ETC MC33204DTB

MC33201, MC33202,
MC33204, NCV33202
Low Voltage, Rail-to-Rail
Operational Amplifiers
The MC33201/2/4 family of operational amplifiers provide
rail–to–rail operation on both the input and output. The inputs can be
driven as high as 200 mV beyond the supply rails without phase
reversal on the outputs, and the output can swing within 50 mV of each
rail. This rail–to–rail operation enables the user to make full use of the
supply voltage range available. It is designed to work at very low
supply voltages (± 0.9 V) yet can operate with a supply of up to +12 V
and ground. Output current boosting techniques provide a high output
current capability while keeping the drain current of the amplifier to a
minimum. Also, the combination of low noise and distortion with a
high slew rate and drive capability make this an ideal amplifier for
audio applications.
http://onsemi.com
PDIP–8
P, VP SUFFIX
CASE 626
8
1
8
1
SO–8
D, VD SUFFIX
CASE 751
• Low Voltage, Single Supply Operation
•
•
•
•
•
•
•
•
(+1.8 V and Ground to +12 V and Ground)
Input Voltage Range Includes both Supply Rails
Output Voltage Swings within 50 mV of both Rails
No Phase Reversal on the Output for Over–driven Input Signals
High Output Current (ISC = 80 mA, Typ)
Low Supply Current (ID = 0.9 mA, Typ)
600 Ω Output Drive Capability
Extended Operating Temperature Ranges
(–40° to +105°C and –55° to +125°C)
Typical Gain Bandwidth Product = 2.2 MHz
8
1
Micro–8
DM SUFFIX
CASE 846A
PDIP–14
P, VP SUFFIX
CASE 646
14
1
14
SO–14
D, VD SUFFIX
CASE 751A
1
14
1
TSSOP–14
DTB SUFFIX
CASE 948G
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 11 of this data sheet.
 Semiconductor Components Industries, LLC, 2002
April, 2002 – Rev. 7
1
Publication Order Number:
MC33201/D
MC33201, MC33202, MC33204, NCV33202
PIN CONNECTIONS
CASE 646/751A/948G
CASE 626
NC 1
Inputs
8
2
7
Output 1 1
NC
VCC
Inputs 1
3
6
Output
VEE 4
5
NC
14 Output 4
1
4
3
12
11
5
10
6
2
3
2
1
3
VEE 4
8
VCC
7
Output 2
6
2
5
Inputs 4
VEE
Inputs 3
Output 3
(Quad, Top View)
CASE 751/846A
Inputs 1
9
8
Output 2 7
Output 1 1
13
VCC 4
Inputs 2
(Single, Top View)
2
Inputs 2
(Dual, Top View)
VCC
VCC
VEE
VCC
Vin-
Vout
VCC
Vin+
VEE
This device contains 70 active transistors (each amplifier).
Figure 1. Circuit Schematic
(Each Amplifier)
http://onsemi.com
2
MC33201, MC33202, MC33204, NCV33202
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+13
V
Input Differential Voltage Range
VIDR
Note 1
V
Common Mode Input Voltage Range (Note 2)
VCM
VCC + 0.5 V to
VEE – 0.5 V
V
Output Short Circuit Duration
ts
Note 3
sec
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
– 65 to +150
°C
Maximum Power Dissipation
PD
Note 3
mW
Supply Voltage (VCC to VEE)
DC ELECTRICAL CHARACTERISTICS (TA = 25°C)
Characteristic
VCC = 2.0 V
VCC = 3.3 V
VCC = 5.0 V
Input Offset Voltage
VIO (max)
MC33201
MC33202, NCV33202
MC33204
± 8.0
±10
±12
± 8.0
±10
±12
± 6.0
± 8.0
±10
Output Voltage Swing
VOH (RL = 10 kΩ)
VOL (RL = 10 kΩ)
1.9
0.10
3.15
0.15
4.85
0.15
Power Supply Current
per Amplifier (ID)
1.125
1.125
1.125
Unit
mV
Vmin
Vmax
mA
Specifications at VCC = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. VEE = Gnd.
DC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Figure
Symbol
Input Offset Voltage (VCM 0 V to 0.5 V, VCM 1.0 V to 5.0 V)
MC33201: TA = + 25°C
MC33201: TA = – 40° to +105°C
MC33201V: TA = – 55° to +125°C
MC33202: TA = + 25°C
MC33202: TA = – 40° to +105°C
MC33202V: TA = – 55° to +125°C
NCV33202V: TA = – 55° to +125°C (Note 4)
MC33204: TA = + 25°C
MC33204: TA = – 40° to +105°C
MC33204V: TA = – 55° to +125°C
3
VIO
Input Offset Voltage Temperature Coefficient (RS = 50 Ω)
TA = – 40° to +105°C
TA = – 55° to +125°C
4
Input Bias Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = – 40° to +105°C
TA = – 55° to +125°C
5, 6
Input Offset Current (VCM = 0 V to 0.5 V, VCM = 1.0 V to 5.0 V)
TA = + 25°C
TA = – 40° to +105°C
TA = – 55° to +125°C
–
Common Mode Input Voltage Range
–
Min
Typ
Max
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
6.0
9.0
13
8.0
11
14
14
10
13
17
–
–
2.0
2.0
–
–
–
–
–
80
100
–
200
250
500
–
–
–
5.0
10
–
50
100
200
VEE
–
VCC
mV
∆VIO/∆T
µV/°C
IIB
nA
IIO
VICR
Unit
nA
V
1. The differential input voltage of each amplifier is limited by two internal parallel back–to–back diodes. For additional differential input voltage
range, use current limiting resistors in series with the input pins.
2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage
on either input must not exceed either supply rail by more than 500 mV.
3. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See Figure 2)
4. NCV prefix is for automotive and other applications requiring site and change control.
http://onsemi.com
3
MC33201, MC33202, MC33204, NCV33202
DC ELECTRICAL CHARACTERISTICS (cont.) (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Large Signal Voltage Gain (VCC = + 5.0 V, VEE = – 5.0 V)
RL = 10 kΩ
RL = 600 Ω
Output Voltage Swing (VID = ± 0.2 V)
RL = 10 kΩ
RL = 10 kΩ
RL = 600 Ω
RL = 600 Ω
Figure
Symbol
Min
Typ
Max
7
AVOL
50
25
300
250
–
–
VOH
VOL
VOH
VOL
4.85
–
4.75
–
4.95
0.05
4.85
0.15
–
0.15
–
0.25
60
90
–
500
25
–
50
80
–
–
–
0.9
0.9
1.125
1.125
Unit
kV/V
8, 9, 10
V
Common Mode Rejection (Vin = 0 V to 5.0 V)
11
CMR
Power Supply Rejection Ratio
VCC/VEE = 5.0 V/Gnd to 3.0 V/Gnd
12
PSRR
Output Short Circuit Current (Source and Sink)
13, 14
ISC
Power Supply Current per Amplifier (VO = 0 V)
TA = – 40° to +105°C
TA = – 55° to +125°C
15
ID
dB
µV/V
mA
mA
AC ELECTRICAL CHARACTERISTICS (VCC = + 5.0 V, VEE = Ground, TA = 25°C, unless otherwise noted.)
Characteristic
Slew Rate
(VS = ± 2.5 V, VO = – 2.0 V to + 2.0 V, RL = 2.0 kΩ, AV = +1.0)
Gain Bandwidth Product (f = 100 kHz)
Figure
Symbol
16, 26
SR
Min
Typ
Max
0.5
1.0
–
Unit
V/µs
17
GBW
–
2.2
–
MHz
Gain Margin (RL = 600 Ω, CL = 0 pF)
20, 21, 22
AM
–
12
–
dB
Phase Margin (RL = 600 Ω, CL = 0 pF)
20, 21, 22
M
–
65
–
Deg
CS
–
90
–
dB
BWP
–
28
–
kHz
–
–
0.002
0.008
–
–
–
100
–
Rin
–
200
–
kΩ
Cin
–
8.0
–
pF
–
–
25
20
–
–
–
–
0.8
0.2
–
–
Channel Separation (f = 1.0 Hz to 20 kHz, AV = 100)
23
Power Bandwidth (VO = 4.0 Vpp, RL = 600 Ω, THD ≤ 1 %)
Total Harmonic Distortion (RL = 600 Ω, VO = 1.0 Vpp, AV = 1.0)
f = 1.0 kHz
f = 10 kHz
24
THD
%
ZO
Open Loop Output Impedance
(VO = 0 V, f = 2.0 MHz, AV = 10)
Differential Input Resistance (VCM = 0 V)
Differential Input Capacitance (VCM = 0 V)
Equivalent Input Noise Voltage (RS = 100 Ω)
f = 10 Hz
f = 1.0 kHz
25
Equivalent Input Noise Current
f = 10 Hz
f = 1.0 kHz
25
http://onsemi.com
4
Ω
en
in
nV/
Hz
pA/
Hz
2500
40
PERCENTAGE OF AMPLIFIERS (%)
PD(max) , MAXIMUM POWER DISSIPATION (mW
MC33201, MC33202, MC33204, NCV33202
8 and 14 Pin DIP Pkg
2000
TSSOP-14 Pkg
1500
SO-14 Pkg
1000
SO-8 Pkg
500
0
-55 -40 -25
0
25
50
85
TA, AMBIENT TEMPERATURE (°C)
30
25
20
15
10
5.0
0
-10 -8.0 -6.0 -4.0 -2.0
0
2.0 4.0 6.0
VIO, INPUT OFFSET VOLTAGE (mV)
125
Figure 2. Maximum Power Dissipation
versus Temperature
50
200
I IB , INPUT BIAS CURRENT (nA)
PERCENTAGE OF AMPLIFIERS (%)
30
120
10
-10
0
10
20
30
40
VCM = 0 V to 0.5 V
80
VCM > 1.0 V
40
0
-55 -40 -25
50
TCV , INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C)
IO
25
70
85
125
Figure 5. Input Bias Current
versus Temperature
150
300
A VOL , OPEN LOOP VOLTAGE GAIN (kV/V)
I IB , INPUT BIAS CURRENT (nA)
0
TA, AMBIENT TEMPERATURE (°C)
Figure 4. Input Offset Voltage
Temperature Coefficient Distribution
100
260
50
0
220
-50
180
-100
-150
VCC = 12 V
VEE = Gnd
TA = 25°C
-200
-250
10
VCC = +5.0 V
VEE = Gnd
160
20
0
-50 -40 -30 -20
8.0
Figure 3. Input Offset Voltage Distribution
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = +5.0 V
VEE = Gnd
TA = 25°C
DIP Package
40
360 amplifiers tested from
3 (MC33204) wafer lots
VCC = +5.0 V
VEE = Gnd
TA = 25°C
DIP Package
35
0
2.0
4.0
6.0
8.0
10
VCM, INPUT COMMON MODE VOLTAGE (V)
140
VCC = +5.0 V
VEE = Gnd
RL = 600 Ω
∆VO = 0.5 V to 4.5 V
100
-55 -40 -25
12
Figure 6. Input Bias Current
versus Common Mode Voltage
0
25
70
85
TA, AMBIENT TEMPERATURE (°C)
105
Figure 7. Open Loop Voltage Gain versus
Temperature
http://onsemi.com
5
125
VO, OUTPUT VOLTAGE (Vpp )
12
VSAT, OUTPUT SATURATION VOLTAGE (V)
MC33201, MC33202, MC33204, NCV33202
RL = 600 Ω
TA = 25°C
10
8.0
6.0
4.0
2.0
0
±1.0
±2.0
±3.0
±4.0
