R5325x SERIES 150mA 2ch LDO REGULATOR NO.EA-127-0606 OUTLINE The R5325x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current (Typ. 3.0µA), low dropout, and fast transient response. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors for setting output voltage, a current limit circuit, and a chip enable circuit. These ICs perform with low dropout voltage due to built-in transistor with low ON resistance, and a chip enable function prolongs the battery life of each system. The line transient response and load transient response of the R5325x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment. The supply current at no load of R5325x Series is remarkably reduced compared with R5325x Series. The mode change signal to reduce the supply current is not necessary. The output voltage of these ICs is internally fixed with high accuracy (±1.0%) Since the packages for these ICs are SOT-23-6 and PLP1820-6 package, 2ch LDO regulators are included in each, high density mounting of the ICs on boards is possible. FEATURES • • • • • • • • • • • • • • Input Voltage ................................................................. 1.5V to 6.0V Output Voltage ..............................................................1.2V to 4.0V High Output Voltage Accuracy ......................................±1.0% (VOUT > = 1.5V) Low Supply Current ...................................................... Typ. 3.0µA (VR1, VR2) Standby Current ............................................................ Typ. 0.1µA (VR1,VR2) Low Dropout Voltage..................................................... Typ. 0.2V (IOUT=150mA ,VOUT=3.0V) High Ripple Rejection ................................................... Typ. 55dB (f=1kHz) Built-in fold-back protection circuit ................................ Typ. 50mA (Current at short mode) Low Temperature-Drift Coefficient of Output Voltage.... Typ. ±100ppm/°C Excellent Line Regulation ............................................. Typ.0.02%/V Built-in chip enable circuit (active “H”) Fast Transient Response Time from large load current to small load current (50% less than R5323x) Small Packages .......................................................... SOT-23-6, PLP1820-6 Ceramic Capacitor is recommended. (0.1µF or more) APPLICATIONS • Power source for handheld communication equipment. • Power source for electrical appliances such as cameras, VCRs and camcorders. • Power source for battery-powered equipment. 1 R5325x BLOCK DIAGRAMS R5325xxxxA CE1 VOUT1 R1_1 Error Amp. Vref R2_1 Current Limit VDD GND R1_2 Error Amp. Vref R2_2 Current Limit CE2 VOUT2 R5325xxxxB CE1 VOUT1 R1_1 Error Amp. Vref R2_1 Current Limit VDD GND R1_2 Error Amp. Vref R2_2 Current Limit CE2 2 VOUT2 R5325x SELECTION GUIDE The output voltage, mask option, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R5325xxxxx-xx-x ←Part Number ↑ ↑ ↑ ↑ ↑ a b c d e Code a b c d e Contents Designation of Package Type: N: SOT-23-6 K: PLP1820-6 Setting combination of 2ch Output Voltage (VOUT) : Serial Number for Voltage Setting, Stepwise setting with a step of 0.1V in the range of 1.2V to 4.0V is possible for each channel. Designation of Mask Option: A version: without auto discharge function at OFF state. B version: with auto discharge function at OFF state. Designation of Taping Type: Ex. TR (refer to Taping Specifications; TR type is the standard direction.) Designation of composition of plating: −F : Lead free plating (SOT-23-6) None : Au plating (PLP1820-6) 3 R5325x PIN CONFIGURATION SOT-23-6 6 5 PLP1820-6 Top View 4 Bottom View 6 5 4 4 5 6 1 2 3 3 2 1 (mark side) 1 2 3 PIN DESCRIPTIONS • • SOT-23-6 Pin No. Symbol 1 VOUT1 2 VDD 3 Description PLP1820-6 Pin No. Symbol Description Output Pin 1 1 VOUT2 Input Pin 2 VDD VOUT2 Output Pin 2 3 VOUT1 Output Pin 1 4 CE2 Chip Enable Pin 2 4 CE1 Chip Enable Pin 1 5 GND Ground Pin 5 GND Ground Pin 6 CE1 Chip Enable Pin 1 6 CE2 Chip Enable Pin 2 Output Pin 2 Input Pin ∗ Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns. ABSOLUTE MAXIMUM RATINGS Symbol Item Rating Unit VIN Input Voltage 6.5 V VCE Input Voltage (CE Pin) 6.5 V VOUT Output Voltage −0.3 to VIN + 0.3 V IOUT1, IOUT2 Output Current 200 mA Note1 PD Power Dissipation (SOT-23-6) * Note1 Power Dissipation (PLP1820-6) * 420 880 Topt Operating Temperature Range −40 to 85 °C Tstg Storage Temperature Range −55 to 125 °C Note1: For Power Dissipation please refer to PACKAGE INFORMATION to be described. 4 mW R5325x ELECTRICAL CHARACTERISTICS • R5325xxxxA/B Topt=25°C Symbol Item Conditions Min. Typ. > = Max. Unit VOUT Output voltage VOUT 1.5V ×0.99 VIN=Set lOUT+1V < I OUT 30mA 1mA < = = VOUT < 1.5V −15mV IOUT Output Current VIN−VOUT=1.0V ∆VOUT/∆IOUT Load regulation VIN=Set VOUT+1V 1mA < = IOUT < = 150mA VDIF Dropout Voltage ISS Supply Current VIN=Set VOUT+1V 3 7 µA Istandby Supply Current (Standby) VIN=Set VOUT+1V VCE=GND 0.1 1.0 µA ∆VOUT/∆VIN Line regulation Set VOUT+0.5V IOUT=30mA 0.1 0.3 %/V RR Ripple Rejection f=1kHz Ripple 0.5Vp-p VIN−VOUT=1.0V,IOUT=30mA (In case that VOUT < = 1.7V, VIN=Set VOUT+1.2V) VIN Input Voltage ∆VOUT/ ∆Topt mA 30 80 mV Refer to the Electrical Characteristics by Output Voltage < = VIN < = 6.0V 55 1.5 IOUT=30mA −40°C < = Topt ILIM Short Current Limit VOUT=0V IPD CE Pull-down Constant Current 0.15 VCEH CE Input Voltage “H” VCEL CE Input Voltage “L” RLOW V +15mV 150 Output Voltage Temperature Coefficient en ×1.01 < = 85°C dB 6.0 V ±100 ppm /°C 50 mA 0.55 µA 1.0 6.0 V 0.0 0.4 V 0.30 Output Noise BW=10Hz to 100kHz 30 µVrms Low Output Nch Tr. ON Resistance (of B version) VCE=0V 50 Ω 5 R5325x • Electrical Characteristics by Output Voltage Dropout Voltage VDIF(V) Output Voltage VOUT (V) Typ. Max. VOUT < 1.3V 0.55 0.85 VOUT < 1.4V 0.48 0.74 VOUT < 1.5V 0.43 0.68 0.40 0.59 VOUT < 2.8V 0.27 0.39 VOUT < 4.0V 0.21 0.28 0.17 0.23 1.2V < = 1.3V < = 1.4V < = 1.5V < = VOUT < 2.0V 2.0V < = 2.8V < = Condition IOUT = 150mA VOUT=4.0V TYPICAL APPLIATION CE2 IN VDD VOUT2 R5325x Series GND OUT2 C3 C1 CE1 OUT1 VOUT1 C2 (External Components) Output Capacitor; Ceramic Type C1,C2,C3 0.1µF Kyocera CM05B104K06AB Murata GRM155B31C104KA87B 1.0µF Kyocera CM05X5R105K06AB TDK C1005JB0J105K Murata GRM155B30J105KE18B 6 R5325x TEST CIRCUIT CE2 VOUT2 R5325x Series VDD GND VOUT2 C3 CE2 VOUT2 R5325x Series VDD GND IOUT2 V ISS C3 A CE1 C1 VOUT1 VOUT1 C2 ∗ C1 = IOUT1 CE1 C2= C3=Ceramic 0.1µF C3 ∗ C1 = CE1 VOUT1 C2 C2 C2= C3=Ceramic 0.1µF Fig.2 Supply Current Test Circuit CE2 VOUT2 R5325x Series VDD GND IOUT2 Pulse Generator PG VOUT1 V Fig.1 Standard test Circuit CE2 VOUT2 R5325x Series VDD GND C1 IOUT1 C1 CE1 VOUT1 C3 IOUT2a IOUT2b IOUT1b IOUT1a C2 ∗ C2 = C3=Ceramic 0.1µF Fig.3 Ripple Rejection, Line Transient Response Test Circuit ∗ C1 = C2= C3=Ceramic 0.1µF Fig.4 Load Transient Response Test Circuit 7 R5325x TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current (Topt=25°C) 2.8V (VR1/VR2) 1.4 3.0 1.2 2.5 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.2V (VR1/VR2) 1.0 0.8 0.6 VIN=1.5V VIN=1.8V VIN=2.2V VIN=3.2V 0.4 0.2 0 2.0 1.5 1.0 0.5 0 0 50 100 150 200 250 300 350 400 450 500 Output Current IOUT(mA) VIN=3.1V VIN=3.8V VIN=3.5V VIN=4.8V 0 50 100 150 200 250 300 350 400 450 500 Output Current IOUT(mA) 4.0V (VR1/VR2) Output Voltage VOUT(V) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 VIN=4.3V VIN=5.0V VIN=6.0V 1.0 0.5 0 0 50 100 150 200 250 300 350 400 450 500 Output Current IOUT(mA) 2) Output Voltage vs. Input Voltage (Topt=25°C) 1.2 2.5 1.0 0.8 0.6 IOUT=1mA IOUT=30mA IOUT=100mA 0.4 0.2 0 8 2.8V (VR1/VR2) 3.0 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.2V (VR1/VR2) 1.4 0 1 2 3 4 Input Voltage VIN(V) 5 6 2.0 1.5 1.0 IOUT=1mA IOUT=30mA IOUT=100mA 0.5 0 0 1 2 3 4 Input Voltage VIN(V) 5 6 R5325x Output Voltage VOUT(V) 4.0V (VR1/VR2) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 IOUT=1mA IOUT=30mA IOUT=100mA 0 1 2 3 4 Input Voltage VIN(V) 5 6 3) Dropout Voltage vs. Output Current 1.2V (VR1/VR2) 2.8V (VR1/VR2) 300 700 600 500 400 300 85°C 25°C -40°C 200 100 0 0 25 50 75 100 125 Output Current IOUT(mA) 150 Dropout Voltage VDIF(mV) Dropout Voltage VDIF(mV) 800 250 200 150 100 85°C 25°C -40°C 50 0 0 25 50 75 100 125 Output Current IOUT(mA) 150 4.0V (VR1/VR2) Dropout Voltage VDIF(mV) 250 200 150 100 85°C 25°C -40°C 50 0 0 25 50 75 100 125 Output Current IOUT(mA) 150 9 R5325x 4) Output Voltage vs. Temperature (IOUT=30mA) 1.2V (VR1/VR2) 1.23 1.22 1.21 1.20 1.19 1.18 1.17 1.16 -50 -25 0 25 50 75 Temperature Topt(°C) VIN=3.8V 3.00 Output Voltage VOUT(V) Output Voltage VOUT(V) 2.8V (VR1/VR2) VIN=2.2V 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 -50 100 -25 0 25 50 75 Temperature Topt(°C) 100 4.0V (VR1/VR2) VIN=5.0V Output Voltage VOUT(V) 4.20 4.15 4.10 4.05 4.00 3.95 3.90 3.85 3.80 -50 -25 0 25 50 75 Temperature Topt(°C) 100 5) Supply Current vs. Input Voltage (Topt=25°C) 10 10 9 8 7 6 5 4 3 2 1 0 1.2 2.8V (VR1/VR2) Supply Current ISS(µA) Supply Current ISS(µA) 1.2V (VR1/VR2) 2.0 2.8 3.6 4.4 5.2 Input Voltage VIN(V) 6.0 10 9 8 7 6 5 4 3 2 1 0 2.8 3.6 4.4 5.2 Input Voltage VIN(V) 6.0 R5325x Supply Current ISS(µA) 4.0V (VR1/VR2) 10 9 8 7 6 5 4 3 2 1 0 4.0 4.5 5.0 5.5 Input Voltage VIN(V) 6.0 6) Supply Current vs. Temperature 10 9 8 7 6 5 4 3 2 1 0 -50 2.8V (VR1/VR2) VIN=2.2V Supply Current ISS(µA) Supply Current ISS(µA) 1.2V (VR1/VR2) -25 0 25 50 75 Temperature Topt(°C) 100 10 9 8 7 6 5 4 3 2 1 0 -50 VIN=3.8V -25 0 25 50 75 Temperature Topt(°C) 100 Supply Current ISS(µA) 4.0V (VR1/VR2) 10 9 8 7 6 5 4 3 2 1 0 -50 VIN=5.0V -25 0 25 50 75 Temperature Topt(°C) 100 11 R5325x 7) Dropout Voltage vs. Set Output Voltage (Topt=25°C) VR1/VR2 Dropout Voltage VDIF(mV) 700 150mA 100mA 30mA 10mA 1mA 600 500 400 300 200 100 0 1.0 1.5 2.0 2.5 3.0 3.5 Set Output Voltage VREG(V) 4.0 8) Ripple Rejection vs. Frequency (Topt=25°C, COUT=0.1µF) 1.2V (VR1/VR2) 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=100mA 20 10 0 0.1 1 10 Frequency f(kHz) 100 4.0V (VR1/VR2) Ripple Rejection RR(dB) 80 VIN=5.0VDC+0.2Vp-p,COUT=Ceramic 0.1µF 70 60 50 40 30 20 10 0 0.1 12 IOUT=1mA IOUT=30mA IOUT=100mA 1 10 Frequency f(kHz) 80 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 80 2.8V (VR1/VR2) VIN=2.2VDC+0.2Vp-p,COUT=Ceramic 0.1µF 100 VIN=3.8VDC+0.2Vp-p,COUT=Ceramic 0.1µF 70 60 50 40 30 20 10 0 0.1 IOUT=1mA IOUT=30mA IOUT=100mA 1 10 Frequency f(kHz) 100 R5325x 9) Ripple Rejection vs. Input Voltage (DC bias), Topt=25°C, Ripple 0.2Vp-p 2.8V (VR1/VR2) 70 60 80 100Hz 1kHz 10kHz 100kHz Ripple Rejection RR(dB) Ripple Rejection RR(dB) 80 2.8V (VR1/VR2) IOUT=1mA 50 40 30 20 10 0 2.90 3.00 3.10 3.20 Input Voltage VIN(V) 70 60 IOUT=10mA 100Hz 1kHz 10kHz 100kHz 50 40 30 20 10 0 2.90 3.30 3.00 3.10 3.20 Input Voltage VIN(V) 3.30 2.8V (VR1/VR2) Ripple Rejection RR(dB) 80 70 60 IOUT=100mA 100Hz 1kHz 10kHz 100kHz 50 40 30 20 10 0 2.90 3.00 3.10 3.20 Input Voltage VIN(V) 3.30 10) Input Transient Response(CIN=none, Tr=Tf=5µs, IOUT=30mA) 1.5 Input Voltage 1.4 1.3 4 1.7 3 1.6 2 1 Output Voltage 1.2 1.1 1.0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs) 0 Output Voltage VOUT(V) 1.6 1.2V (VR1/VR2) Input Voltage VIN(V) Output Voltage VOUT(V) 1.7 COUT=Ceramic 0.1µF 1.5 COUT=Ceramic 1.0µF 3 Input Voltage 1.4 1.3 4 2 1 Output Voltage 1.2 0 Input Voltage VIN(V) 1.2V (VR1/VR2) 1.1 1.0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs) 13 R5325x 2.8V (VR1/VR2) 4 3 3.0 2.9 2 