCK (MSPS) IOUTFS (mA) SFDR vs TEMPERATURE AT 100MSPS, 0dBFS 150 0 2.1MHz –10 75 fCLOCK = 100MSPS fOUT1 = 13.5MHz fOUT2 = 14.5MHz SFDR = 64dBc Amplitude = 0dBFS –20 Magnitude (dBm) 70 SFDR (dBc) 125 DUAL-TONE OUTPUT SPECTRUM 80 10.1MHz 65 60 55 40.4MHz 50 X X 45 50.0 THD vs fCLOCK AT fOUT = 2.1MHz 80 50 40.0 X X 40 –40 X –40 –50 –60 –70 –80 X X –90 –100 –20 0 25 50 Temperature (°C) 70 85 0 5 10 15 20 25 30 35 40 45 50 Frequency (MHz) DAC904 SBAS095B –30 www.ti.com 9 TYPICAL CHARACTERISTICS: VD = VA = +3V (Cont.) At TA = +25°C, Differential IOUT = 20mA, 50Ω double-terminated load, SFDR up to Nyquist, unless otherwise specified. FOUR-TONE OUTPUT SPECTRUM 0 –10 fCLOCK = 50MSPS fOUT1 = 6.25MHz fOUT2 = 6.75MHz fOUT3 = 7.25MHz fOUT4 = 7.75MHz SFDR = 67dBc Amplitude = 0dBFS Magnitude (dBm) –20 –30 –40 –50 –60 –70 –80 –90 –100 0 5 10 15 20 25 Frequency (MHz) APPLICATION INFORMATION The segmented architecture results in a significant reduction of the glitch energy, and improves the dynamic performance (SFDR) and DNL. The current outputs maintain a very high output impedance of greater than 200kΩ. THEORY OF OPERATION The architecture of the DAC904 uses the current steering technique to enable fast switching and a high update rate. The core element within the monolithic DAC is an array of segmented current sources that are designed to deliver a full-scale output current of up to 20mA, as shown in Figure 1. An internal decoder addresses the differential current switches each time the DAC is updated and a corresponding output current is formed by steering all currents to either output summing node, IOUT or IOUT. The complementary outputs deliver a differential output signal that improves the dynamic performance through reduction of even-order harmonics, common-mode signals (noise), and double the peak-to-peak output signal swing by a factor of two, compared to single-ended operation. The full-scale output current is determined by the ratio of the internal reference voltage (1.24V) and an external resistor, RSET. The resulting IREF is internally multiplied by a factor of 32 to produce an effective DAC output current that can range from 2mA to 20mA, depending on the value of RSET. The DAC904 is split into a digital and an analog portion, each of which is powered through its own supply pin. The digital section includes edge-triggered input latches and the decoder logic, while the analog section comprises the current source array with its associated switches and the reference circuitry. +3V to +5V Digital +3V to +5V Analog 0.1µF(1) Bandwidth Control +VA DAC904 RSET 2kΩ BW +VD IOUT Full-Scale Adjust Resistor FSA Ref Control Amp Ref Input REFIN 400pF PMOS Current Source Array 0.1µF LSB Switches 1:1 VOUT IOUT Segmented MSB Switches 50Ω 0.1µF 20pF(1) 50Ω 20pF(1) BYP INT/EXT Ref Buffer Latches and Switch Decoder Logic PD Power Down (internal pull-down) +1.24V Ref AGND Analog Ground CLK Clock Input 14-Bit Data Input D13...D0 NOTE: Supply bypassing not shown. DGND Digital Ground NOTE: (1) Optional. FIGURE 1. Functional Block Diagram of the DAC904. 10 DAC904 www.ti.com SBAS095B DAC TRANSFER FUNCTION The total output current, IOUTFS, of the DAC904 is the summation of the two complementary output currents: +VA DAC904 IOUTFS = IOUT + IOUT (1) The individual output currents depend on the DAC code and can be expressed as: IOUT = IOUTFS • (Code/16384) (2) IOUT = IOUTFS • (16383 – Code/16384) (3) where ‘Code’ is the decimal representation of the DAC data input word. Additionally, IOUTFS is a function of the reference current IREF, which is determined by the reference voltage and the external setting resistor, RSET. IOUTFS = 32 • IREF = 32 • VREF /RSET (4) In most cases the complementary outputs will drive resistive loads or a terminated transformer. A signal voltage will develop at each output according to: VOUT = IOUT • RLOAD (5) VOUT = IOUT • RLOAD (6) The value of the load resistance is limited by the output compliance specification of the DAC904. To maintain specified linearity performance, the voltage for IOUT and IOUT should not exceed the maximum allowable compliance range. The two single-ended output voltages can be combined to find the total differential output swing: (7) VOUTDIFF = VOUT – VOUT = (2 • Code – 16383) • IOUTFS • RLOAD 16384 ANALOG OUTPUTS The DAC904 provides two complementary current outputs, IOUT and IOUT. The simplified circuit of the analog output stage representing the differential topology is shown in Figure 2. The output impedance of 200kΩ 12pF for IOUT and IOUT results from the parallel combination of the differential switches, along with the current sources and associated parasitic capacitances. The signal voltage swing that may develop at the two outputs, IOUT and IOUT, is limited by a negative and positive compliance. The negative limit of –1V is given by the breakdown voltage of the CMOS process, and exceeding it will compromise the reliability of the DAC904, or even cause permanent damage. With the full-scale output set to 20mA, the positive compliance equals 1.25V, operating with IOUT RL RL FIGURE 2. Equivalent Analog Output. +VD = 5V. Note that the compliance range decreases to about 1V for a selected output current of IOUTFS = 2mA. Care should be taken that the configuration of the DAC904 does not exceed the compliance range to avoid degradation of the distortion performance and integral linearity. Best distortion performance is typically achieved with the maximum full-scale output signal limited to approximately 0.5V. This is the case for a 50Ω doubly-terminated load and a 20mA full-scale output current. A variety of loads can be adapted to the output of the DAC904 by selecting a suitable transformer while maintaining optimum voltage levels at IOUT and IOUT. Furthermore, using the differential output configuration in combination with a transformer will be instrumental for achieving excellent distortion performance. Common-mode errors, such as even-order harmonics or noise, can be substantially reduced. This is particularly the case with high output frequencies and/or output amplitudes below full-scale. For those applications requiring the optimum distortion and noise performance, it is recommended to select a full-scale output of 20mA. A lower full-scale range down to 2mA may be considered for applications that require a low power consumption, but can tolerate a reduced performance level. INPUT CODE (D13 - D0) IOUT IOUT 11 1111 1111 1111 20mA 0mA 10 0000 0000 0000 10mA 10mA 00 0000 0000 0000 0mA 20mA TABLE I. Input Coding versus Analog Output Current. OUTPUT CONFIGURATIONS The current output of the DAC904 allows for a variety of configurations, some of which are illustrated below. As mentioned previously, utilizing the converter’s differential outputs will yield the best dynamic performance. Such a differential output circuit may consist of an RF transformer (see Figure 3) or a differential amplifier configuration (see Figure 4). The DAC904 SBAS095B IOUT www.ti.com 11 transformer configuration is ideal for most applications with ac coupling, while op amps will be suitable for a DC-coupled configuration. The single-ended configuration (see Figure 6) may be considered for applications requiring a unipolar output voltage. Connecting a resistor from either one of the outputs to ground will convert the output current into a ground-referenced voltage signal. To improve on the DC linearity, an I-to-V converter can be used instead. This will result in a negative signal excursion and, therefore, requires a dual supply amplifier. DIFFERENTIAL WITH TRANSFORMER Using an RF transformer provides a convenient way of converting the differential output signal into a single-ended signal while achieving excellent dynamic performance, as shown in Figure 3. The appropriate transformer should be carefully selected based on the output frequency spectrum and impedance requirements. The differential transformer configuration has the benefit of significantly reducing common-mode signals, thus improving the dynamic performance over a wide range of frequencies. Furthermore, by selecting a suitable impedance ratio (winding ratio), the transformer can be used to provide optimum impedance matching while controlling the compliance voltage for the converter outputs. The model shown in Figure 3 has a 1:1 ratio and may be used to interface the DAC904 to a 50Ω load. This results in a 25Ω load for each of the outputs, IOUT and IOUT. The output signals are ac coupled and inherently isolated because of the transformer's magnetic coupling. As shown in Figure 3, the transformer’s center tap is connected to ground. This forces the voltage swing on IOUT and IOUT to be centered at 0V. In this case the two resistors, RS, may be replaced with one, RDIFF, or omitted altogether. This approach should only be used if all components are close to each other, and if the VSWR is not important. A complete power transfer from the DAC output to the load can be realized, but the output compliance range should be observed. Alternatively, if the center tap is not connected, the signal swing will be centered at RS • IOUTFS /2. However, in this case, the two resistors (RS) must be used to enable the necessary DC-current flow for both outputs. ADT1-1WT (Mini-Circuits) 1:1 IOUT Optional RDIFF DAC904 RS 50Ω RL IOUT RS 50Ω DIFFERENTIAL CONFIGURATION USING AN OP AMP If the application requires a DC-coupled output, a difference amplifier may be considered, as shown in Figure 4. Four external resistors are needed to configure the voltage-feedback op amp OPA680 as a difference amplifier performing the differential to single-ended conversion. Under the shown configuration, the DAC904 generates a differential output signal of 0.5Vp-p at the load resistors, RL. The resistor values shown were selected to result in a symmetric 25Ω loading for each of the current outputs since the input impedance of the difference amplifier is in parallel to resistors RL, and should be considered. R2 402Ω R1 200Ω IOUT DAC904 IOUT OPA680 CDIFF RL 26.1Ω R3 200Ω RL 28.7Ω VOUT –5V +5V R4 402Ω FIGURE 4. Difference Amplifier Provides Differential to SingleEnded Conversion and AC-Coupling. The OPA680 is configured for a gain of 2. Therefore, operating the DAC904 with a 20mA full-scale output will produce a voltage output of ±1V. This requires the amplifier to operate off of a dual power supply (±5V). The tolerance of the resistors typically sets the limit for the achievable commonmode rejection. An improvement can be obtained by fine tuning resistor R4. This configuration typically delivers a lower level of ac performance than the previously discussed transformer solution because the amplifier introduces another source of distortion. Suitable amplifiers should be selected based on their slew-rate, harmonic distortion, and output swing capabilities. High-speed amplifiers like the OPA680 or OPA687 may be considered. The ac performance of this circuit may be improved by adding a small capacitor, CDIFF, between the outputs IOUT and IOUT, as shown in Figure 4. This will introduce a real pole to create a low-pass filter in order to slew-limit the DAC’s fast output signal steps that otherwise could drive the amplifier into slew-limitations or into an overload condition; both would cause excessive distortion. The difference amplifier can easily be modified to add a level shift for applications requiring the single-ended output voltage to be unipolar, i.e., swing between 0V and +2V. FIGURE 3. Differential Output Configuration Using an RF Transformer. 12 DAC904 www.ti.com SBAS095B DUAL TRANSIMPEDANCE OUTPUT CONFIGURATION The circuit example of Figure 5 shows the signal output currents connected into the summing junction of the OPA2680, which is set up as a transimpedance stage, or I-to-V converter. With this circuit, the DAC’s output will be kept at a virtual ground, minimizing the effects of output impedance variations, and resulting in the best DC linearity (INL). However, as mentioned previously, the amplifier may be driven into slew-rate limitations, and produce unwanted distortion. This may occur especially at high DAC update rates. +5V 50Ω 1/2 OPA2680 RF1 DAC904 IOUT –VOUT = IOUT • RF CF1 CD1 The full-scale output voltage is defined by the product of IOUTFS • RF, and has a negative unipolar excursion. To improve on the ac performance of this circuit, adjustment of RF and/or IOUTFS should be considered. Further extensions of this application example may include adding a differential filter at the OPA2680’s output followed by a transformer, in order to convert to a single-ended signal. SINGLE-ENDED CONFIGURATION Using a single load resistor connected to the one of the DAC outputs, a simple current-to-voltage conversion can be accomplished. The circuit in Figure 6 shows a 50Ω resistor connected to IOUT, providing the termination of the further connected 50Ω cable. Therefore, with a nominal output current of 20mA, the DAC produces a total signal swing of 0V to 0.5V into the 25Ω load. Different load resistor values may be selected as long as the output compliance range is not exceeded. Additionally, the output current, IOUTFS, and the load resistor may be mutually adjusted to provide the desired output signal swing and performance. RF2 IOUT IOUTFS = 20mA CF2 CD2 VOUT = 0V to +0.5V IOUT DAC904 1/2 OPA2680 50Ω IOUT –VOUT = IOUT • RF 50Ω 25Ω 50Ω –5V