±5.0
VCC,VEE SUPPLY VOLTAGE (V)
±6.0
TA = 125°C
VCC - 0.4 V
CMR, COMMON MODE REJECTION (dB)
VO, OUTPUT VOLTAGE (Vpp )
6.0
10
IL, LOAD CURRENT (mA)
VEE
20
15
VCC = +6.0 V
VEE = -6.0 V
RL = 600 Ω
AV = +1.0
TA = 25°C
100
80
60
40
VCC = +6.0 V
VEE = -6.0 V
TA = -55° to +125°C
20
0
1.0 M
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
1.0 M
Figure 11. Common Mode Rejection
versus Frequency
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
PSR, POWER SUPPLY REJECTION (dB)
VEE + 0.2 V
TA = -55°C
5.0
Figure 10. Output Voltage
versus Frequency
120
100
100
PSR+
80
60
PSR-
40
VCC = +6.0 V
VEE = -6.0 V
TA = -55° to +125°C
20
0
TA = 25°C
TA = 125°C
Figure 9. Output Saturation Voltage
versus Load Current
9.0
10 k
100 k
f, FREQUENCY (Hz)
VEE + 0.4 V
VCC = +5.0 V
VEE = -5.0 V
0
12
0
1.0 k
VCC - 0.2 V
TA = 25°C
Figure 8. Output Voltage Swing
versus Supply Voltage
3.0
VCC
TA = -55°C
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
1.0 M
Source
80
60
Sink
40
VCC = +6.0 V
VEE = -6.0 V
TA = 25°C
20
0
0
1.0
2.0
3.0
4.0
5.0
Vout, OUTPUT VOLTAGE (V)
Figure 12. Power Supply Rejection
versus Frequency
Figure 13. Output Short Circuit Current
versus Output Voltage
http://onsemi.com
6
6.0
125
2.0
VCC = +5.0 V
VEE = Gnd
1.6
100
Source
75
TA = 125°C
1.2
Sink
TA = 25°C
0.8
50
TA = -55°C
0.4
25
0
-55 -40 -25
0
25
70 85
TA, AMBIENT TEMPERATURE (°C)
105
125
0
±0
±1.0
1.5
VCC = +2.5 V
VEE = -2.5 V
VO = ±2.0 V
+Slew Rate
1.0
-Slew Rate
0.5
0
25
70
85
105
1.0
0
-55 -40 -25
0
25
70
85
105
Figure 16. Slew Rate
versus Temperature
Figure 17. Gain Bandwidth Product
versus Temperature
40
VS = ±6.0 V
TA = 25°C
RL = 600 Ω
80
30
120
2A
10
A
2.0
TA, AMBIENT TEMPERATURE (°C)
50
-30
10 k
VCC = +2.5 V
VEE = -2.5 V
f = 100 kHz
TA, AMBIENT TEMPERATURE (°C)
70
-10
3.0
125
2B
1A - Phase, CL = 0 pF
1B - Gain, CL = 0 pF
2A - Phase, CL = 300 pF
2B - Gain, CL = 300 pF
100 k
1B
1.0 M
1A
160
200
, EXCESS PHASE (DEGREES)
, OPEN LOOP VOLTAGE GAIN (dB)
VOL
0
-55 -40 -25
4.0
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
SR, SLEW RATE (V/µ s)
2.0
±6.0
Figure 15. Supply Current per Amplifier
versus Supply Voltage with No Load
GBW, GAIN BANDWIDTH PRODUCT (MHz)
Figure 14. Output Short Circuit Current
versus Temperature
±2.0
±3.0
±4.0
±5.0
VCC, VEE, SUPPLY VOLTAGE (V)
70
30
1A
10
-10
1A - Phase, VS = ±6.0 V
1B - Gain, VS = ±6.0 V
2A - Phase, VS = ±1.0 V
2B - Gain, VS = ±1.0 V
f, FREQUENCY (Hz)
100 k
1B
2B
1.0 M
f, FREQUENCY (Hz)
Figure 18. Voltage Gain and Phase
versus Frequency
Figure 19. Voltage Gain and Phase
versus Frequency
http://onsemi.com
7
80
120
2A
-30
10 k
240
10 M
40
CL = 0 pF
TA = 25°C
RL = 600 Ω
50
125
160
200
240
10 M
, EXCESS PHASE (DEGREES)
150
I CC , SUPPLY CURRENT PER AMPLIFIER (mA)
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
MC33201, MC33202, MC33204, NCV33202
MC33201, MC33202, MC33204, NCV33202
60
50
40
30
VCC = +6.0 V
VEE = -6.0 V
RL = 600 Ω
CL = 100 pF
40
30
20
20
10
10
Gain Margin
0
-55 -40 -25
0
25
70
85
105
60
60
VCC = +6.0 V
VEE = -6.0 V
TA = 25°C
45
30
15
0
0
125
10
100
60
Gain Margin
THD, TOTAL HARMONIC DISTORTION (%)
14
12
10
40
8.0
30
6.0
20
4.0
10
2.0
0
10
10
1.0
0
1.0 k
100
0.01
0.001
10
90
AV = 10
60
VCC = +6.0 V
VEE = -6.0 V
VO = 8.0 Vpp
TA = 25°C
30
0
100
1.0 k
10 k
f, FREQUENCY (Hz)
Figure 22. Gain and Phase Margin
versus Capacitive Load
Figure 23. Channel Separation
versus Frequency
VCC = +5.0 V
TA = 25°C
VO = 2.0 Vpp
VEE = -5.0 V
RL = 600 Ω
AV = 100
AV = 10
AV = 1.0
100
1.0 k
10 k
0
100 k
AV = 100
120
CL, CAPACITIVE LOAD (pF)
AV = 1000
0.1
10 k
150
100 k
en , EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
50
16
CS, CHANNEL SEPARATION (dB)
Phase Margin
1.0 k
Figure 21. Gain and Phase Margin
versus Differential Source Resistance
A , GAIN MARGIN (dB)
M
M , PHASE MARGIN (DEGREES)
70
15
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
Figure 20. Gain and Phase Margin
versus Temperature
VCC = +6.0 V
VEE = -6.0 V
RL = 600 Ω
AV = 100
TA = 25°C
30
Gain Margin
TA, AMBIENT TEMPERATURE (°C)
80
45
50
VCC = +6.0 V
VEE = -6.0 V
TA = 25°C
40
30
Noise Voltage
20
2.0
1.0
10
Noise Current
0
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
Figure 25. Equivalent Input Noise Voltage
and Current versus Frequency
http://onsemi.com
8
4.0
3.0
f, FREQUENCY (Hz)
Figure 24. Total Harmonic Distortion
versus Frequency
5.0
0
100 k
i n , INPUT REFERRED NOISE CURRENT (pA/ Hz)
50
75
Phase Margin
M , PHASE MARGIN (DEGREES)
60
75
A , GAIN MARGIN (dB)
M
M , PHASE MARGIN (DEGREES)
Phase Margin
A , GAIN MARGIN (dB)
M
70
70
MC33201, MC33202, MC33204, NCV33202
DETAILED OPERATING DESCRIPTION
Circuit Information
The MC33201/2/4 family of operational amplifiers are
unique in their ability to swing rail–to–rail on both the input
and the output with a completely bipolar design. This offers
low noise, high output current capability and a wide
common mode input voltage range even with low supply
voltages. Operation is guaranteed over an extended
temperature range and at supply voltages of 2.0 V, 3.3 V and
5.0 V and ground.
Since the common mode input voltage range extends from
VCC to VEE, it can be operated with either single or split
voltage supplies. The MC33201/2/4 are guaranteed not to
latch or phase reverse over the entire common mode range,
however, the inputs should not be allowed to exceed
maximum ratings.
Rail–to–rail performance is achieved at the input of the
amplifiers by using parallel NPN–PNP differential input
stages. When the inputs are within 800 mV of the negative
rail, the PNP stage is on. When the inputs are more than 800
mV greater than VEE, the NPN stage is on. This switching of
input pairs will cause a reversal of input bias currents (see
Figure 6). Also, slight differences in offset voltage may be
noted between the NPN and PNP pairs. Cross–coupling
techniques have been used to keep this change to a minimum.
In addition to its rail–to–rail performance, the output stage
is current boosted to provide 80 mA of output current,
enabling the op amp to drive 600 Ω loads. Because of this
high output current capability, care should be taken not to
exceed the 150°C maximum junction temperature.
VCC = +6.0 V
VEE = -6.0 V
RL = 600 Ω
CL = 100 pF
TA = 25°C
V , OUTPUT VOLTAGE (50 mV/DIV)
O
VCC = +6.0 V
VEE = -6.0 V
RL = 600 Ω
CL = 100 pF
TA = 25°C
t, TIME (5.0 µs/DIV)
t, TIME (10 µs/DIV)
Figure 26. Noninverting Amplifier Slew Rate
V , OUTPUT VOLTAGE (2.0 V/DIV)
O
V , OUTPUT VOLTAGE (2.0 mV/DIV)
O
General Information
Figure 27. Small Signal Transient Response
VCC = +6.0 V
VEE = -6.0 V
RL = 600 Ω
CL = 100 pF
AV = 1.0
TA = 25°C
t, TIME (10 µs/DIV)
Figure 28. Large Signal Transient Response
http://onsemi.com
9
MC33201, MC33202, MC33204, NCV33202
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must be
the correct size to ensure proper solder connection interface
between the board and the package. With the correct pad
geometry, the packages will self–align when subjected to a
solder reflow process.
Micro–8
0.208
5.28
0.041
1.04
0.126
3.20
0.015
0.38
0.0256
0.65
inches
mm
http://onsemi.com
10
MC33201, MC33202, MC33204, NCV33202
ORDERING INFORMATION
Operational
Amplifier Function
Operating
Temperature Range
Device
Package
Shipping
SO–8
98 Units / Rail
MC33201D
MC33201DR2
Single
SO–8
2500 Units / Tape & Reel
Plastic DIP
50 Units / Rail
SO–8
98 Units / Rail
SO–8
98 Units / Rail
SO–8
2500 Units / Tape & Reel
Micro–8
4000 Units / Tape & Reel
Plastic DIP
50 Units / Rail
TA= –40° to +105°C
MC33201P
MC33201VD
TA = –55° to 125°C
MC33202D
MC33202DR2
TA= –40
40 ° to +105°C
MC33202DMR2
MC33202P
Dual
MC33202VD
SO–8
98 Units / Rail
MC33202VDR2
SO–8
2500 Units / Tape & Reel
SO–8
2500 Units / Tape & Reel
Plastic DIP
50 Units / Rail
MC33204D
SO–14
55 Units / Rail
MC33204DR2
SO–14
2500 Units / Tape & Reel
TA = –55°
55° to 125°C
NCV33202VDR2*
MC33202VP
TA= –40 ° to +105°C
MC33204DTB
Quad
TSSOP–14
96 Units / Rail
MC33204DTBR2
TSSOP–14
2500 Units / Tape & Reel
MC33204P
Plastic DIP
25 Units / Rail
SO–14
55 Units / Rail
SO–14
2500 Units / Tape & Reel
Plastic DIP
25 Units / Rail
MC33204VD
MC33204VDR2
TA = –55° to 125°C
MC33204VP
*NCV33202: Tlow = –55°C, Thigh = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring
site and change control.
MARKING DIAGRAMS
8
3320x
ALYW
1
MC3320xP
AWL
YYWW
1
MC33204D
AWLYWW
PDIP–14
VP SUFFIX
CASE 646
TSSOP–14
DTB SUFFIX
CASE 948G
14
MC33204VP
AWLYYWW
MC33
204
ALYW
14
1
3202
AYW
1
MC33204P
AWLYYWW
MC33204VD
AWLYWW
1
8
PDIP–14
P SUFFIX
CASE 646
14
14
Micro–8
DM SUFFIX
CASE 846A
MC33202VP
AWL
YYWW
1
SO–14
VD SUFFIX
CASE 751A
SO–14
D SUFFIX
CASE 751A
14
8
320xV
ALYW
1
1
8
8
PDIP–8
VP SUFFIX
CASE 626
PDIP–8
P SUFFIX
CASE 626
SO–8
VD SUFFIX
CASE 751
SO–8
D SUFFIX
CASE 751
1
x
= 1 or 2
A
= Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
http://onsemi.com
11
1
MC33201, MC33202, MC33204, NCV33202
PACKAGE DIMENSIONS
PDIP–8
P, VP SUFFIX
CASE 626–05
ISSUE L
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
–B–
1
4
DIM
A
B
C
D
F
G
H
J
K
L
M
N
F
–A–
NOTE 2
L
C
J
–T–
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
--10
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
--10
0.030
0.040
N
SEATING
PLANE
D
M
K
G
H
0.13 (0.005)
M
T A
M
B
M
SO–8
D, VD SUFFIX
CASE 751–07
ISSUE W
–X–
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
A
8
5
0.25 (0.010)
S
B
1
M
Y
M
4
K
–Y–
G
C
N
X 45 SEATING
PLANE
–Z–
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
S
http://onsemi.com
12
J
DIM
A
B
C
D
G
H
J
K
M
N
S
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0
8
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0
8
0.010
0.020
0.228
0.244
MC33201, MC33202, MC33204, NCV33202
PACKAGE DIMENSIONS
PDIP–14
P, VP SUFFIX
CASE 646–06
ISSUE M
14
8
1
7
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
B
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
N
C
–T–
SEATING
PLANE
J
K
H
D 14 PL
G
M
0.13 (0.005)
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.290
0.310
--10
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
18.80
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.37
7.87
--10
0.38
1.01
M
SO–14
D, VD SUFFIX
CASE 751A–03
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
14
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
M
B
M
F
R X 45 C
–T–
SEATING
PLANE
0.25 (0.010)
M
T B
J
M
K
D 14 PL
S
A
S
http://onsemi.com
13
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0
7
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0
7
0.228
0.244
0.010
0.019
MC33201, MC33202, MC33204, NCV33202
PACKAGE DIMENSIONS
TSSOP–14
DTB SUFFIX
CASE 948G–01
ISSUE O
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
N
2X
14
L/2
0.25 (0.010)
8
M
B
–U–
L
PIN 1
IDENT.
F
7
1
0.15 (0.006) T U
N
S
DETAIL E
K
A
–V–
ÉÉ
ÇÇ
ÇÇ
ÉÉ
K1
J J1
SECTION N–N
–W–
C
0.10 (0.004)
–T– SEATING
PLANE
D
G
H
DETAIL E
http://onsemi.com
14
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
--1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.50
0.60
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0
8
INCHES
MIN
MAX
0.193
0.200
0.169
0.177
--0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.020
0.024
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0
8
MC33201, MC33202, MC33204, NCV33202
PACKAGE DIMENSIONS
Micro–8
DM SUFFIX
CASE 846A–02
ISSUE E
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH,
PROTRUSIONS OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
–A–
–B–
K
PIN 1 ID
G
D 8 PL
0.08 (0.003)
–T–
M
T B
S
A
S
SEATING
PLANE
0.038 (0.0015)
C
H
L
J
http://onsemi.com
15
DIM
A
B
C
D
G
H
J
K
L
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
--1.10
0.25
0.40
0.65 BSC
0.05
0.15
0.13
0.23
4.75
5.05
0.40
0.70
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
--0.043
0.010
0.016
0.026 BSC
0.002
0.006
0.005
0.009
0.187
0.199
0.016
0.028
MC33201, MC33202, MC33204, NCV33202
ON Semiconductor is a trademark and
is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right
to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
http://onsemi.com
16
MC33201/D