Output Voltage 2.8 1 2.7 0 5 Input Voltage 3.1 2.9 Output Voltage 1 2.7 0 4.0V (VR1/VR2) 4.0V (VR1/VR2) Input Voltage 4.3 7 4.5 6 4.4 5 4.2 4 4.1 3 Output Voltage 4.0 2 3.9 1 Output Voltage VOUT(V) 4.4 3.8 0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs) 2 2.8 2.6 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs) 4.5 4 3 3.0 2.6 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs) COUT=Ceramic 0.1µF 6 COUT=Ceramic 1.0µF Input Voltage VIN(V) 3.2 COUT=Ceramic 1.0µF 7 6 Input Voltage 4.3 4.2 5 4 4.1 Output Voltage 3 4.0 2 3.9 1 Input Voltage VIN(V) 3.1 5 Output Voltage VOUT(V) Input Voltage 3.3 Input Voltage VIN(V) 3.2 6 Input Voltage VIN(V) Output Voltage VOUT(V) 3.3 Output Voltage VOUT(V) 2.8V (VR1/VR2) COUT=Ceramic 0.1µF 3.8 0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs) 11) Load Transient Response (CIN=Ceramic 0.1µF) 2.8V (VR1/VR2) VR2 Output Voltage Load Current=1mA 0 4 8 12 16 20 24 28 32 36 Time t(µs) 150 100 50 VR2 Output Current 50mA↔100mA 0 3.0 2.8 2.6 3.0 2.8 2.6 2.4 VR1 Output Voltage Load Current=1mA VR2 Output Voltage -4 0 4 8 12 16 20 24 28 32 36 Time t(µs) Output Current IOUT(mA) VR1 Output Voltage -4 14 150 100 50 0 Output Voltage VOUT(V) VR1 Output Current 50mA↔100mA 3.8 3.0 2.8 2.6 3.0 2.8 2.6 2.4 2.8V (VR1/VR2) COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns Output Current IOUT(mA) Output Voltage VOUT(V) COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns R5325x VR1 Output Current 1mA↔50mA VR1 Output Voltage VR2 Output Voltage Load Current=1mA 25 50 75 100 125 150 175 Time t(µs) VR2 Output Current 1mA↔50mA VR1 Output Voltage Load Current=1mA VR2 Output Voltage 0 25 2.8V (VR1/VR2) 2.8V (VR1/VR2) VR1 Output Voltage VR2 Output Voltage Load Current=1mA -4 0 4 Output Voltage VOUT(V) 150 100 50 VR1 Output Current 50mA↔100mA 0 COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns Output Current IOUT(mA) Output Voltage VOUT(V) COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns 3.0 2.8 2.6 3.0 2.8 2.6 2.4 8 12 16 20 24 28 32 36 Time t(µs) 150 100 50 VR2 Output Current 50mA↔100mA 0 3.0 2.8 2.6 3.0 2.8 2.6 2.4 VR1 Output Voltage Load Current=1mA VR2 Output Voltage -4 0 2.8V (VR1/VR2) 8 12 16 20 24 28 32 36 Time t(µs) VR1 Output Voltage VR2 Output Voltage Load Current=1mA 20 40 60 80 100 120 140 160 180 Time t(µs) COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns Output Voltage VOUT(V) 100 50 1 VR1 Output Current 1mA↔50mA 3.0 2.8 2.6 3.0 2.8 2.6 2.4 -20 0 4 2.8V (VR1/VR2) Output Current IOUT(mA) Output Voltage VOUT(V) COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns 50 75 100 125 150 175 Time t(µs) Output Current IOUT(mA) 0 100 50 1 100 50 1 VR2 Output Current 1mA↔50mA 3.0 2.8 2.6 3.0 2.8 2.6 2.4 -25 VR1 Output Voltage Load Current=1mA VR2 Output Voltage 0 25 Output Current IOUT(mA) 3.0 2.8 2.6 3.1 2.8 2.5 2.2 -25 5.2 4.9 4.6 4.3 3.0 2.8 2.6 3.1 2.8 2.5 2.2 -25 COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns Output Current IOUT(mA) 100 50 1 Output Voltage VOUT(V) Output Voltage VOUT(V) 2.8V (VR1/VR2) Output Current IOUT(mA) 2.8V (VR1/VR2) COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns 50 75 100 125 150 175 Time t(µs) 15 R5325x 2.8V (VR1/VR2) Output Voltage VOUT(V) VR1/VR2 Output Current 50mA↔100mA 150 100 50 0 Output Voltage 2.8 2.7 Output Current IOUT(mA) COUT=Ceramic 2.2µF,VIN=3.8V,Tr=Tf=500ns 2.6 0 10 20 30 40 50 60 70 80 90 100 Time t(µs) 12) Turn on Speed by CE signal CIN=Ceramic 0.1µF 3 2 1 0 Output Voltage 0.8 IOUT=1mA IOUT=30mA 0.4 0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs) CE Input Voltage 1 0 1.2 Output Voltage 0.8 0.4 0 -40 0 2 0 Output Voltage 1 0 -20 0 16 3 20 40 60 80 100 120 140 160 180 Time t(µs) Output Voltage VOUT(V) 2 COUT=Ceramic 1.0µF,VIN=3.3V,IOUT=30mA 4 1 3 40 80 120 160 200 240 280 320 360 Time t(µs) 2.8V (VR1/VR2) CE Input Voltage VCE(V) Output Voltage VOUT(V) CE Input Voltage 3 2 2.8V (VR1/VR2) COUT=Ceramic 0.1µF,VIN=3.3V,IOUT=30mA 4 4 3 CE Input Voltage 2 1 0 3 2 Output Voltage 1 0 -20 0 20 40 60 80 100 120 140 160 180 Time t(µs) CE Input Voltage VCE(V) 1.2 Output Voltage VOUT(V) 4 CE Input Voltage VCE(V) Output Voltage VOUT(V) CE Input Voltage 1.2V (VR1/VR2) COUT=Ceramic 1.0µF,VIN=3.3V,IOUT=30mA CE Input Voltage VCE(V) 1.2V (VR1/VR2) COUT=Ceramic 0.1µF,VIN=3.3V R5325x 6 CE Input Voltage 3 0 4 Output Voltage 2 0 -20 0 Output Voltage VOUT(V) 9 CE Input Voltage VCE(V) Output Voltage VOUT(V) 4.0V (VR1/VR2) COUT=Ceramic 1.0µF,VIN=6.0V,IOUT=30mA 6 CE Input Voltage 3 0 4 Output Voltage 2 0 -20 0 20 40 60 80 100 120 140 160 180 Time t(µs) 9 CE Input Voltage VCE(V) 4.0V (VR1/VR2) COUT=Ceramic 0.1µF,VIN=6.0V,IOUT=30mA 20 40 60 80 100 120 140 160 180 Time t(µs) 13) Turn-off Speed with CE Signal CIN=Ceramic 0.1µF(B version) 2.4 2 CE Input Voltage 1 1.6 0 1.2 0.8 3 Output Voltage IOUT=1mA IOUT=30mA 0.4 0 -10 0 10 20 30 40 50 60 70 80 90 Time t(µs) 2.0 5 4 7 3 6 2 CE Input Voltage 4 1 3 0 2 1 0 -20 0 0 Output Voltage IOUT=1mA IOUT=30mA 40 80 120 160 200 240 280 320 360 Time t(µs) 2.8V (VR1/VR2) Output Voltage IOUT=1mA IOUT=30mA 20 40 60 80 100 120 140 160 180 Time t(µs) Output Voltage VOUT(V) 6 2 1 0.4 0 -40 0 CE Input Voltage VCE(V) Output Voltage VOUT(V) COUT=Ceramic 0.1µF,VIN=3.3V CE Input Voltage 1.2 2.8V (VR1/VR2) 7 3 1.6 0.8 4 5 COUT=Ceramic 1.0µF,VIN=3.3V 4 3 2 CE Input Voltage 4 1 3 0 2 1 Output Voltage IOUT=1mA IOUT=30mA CE Input Voltage VCE(V) 2.0 2.8 Output Voltage VOUT(V) 2.4 4 CE Input Voltage VCE(V) Output Voltage VOUT(V) 2.8 1.2V (VR1/VR2) COUT=Ceramic 1.0µF,VIN=3.3V CE Input Voltage VCE(V) 1.2V (VR1/VR2) COUT=Ceramic 0.1µF,VIN=3.3V 0 -10 0 100 200 300 400 500 600 700 800 900 Time t(µs) 17 R5325x CE Input Voltage 6 0 4 Output Voltage 2 0 -20 0 18 5 IOUT=1mA IOUT=30mA 20 40 60 80 100 120 140 160 180 Time t(µs) Output Voltage VOUT(V) 8 10 CE Input Voltage VCE(V) Output Voltage VOUT(V) 10 4.0V (VR1/VR2) COUT=Ceramic 1.0µF,VIN=6.0V 8 5 CE Input Voltage 6 0 4 Output Voltage 2 IOUT=1mA IOUT=30mA 0 -10 0 100 200 300 400 500 600 700 800 900 Time t(µs) CE Input Voltage VCE(V) 4.0V (VR1/VR2) COUT=Ceramic 0.1µF,VIN=6.0V R5325x TECHNICAL NOTES CE2 IN VDD C1 CE1 VOUT2 R5325x Series GND OUT2 C3 OUT1 VOUT1 C2 (External Components) Output Capacitor; Ceramic Type C1,C2,C3 0.1µF Kyocera CM05B104K06AB Murata GRM155B31C104KA87B 1.0µF Kyocera CM05X5R105K06AB TDK C1005JB0J105K Murata GRM155B30J105KE18B 1.Mounting on PCB Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as 1.0µF or more as C1 between VDD and GND pin, and as close as possible to the pins. Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as short as possible. 2.Phase Compensation In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.) If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable. Evaluate your circuit with considering frequency characteristics. Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit with actual using capacitors. 19 PACKAGE INFORMATION • PE-SOT-23-6-0510 SOT-23-6 (SC-74) Unit: mm PACKAGE DIMENSIONS 2.9±0.2 +0.2 1.1 −0.1 1.9±0.2 (0.95) (0.95) 6 5 0.8±0.1 0 to 0.1 2 +0.1 0.15 −0.05 +0.1 0.4−0.2 0.2 MIN. 1 2.8±0.3 +0.2 1.6 −0.1 4 TAPING SPECIFICATION +0.1 φ1.5 0 4.0±0.1 2.0±0.05 4 1 2 3 2.0MAX. 3.5±0.05 5 3.2 6 8.0±0.3 1.75±0.1 0.3±0.1 3.3 4.0±0.1 ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 21±0.8 +1 60 0 2±0.5 0 180 −1.5 13±0.2 11.4±1.0 9.0±0.3 PACKAGE INFORMATION PE-SOT-23-6-0510 POWER DISSIPATION (SOT-23-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.5mm × 44pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Free Air Power Dissipation 420mW 250mW Thermal Resistance θja=(125−25°C)/0.42W=263°C/W 400°C/W 500 40 On Board 420 400 300 200 40 Power Dissipation PD(mW) 600 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area Unit : mm RECOMMENDED LAND PATTERN 2.4 1.0 0.7 MAX. 0.95 0.95 1.9 (Unit: mm) PACKAGE INFORMATION • PE-PLP1820-6-0611 PLP1820-6 Unit: mm PACKAGE DIMENSIONS 1.6±0.1 1.80 0.20±0.1 B A 4 0.05 M AB 6 0.25±0.1 ×4 0.25±0.1 2.00 1.0±0.1 0.05 INDEX 3 1 0.5 0.6Max. 0.1NOM. 0.3±0.1 Bottom View Attention: Tabs or Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.05 4.0±0.1 2.4 3.5±0.05 2.0±0.05 8.0±0.3 1.5 +0.1 0 0.25±0.1 1.75±0.1 TAPING SPECIFICATION 1.1±0.1 2.2 1.1Max. 4.0±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS REUSE REEL (EIAJ-RRM-08Bc) (1reel=5000pcs) (R5323K,R5325K : 1reel=3000pcs) 11.4±1.0 2±0.5 21±0.8 ∅60 +1 0 0 ∅180 −1.5 ∅13±0.2 9.0±0.3 PACKAGE INFORMATION PE-PLP1820-6-0611 POWER DISSIPATION (PLP1820-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.54mm × 30pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Power Dissipation 880mW Thermal Resistance θja=(125−25°C)/0.88W=114°C/W 40 On Board 1000 880 800 600 40 Power Dissipation PD(mW) 1200 400 200 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area Unit : mm RECOMMENDED LAND PATTERN 0.35 0.75 0.45 1.00 0.5 0.5 1.60 0.25 (Unit: mm) MARK INFORMATION ME-R5325N-0612 R5325N SERIES MARK SPECIFICATION • SOT-23-6 (SC-74) 1 • 2 3 1 , 2 : Product Code (refer to Part Number vs. Product Code) 3 , 4 : Lot Number 4 Part Number vs. Product Code Part Number Product Code Part Number Product Code 1 2 1 2 R5325N001B W 1 R5325N001A Y 1 R5325N002B W 2 R5325N002A Y 2 R5325N003B W 3 R5325N003A Y 3 R5325N004B W 4 R5325N004A Y 4 R5325N005B W 5 R5325N005A Y 5 R5325N006B W 6 R5325N006A Y 6 R5325N007B W 7 R5325N007A Y 7 R5325N008B W 8 R5325N008A Y 8 R5325N009B W 9 R5325N009A Y 9 R5325N010B W A R5325N010A Y A R5325N011B W B R5325N011A Y B R5325N012B W C R5325N012A Y C R5325N013B W D R5325N013A Y D R5325N014B W G R5325N014A Y G R5325N015B W H R5325N015A Y H R5325N016B W E R5325N016A Y E R5325N017B W F R5325N017A Y F R5325N018B W J R5325N018A Y J R5325N019B W K R5325N019A Y K R5325N020B W L R5325N020A Y L R5325N021B W M R5325N021A Y M R5325N022B W N R5325N022A Y N R5325N023B W P R5325N023A Y P R5325N024B W Q R5325N024A Y Q R5325N025B W R R5325N025A Y R R5325N026B W S R5325N026A Y S R5325N027B W T R5325N027A Y T R5325N028B W U R5325N028A Y U R5325N029B W V R5325N029A Y V MARK INFORMATION ME-R5325K-0612 R5325K SERIES MARK SPECIFICATION • PLP1820-6 to 1 5 • 1 2 3 4 5 6 , 4 6 : Product Code (refer to Part Number vs. Product Code) : Lot Number Part Number vs. Product Code Part Number Product Code Part Number Product Code 1 2 3 4 1 2 3 4 R5325K001B D 0 0 1 R5325K001A R 0 0 1 R5325K002B D 0 0 2 R5325K002A R 0 0 2 R5325K003B D 0 0 3 R5325K003A R 0 0 3 R5325K004B D 0 0 4 R5325K004A R 0 0 4 R5325K005B D 0 0 5 R5325K005A R 0 0 5 R5325K006B D 0 0 6 R5325K006A R 0 0 6 R5325K007B D 0 0 7 R5325K007A R 0 0 7 R5325K008B D 0 0 8 R5325K008A R 0 0 8 R5325K009B D 0 0 9 R5325K009A R 0 0 9 R5325K010B D 0 1 0 R5325K010A R 0 1 0 R5325K011B D 0 1 1 R5325K011A R 0 1 1 R5325K012B D 0 1 2 R5325K012A R 0 1 2 R5325K013B D 0 1 3 R5325K013A R 0 1 3 R5325K014B D 0 1 4 R5325K014A R 0 1 4 R5325K015B D 0 1 5 R5325K015A R 0 1 5 6 R5325K016B D 0 1 6 R5325K016A R 0 1 R5325K017B D 0 1 7 R5325K017A R 0 1 7 R5325K018B D 0 1 8 R5325K018A R 0 1 8 R5325K019B D 0 1 9 R5325K019A R 0 1 9 R5325K020B D 0 2 0 R5325K020A R 0 2 0 R5325K021B D 0 2 1 R5325K021A R 0 2 1 2 R5325K022B D 0 2 2 R5325K022A R 0 2 R5325K023B D 0 2 3 R5325K023A R 0 2 3 R5325K024B D 0 2 4 R5325K024A R 0 2 4 R5325K025B D 0 2 5 R5325K025A R 0 2 5 R5325K026B D 0 2 6 R5325K026A R 0 2 6 R5325K027B D 0 2 7 R5325K027A R 0 2 7 R5325K028B D 0 2 8 R5325K028A R 0 2 8 R5325K029B D 0 2 9 R5325K029A R 0 2 9