SCBS136M − MAY 1992 − REVISED OCTOBER 2003 D D D SN54LVTH273 . . . J PACKAGE SN74LVTH273 . . . DB, DW, NS, OR PW PACKAGE (TOP VIEW) 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 VCC 8Q 8D 7D 7Q 6Q 6D 5D 5Q CLK D D D Operation Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors Latch-Up Performance Exceeds 500 mA Per JESD 17 ESD Protection Exceeds JESD 22 − 2000-V Human-Body Model (A114-A) − 200-V Machine Model (A115-A) SN54LVTH273 . . . FK PACKAGE (TOP VIEW) 2D 2Q 3Q 3D 4D 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 8D 7D 7Q 6Q 6D 4Q GND CLK 5Q 5D CLR 1Q 1D 2D 2Q 3Q 3D 4D 4Q GND D Ioff Supports Partial-Power-Down-Mode 8Q D (5-V Input and Output Voltages With 3.3-V VCC ) Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C Support Unregulated Battery Operation Down To 2.7 V Buffered Clock and Direct-Clear Inputs Individual Data Input to Each Flip-Flop 1D 1Q CLR VCC D Support Mixed-Mode Signal Operation description/ordering information These octal D-type flip-flops are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. The ’LVTH273 devices are positive-edge-triggered flip-flops with a direct-clear input. Information at the data (D) inputs meeting the setup-time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock (CLK) input is at either the high or low level, the D-input signal has no effect at the output. ORDERING INFORMATION PACKAGE† TA SN74LVTH273DW Tape and reel SN74LVTH273DWR SOP − NS Tape and reel SN74LVTH273NSR LVTH273 SSOP − DB Tape and reel SN74LVTH273DBR LXH273 Tube SN74LVTH273PW Tape and reel SN74LVTH273PWR CDIP − J Tube SNJ54LVTH273J SNJ54LVTH273J LCCC − FK Tube SNJ54LVTH273FK SNJ54LVTH273FK TSSOP − PW −55°C to 125°C TOP-SIDE MARKING Tube SOIC − DW −40°C to 85°C ORDERABLE PART NUMBER LVTH273 LXH273 † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2003, Texas Instruments Incorporated !"#$%&' #"'(' ')"*%("' #$**&' ( ") +$,-#("' !(& *"!$# #"')"*% " +&#)#("' +&* & &*% ") &.( '*$%&' ('!(*! /(**('0 *"!$#"' +*"#&'1 !"& '" '&#&(*-0 '#-$!& &'1 ") (-+(*(%&&* POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SCBS136M − MAY 1992 − REVISED OCTOBER 2003 description/ordering information (continued) Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. FUNCTION TABLE (each flip-flop) INPUTS CLR CLK D OUTPUT Q L X X L H ↑ H H H ↑ L L H H or L X Q0 logic diagram (positive logic) CLK 1D 2D 3D 4D 3 4 7 8 13 7D 14 8D 17 18 CLK(I) 1D C1 1 1D C1 R 2 6D 11 1D CLR 5D 1D C1 R 1D C1 R 1D C1 R 1D C1 R 1D C1 R C1 R R R 2 5 6 1Q 2Q 3Q POST OFFICE BOX 655303 9 4Q • DALLAS, TEXAS 75265 12 5Q 15 6Q 16 7Q 19 8Q SCBS136M − MAY 1992 − REVISED OCTOBER 2003 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V Voltage range applied to any output in the power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . −0.5 V to 7 V Voltage range applied to any output in the high state, VO (see Note 1) . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V Current into any output in the low state, IO: SN54LVTH273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA SN74LVTH273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA Current into any output in the high state, IO (see Note 2): SN54LVTH273 . . . . . . . . . . . . . . . . . . . . . . . 48 mA SN74LVTH273 . . . . . . . . . . . . . . . . . . . . . . . 64 mA Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA Package thermal impedance, θJA (see Note 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. This current flows only when the output is in the high state and VO > VCC. 3. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions (see Note 4) SN54LVTH273 SN74LVTH273 MIN MAX MIN MAX 2.7 3.6 2.7 3.6 UNIT VCC VIH Supply voltage VIL VI Low-level input voltage Input voltage 5.5 5.5 V IOH IOL High-level output current −24 −32 mA Low-level output current 48 64 mA ∆t/∆v Input transition rise or fall rate 10 10 ns/V High-level input voltage 2 2 0.8 V V 0.8 V TA Operating free-air temperature −55 125 −40 85 °C NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ')"*%("' #"'#&*' +*"!$# ' & )"*%(2& "* !&1' +(& ") !&2&-"+%&' (*(#&*# !(( ('! "&* +&#)#("' (*& !&1' 1"(- &.( '*$%&' *&&*2& & *1 " #('1& "* !#"''$& && +*"!