FIGURE 6. Driving a Doubly-Terminated 50Ω Cable Directly. FIGURE 5. Dual, Voltage-Feedback Amplifier OPA2680 Forms Differential Transimpedance Amplifier. The DC gain for this circuit is equal to feedback resistor RF. At high frequencies, the DAC output impedance (CD1, CD2) will produce a zero in the noise gain for the OPA2680 that may cause peaking in the closed-loop frequency response. CF is added across RF to compensate for this noise-gain peaking. To achieve a flat transimpedance frequency response, the pole in each feedback network should be set to: 1 GBP = 2πRF CF 4 πRF CD (8) with GBP = Gain Bandwidth Product of OPA, which will give a corner frequency f-3dB of approximately: f−3dB = GBP 2πRF CD INTERNAL REFERENCE OPERATION The DAC904 has an on-chip reference circuit that comprises a 1.24V bandgap reference and a control amplifier. Grounding pin 16, INT/EXT, enables the internal reference operation. The full-scale output current, IOUTFS, of the DAC904 is determined by the reference voltage, VREF, and the value of resistor RSET. IOUTFS can be calculated by: IOUTFS = 32 • IREF = 32 • VREF / RSET The external resistor RSET connects to the FSA pin (FullScale Adjust), see Figure 7. The reference control amplifier operates as a V-to-I converter producing a reference current, IREF, which is determined by the ratio of VREF and RSET, as shown in Equation 10. The full-scale output current, IOUTFS, results from multiplying IREF by a fixed factor of 32. (9) DAC904 SBAS095B (10) www.ti.com 13 Optional Bandlimiting Capacitor CCOMPEXT +5V 0.1µF CCOMPEXT +5V 0.1µF BW DAC904 +VA BW DAC904 V IREF = REF RSET +VA V IREF = REF RSET FSA FSA REFIN RSET 2kΩ Ref Control Amp Current Sources CCOMP 400pF 0.1µF REFIN External Reference Ref Control Amp Current Sources CCOMP 400pF RSET +5V INT/EXT INT/EXT +1.24V Ref. +1.24V Ref. FIGURE 7. Internal Reference Configuration. FIGURE 8. External Reference Configuration. Using the internal reference, a 2kΩ resistor value results in a 20mA full-scale output. Resistors with a tolerance of 1% or better should be considered. Selecting higher values, the converter output can be adjusted from 20mA down to 2mA. Operating the DAC904 at lower than 20mA output currents may be desirable for reasons of reducing the total power consumption, improving the distortion performance, or observing the output compliance voltage limitations for a given load condition. DIGITAL INPUTS It is recommended to bypass the REF IN pin with a ceramic chip capacitor of 0.1µF or more. The control amplifier is internally compensated, and its small signal bandwidth is approximately 1.3MHz. For optional ac performance, an additional capacitor (CCOMPEXT) should be applied between the BW pin and the analog supply, +VA, as shown in Figure 7. Using a 0.1µF capacitor, the small-signal bandwidth and output impedance of the control amplifier is further diminished, reducing the noise that is fed into the current source array. This also helps shunting feedthrough signals more effectively, and improving the noise performance of the DAC904. EXTERNAL REFERENCE OPERATION The internal reference can be disabled by applying a logic HIGH (+VA) to pin INT/EXT. An external reference voltage can then be driven into the REFIN pin, which in this case functions as an input, as shown in Figure 8. The use of an external reference may be considered for applications that require higher accuracy and drift performance, or to add the ability of dynamic gain control. While a 0.1µF capacitor is recommended to be used with the internal reference, it is optional for the external reference operation. The reference input, REFIN, has a high input impedance (1MΩ) and can easily be driven by various sources. Note that the voltage range of the external reference should stay within the compliance range of the reference input (0.1V to 1.25V). 14 The digital inputs, D0 (LSB) through D13 (MSB) of the DAC904 accepts standard-positive binary coding. The digital input word is latched into a master-slave latch with the rising edge of the clock. The DAC output becomes updated with the following falling clock edge (refer to the electrical characteristic table and timing diagram for details). The best performance will be achieved with a 50% clock duty cycle, however, the duty cycle may vary as long as the timing specifications are met. Additionally, the setup and hold times may be chosen within their specified limits. All digital inputs are CMOS compatible. The logic thresholds depend on the applied digital supply voltage such that they are set to approximately half the supply voltage; V th = +VD / 2 (±20% tolerance). The DAC904 is designed to operate over a supply range of 2.7V to 5.5V. POWER-DOWN MODE The DAC904 features a power-down function that can be used to reduce the supply current to less than 9mA over the specified supply range of 2.7V to 5.5V. Applying a logic HIGH to the PD pin will initiate the power-down mode, while a logic LOW enables normal operation. When left unconnected, an internal active pull-down circuit will enable the normal operation of the converter. GROUNDING, DECOUPLING, AND LAYOUT INFORMATION Proper grounding and bypassing, short lead length, and the use of ground planes are particularly important for high frequency designs. Multilayer pc-boards are recommended for best performance since they offer distinct advantages such as minimization of ground impedance, separation of signal layers by ground layers, etc. DAC904 www.ti.com SBAS095B The DAC904 uses separate pins for its analog and digital supply and ground connections. The placement of the decoupling capacitor should be such that the analog supply (+VA) is bypassed to the analog ground (AGND), and the digital supply bypassed to the digital ground (DGND). In most cases 0.1µF ceramic chip capacitors at each supply pin are adequate to provide a low impedance decoupling path. Keep in mind that their effectiveness largely depends on the proximity to the individual supply and ground pins. Therefore, they should be located as close as physically possible to those device leads. Whenever possible, the capacitors should be located immediately under each pair of supply/ground pins on the reverse side of the pc-board. This layout approach will minimize the parasitic inductance of component leads and pcb runs. Further supply decoupling with surface mount tantalum capacitors (1µF to 4.7µF) may be added as needed in proximity of the converter. Low noise is required for all supply and ground connections to the DAC904. It is recommended to use a multilayer pcboard utilizing separate power and ground planes. Mixed signal designs require particular attention to the routing of the different supply currents and signal traces. Generally, analog supply and ground planes should only extend into analog signal areas, such as the DAC output signal and the reference signal. Digital supply and ground planes must be confined to areas covering digital circuitry, including the digital input lines connecting to the converter, as well as the clock signal. The analog and digital ground planes should be joined together at one point underneath the DAC. This can be realized with a short track of approximately 1/8 inch (3mm). The power to the DAC904 should be provided through the use of wide pcb runs or planes. Wide runs will present a lower trace impedance, further optimizing the supply decoupling. The analog and digital supplies for the converter should only be connected together at the supply connector of the pc-board. In the case of only one supply voltage being available to power the DAC, ferrite beads along with bypass capacitors may be used to create an LC filter. This will generate a low-noise analog supply voltage that can then be connected to the +VA supply pin of the DAC904. While designing the layout, it is important to keep the analog signal traces separate from any digital line, in order to prevent noise coupling onto the analog signal path. DAC904 SBAS095B www.ti.com 15 PACKAGE DRAWINGS MSOI003E – JANUARY 1995 – REVISED SEPTEMBER 2001 DW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 16 PINS SHOWN 0.050 (1,27) 0.020 (0,51) 0.014 (0,35) 16 0.010 (0,25) M 9 0.419 (10,65) 0.400 (10,15) 0.010 (0,25) NOM 0.299 (7,59) 0.291 (7,39) Gage Plane 0.010 (0,25) 1 8 0.050 (1,27) 0.016 (0,40) 0 ñ8 A Seating Plane 0.104 (2,65) MAX 0.012 (0,30) 0.004 (0,10) PINS ** 0.004 (0,10) 16 18 20 24 28 A MAX 0.410 (10,41) 0.462 (11,73) 0.510 (12,95) 0.610 (15,49) 0.710 (18,03) A MIN 0.400 (10,16) 0.453 (11,51) 0.500 (12,70) 0.600 (15,24) 0.700 (17,78) DIM 4040000 / E 08/01 NOTES: A. B. C. D. 16 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). Falls within JEDEC MS-013 DAC904 www.ti.com SBAS095B PACKAGE DRAWINGS (Cont.) MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 DAC904 SBAS095B www.ti.com 17 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2001, Texas Instruments Incorporated