$# /"$ '"#& POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SCBS136M − MAY 1992 − REVISED OCTOBER 2003 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VIK VOH II = −18 mA IOH = −100 µA VCC = 2.7 V, IOH = −8 mA IOH = −24 mA VOL VCC = 3 V Data inputs Ioff VCC = 3.6 V VCC = 0, Data inputs V V 2 2 0.2 0.2 IOL = 24 mA IOL = 16 mA 0.5 0.5 0.4 0.4 IOL = 32 mA IOL = 48 mA 0.5 0.5 V 0.55 0.55 10 10 VI = VCC or GND VI = VCC ±1 ±1 1 1 VI = 0 VI or VO = 0 to 4.5 V −5 VI = 0.8 V VI = 2 V VCC = 3 V II(hold) −1.2 UNIT VCC−0.2 2.4 IOL = 64 mA VI = 5.5 V VCC = 0 or 3.6 V, VCC = 3.6 V, SN74LVTH273 TYP† MAX MIN −1.2 VCC−0.2 2.4 IOH = −32 mA IOL = 100 µA VCC = 2.7 V II MIN VCC = 2.7 V, VCC = 2.7 V to 3.6 V, VCC = 3 V Control inputs SN54LVTH273 TYP† MAX TEST CONDITIONS −5 ±100 75 75 −75 −75 500 −750 VCC = 3.6 V‡, VI = 0 to 3.6 V VCC = 3.6 V, IO = 0, VI = VCC or GND Outputs high ICC ∆ICC§ VCC = 3 V to 3.6 V, One input at VCC − 0.6 V, Other inputs at VCC or GND Outputs low A µA 0.19 0.19 5 5 0.2 0.2 µA µA mA mA Ci VI = 3 V or 0 4 4 pF † All typical values are at VCC = 3.3 V, TA = 25°C. ‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. § This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND. timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) SN54LVTH273 VCC = 3.3 V ± 0.3 V MIN fclock tw Clock frequency tsu Setup time th Hold time, data high or low after CLK↑ MAX VCC = 2.7 V MIN MAX VCC = 3.3 V ± 0.3 V MIN 150 Pulse duration MAX VCC = 2.7 V MIN 150 3.3 3.3 3.3 Data high or low before CLK↑ 2.3 2.7 2.3 2.7 CLR high before CLK↑ 2.3 2.7 2.3 2.7 0 0 0 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT MAX MHz 3.3 ')"*%("' #"'#&*' +*"!$# ' & )"*%(2& "* !&1' +(& ") !&2&-"+%&' (*(#&*# !(( ('! "&* +&#)#("' (*& !&1' 1"(- &.( '*$%&' *&&*2& & *1 " #('1& "* !#"''$& && +*"!$# /"$ '"#& 4 SN74LVTH273 ns ns ns SCBS136M − MAY 1992 − REVISED OCTOBER 2003 switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1) SN54LVTH273 PARAMETER FROM (INPUT) TO (OUTPUT) VCC = 3.3 V ± 0.3 V MIN fmax tPLH tPHL tPHL MAX SN74LVTH273 VCC = 2.7 V MIN MAX 150 CLK Any Q CLR Any Q † All typical values are at VCC = 3.3 V, TA = 25°C. VCC = 3.3 V ± 0.3 V MIN TYP† VCC = 2.7 V MAX MIN UNIT MAX 150 MHz 1.6 5 5.6 1.7 3.2 4.9 5.5 1.8 4.9 5.2 1.9 3.2 4.8 5.1 1.5 4.4 4.8 1.6 2.7 4.3 4.7 ns ns ')"*%("' #"'#&*' +*"!$# ' & )"*%(2& "* !&1' +(& ") !&2&-"+%&' (*(#&*# !(( ('! "&* +&#)#("' (*& !&1' 1"(- &.( '*$%&' *&&*2& & *1 " #('1& "* !#"''$& && +*"!$# /"$ '"#& POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SCBS136M − MAY 1992 − REVISED OCTOBER 2003 PARAMETER MEASUREMENT INFORMATION 6V 500 Ω From Output Under Test S1 Open GND CL = 50 pF (see Note A) 500 Ω TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open 6V GND 2.7 V LOAD CIRCUIT Timing Input 1.5 V 0V tw tsu 2.7 V Input 1.5 V 1.5 V th 2.7 V Data Input 1.5 V 1.5 V 0V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VOLTAGE WAVEFORMS PULSE DURATION 2.7 V 1.5 V Input 1.5 V 0V VOH 1.5 V 1.5 V VOL Output tPLZ 3V 1.5 V tPZH VOH 1.5 V 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS 1.5 V 0V Output Waveform 1 S1 at 6 V (see Note B) tPLH tPHL 1.5 V tPZL tPHL tPLH Output 2.7 V Output Control Output Waveform 2 S1 at GND (see Note B) VOL + 0.3 V VOL tPHZ 1.5 V VOH − 0.3 V VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 5-Sep-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty SN74LVTH273DBLE OBSOLETE SSOP DB 20 SN74LVTH273DBR ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273DBRE4 ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273DW ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273DWE4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273DWR ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273DWRE4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273NSR ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273NSRE4 ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273PW ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273PWE4 ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273PWLE OBSOLETE TSSOP PW 20 TBD Call TI SN74LVTH273PWR ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273PWRE4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVTH273PWRG4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TBD Lead/Ball Finish Call TI MSL Peak Temp (3) Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 5-Sep-2005 incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated