RICOH R5325N029B

R5325x SERIES
150mA 2ch LDO REGULATOR
NO.EA-127-0606
OUTLINE
The R5325x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply
current (Typ. 3.0µA), low dropout, and fast transient response. Each of these voltage regulator ICs consists of a
voltage reference unit, an error amplifier, resistors for setting output voltage, a current limit circuit, and a chip
enable circuit.
These ICs perform with low dropout voltage due to built-in transistor with low ON resistance, and a chip enable
function prolongs the battery life of each system. The line transient response and load transient response of the
R5325x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication
equipment.
The supply current at no load of R5325x Series is remarkably reduced compared with R5325x Series. The
mode change signal to reduce the supply current is not necessary.
The output voltage of these ICs is internally fixed with high accuracy (±1.0%) Since the packages for these ICs
are SOT-23-6 and PLP1820-6 package, 2ch LDO regulators are included in each, high density mounting of the
ICs on boards is possible.
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Input Voltage ................................................................. 1.5V to 6.0V
Output Voltage ..............................................................1.2V to 4.0V
High Output Voltage Accuracy ......................................±1.0% (VOUT >
= 1.5V)
Low Supply Current ...................................................... Typ. 3.0µA (VR1, VR2)
Standby Current ............................................................ Typ. 0.1µA (VR1,VR2)
Low Dropout Voltage..................................................... Typ. 0.2V (IOUT=150mA ,VOUT=3.0V)
High Ripple Rejection ................................................... Typ. 55dB (f=1kHz)
Built-in fold-back protection circuit ................................ Typ. 50mA (Current at short mode)
Low Temperature-Drift Coefficient of Output Voltage.... Typ. ±100ppm/°C
Excellent Line Regulation ............................................. Typ.0.02%/V
Built-in chip enable circuit (active “H”)
Fast Transient Response Time from large load current to small load current (50% less than R5323x)
Small Packages .......................................................... SOT-23-6, PLP1820-6
Ceramic Capacitor is recommended. (0.1µF or more)
APPLICATIONS
• Power source for handheld communication equipment.
• Power source for electrical appliances such as cameras, VCRs and camcorders.
• Power source for battery-powered equipment.
1
R5325x
BLOCK DIAGRAMS
R5325xxxxA
CE1
VOUT1
R1_1
Error
Amp.
Vref
R2_1
Current Limit
VDD
GND
R1_2
Error
Amp.
Vref
R2_2
Current Limit
CE2
VOUT2
R5325xxxxB
CE1
VOUT1
R1_1
Error
Amp.
Vref
R2_1
Current Limit
VDD
GND
R1_2
Error
Amp.
Vref
R2_2
Current Limit
CE2
2
VOUT2
R5325x
SELECTION GUIDE
The output voltage, mask option, and the taping type for the ICs can be selected at the user's request.
The selection can be made with designating the part number as shown below;
R5325xxxxx-xx-x ←Part Number
↑ ↑ ↑ ↑ ↑
a b c d e
Code
a
b
c
d
e
Contents
Designation of Package Type:
N: SOT-23-6
K: PLP1820-6
Setting combination of 2ch Output Voltage (VOUT) :
Serial Number for Voltage Setting, Stepwise setting with a step of 0.1V in the range of
1.2V to 4.0V is possible for each channel.
Designation of Mask Option:
A version: without auto discharge function at OFF state.
B version: with auto discharge function at OFF state.
Designation of Taping Type:
Ex. TR (refer to Taping Specifications; TR type is the standard direction.)
Designation of composition of plating:
−F : Lead free plating (SOT-23-6)
None : Au plating (PLP1820-6)
3
R5325x
PIN CONFIGURATION
SOT-23-6
6
5
PLP1820-6
Top View
4
Bottom View
6
5
4
4
5
6
1
2
3
3
2
1
(mark side)
1
2
3
PIN DESCRIPTIONS
•
•
SOT-23-6
Pin No.
Symbol
1
VOUT1
2
VDD
3
Description
PLP1820-6
Pin No.
Symbol
Description
Output Pin 1
1
VOUT2
Input Pin
2
VDD
VOUT2
Output Pin 2
3
VOUT1
Output Pin 1
4
CE2
Chip Enable Pin 2
4
CE1
Chip Enable Pin 1
5
GND
Ground Pin
5
GND
Ground Pin
6
CE1
Chip Enable Pin 1
6
CE2
Chip Enable Pin 2
Output Pin 2
Input Pin
∗ Tab in the
parts have GND level.
(They are connected to the reverse side of this IC.)
Do not connect to other wires or land patterns.
ABSOLUTE MAXIMUM RATINGS
Symbol
Item
Rating
Unit
VIN
Input Voltage
6.5
V
VCE
Input Voltage (CE Pin)
6.5
V
VOUT
Output Voltage
−0.3 to VIN + 0.3
V
IOUT1, IOUT2
Output Current
200
mA
Note1
PD
Power Dissipation (SOT-23-6) *
Note1
Power Dissipation (PLP1820-6) *
420
880
Topt
Operating Temperature Range
−40 to 85
°C
Tstg
Storage Temperature Range
−55 to 125
°C
Note1: For Power Dissipation please refer to PACKAGE INFORMATION to be described.
4
mW
R5325x
ELECTRICAL CHARACTERISTICS
•
R5325xxxxA/B
Topt=25°C
Symbol
Item
Conditions
Min.
Typ.
>
=
Max.
Unit
VOUT
Output voltage
VOUT 1.5V ×0.99
VIN=Set lOUT+1V
<
I
OUT
30mA
1mA <
=
=
VOUT < 1.5V −15mV
IOUT
Output Current
VIN−VOUT=1.0V
∆VOUT/∆IOUT
Load regulation
VIN=Set VOUT+1V
1mA <
= IOUT <
= 150mA
VDIF
Dropout Voltage
ISS
Supply Current
VIN=Set VOUT+1V
3
7
µA
Istandby
Supply Current
(Standby)
VIN=Set VOUT+1V
VCE=GND
0.1
1.0
µA
∆VOUT/∆VIN
Line regulation
Set VOUT+0.5V
IOUT=30mA
0.1
0.3
%/V
RR
Ripple Rejection
f=1kHz
Ripple 0.5Vp-p
VIN−VOUT=1.0V,IOUT=30mA
(In case that VOUT <
= 1.7V,
VIN=Set VOUT+1.2V)
VIN
Input Voltage
∆VOUT/
∆Topt
mA
30
80
mV
Refer to the Electrical Characteristics by Output Voltage
<
=
VIN
<
=
6.0V
55
1.5
IOUT=30mA
−40°C <
= Topt
ILIM
Short Current Limit
VOUT=0V
IPD
CE Pull-down Constant
Current
0.15
VCEH
CE Input Voltage “H”
VCEL
CE Input Voltage “L”
RLOW
V
+15mV
150
Output Voltage
Temperature Coefficient
en
×1.01
<
=
85°C
dB
6.0
V
±100
ppm
/°C
50
mA
0.55
µA
1.0
6.0
V
0.0
0.4
V
0.30
Output Noise
BW=10Hz to 100kHz
30
µVrms
Low Output Nch Tr. ON
Resistance
(of B version)
VCE=0V
50
Ω
5
R5325x
•
Electrical Characteristics by Output Voltage
Dropout Voltage VDIF(V)
Output Voltage
VOUT (V)
Typ.
Max.
VOUT < 1.3V
0.55
0.85
VOUT < 1.4V
0.48
0.74
VOUT < 1.5V
0.43
0.68
0.40
0.59
VOUT < 2.8V
0.27
0.39
VOUT < 4.0V
0.21
0.28
0.17
0.23
1.2V
<
=
1.3V
<
=
1.4V
<
=
1.5V
<
=
VOUT < 2.0V
2.0V
<
=
2.8V
<
=
Condition
IOUT = 150mA
VOUT=4.0V
TYPICAL APPLIATION
CE2
IN
VDD
VOUT2
R5325x
Series
GND
OUT2
C3
C1
CE1
OUT1
VOUT1
C2
(External Components)
Output Capacitor; Ceramic Type C1,C2,C3
0.1µF
Kyocera
CM05B104K06AB
Murata
GRM155B31C104KA87B
1.0µF
Kyocera
CM05X5R105K06AB
TDK
C1005JB0J105K
Murata
GRM155B30J105KE18B
6
R5325x
TEST CIRCUIT
CE2
VOUT2
R5325x
Series
VDD
GND
VOUT2
C3
CE2
VOUT2
R5325x
Series
VDD
GND
IOUT2
V
ISS
C3
A
CE1
C1
VOUT1
VOUT1
C2
∗ C1 =
IOUT1
CE1
C2= C3=Ceramic 0.1µF
C3
∗ C1 =
CE1
VOUT1
C2
C2
C2= C3=Ceramic 0.1µF
Fig.2 Supply Current Test Circuit
CE2
VOUT2
R5325x
Series
VDD
GND
IOUT2
Pulse
Generator
PG
VOUT1
V
Fig.1 Standard test Circuit
CE2
VOUT2
R5325x
Series
VDD
GND
C1
IOUT1
C1
CE1
VOUT1
C3
IOUT2a
IOUT2b
IOUT1b IOUT1a
C2
∗ C2 =
C3=Ceramic 0.1µF
Fig.3 Ripple Rejection, Line Transient Response
Test Circuit
∗ C1 =
C2= C3=Ceramic 0.1µF
Fig.4 Load Transient Response Test Circuit
7
R5325x
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current (Topt=25°C)
2.8V (VR1/VR2)
1.4
3.0
1.2
2.5
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1.2V (VR1/VR2)
1.0
0.8
0.6
VIN=1.5V
VIN=1.8V
VIN=2.2V
VIN=3.2V
0.4
0.2
0
2.0
1.5
1.0
0.5
0
0 50 100 150 200 250 300 350 400 450 500
Output Current IOUT(mA)
VIN=3.1V
VIN=3.8V
VIN=3.5V
VIN=4.8V
0 50 100 150 200 250 300 350 400 450 500
Output Current IOUT(mA)
4.0V (VR1/VR2)
Output Voltage VOUT(V)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
VIN=4.3V
VIN=5.0V
VIN=6.0V
1.0
0.5
0
0 50 100 150 200 250 300 350 400 450 500
Output Current IOUT(mA)
2) Output Voltage vs. Input Voltage (Topt=25°C)
1.2
2.5
1.0
0.8
0.6
IOUT=1mA
IOUT=30mA
IOUT=100mA
0.4
0.2
0
8
2.8V (VR1/VR2)
3.0
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1.2V (VR1/VR2)
1.4
0
1
2
3
4
Input Voltage VIN(V)
5
6
2.0
1.5
1.0
IOUT=1mA
IOUT=30mA
IOUT=100mA
0.5
0
0
1
2
3
4
Input Voltage VIN(V)
5
6
R5325x
Output Voltage VOUT(V)
4.0V (VR1/VR2)
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
IOUT=1mA
IOUT=30mA
IOUT=100mA
0
1
2
3
4
Input Voltage VIN(V)
5
6
3) Dropout Voltage vs. Output Current
1.2V (VR1/VR2)
2.8V (VR1/VR2)
300
700
600
500
400
300
85°C
25°C
-40°C
200
100
0
0
25
50
75
100 125
Output Current IOUT(mA)
150
Dropout Voltage VDIF(mV)
Dropout Voltage VDIF(mV)
800
250
200
150
100
85°C
25°C
-40°C
50
0
0
25
50
75
100 125
Output Current IOUT(mA)
150
4.0V (VR1/VR2)
Dropout Voltage VDIF(mV)
250
200
150
100
85°C
25°C
-40°C
50
0
0
25
50
75
100 125
Output Current IOUT(mA)
150
9
R5325x
4) Output Voltage vs. Temperature (IOUT=30mA)
1.2V (VR1/VR2)
1.23
1.22
1.21
1.20
1.19
1.18
1.17
1.16
-50
-25
0
25
50
75
Temperature Topt(°C)
VIN=3.8V
3.00
Output Voltage VOUT(V)
Output Voltage VOUT(V)
2.8V (VR1/VR2)
VIN=2.2V
2.95
2.90
2.85
2.80
2.75
2.70
2.65
2.60
-50
100
-25
0
25
50
75
Temperature Topt(°C)
100
4.0V (VR1/VR2)
VIN=5.0V
Output Voltage VOUT(V)
4.20
4.15
4.10
4.05
4.00
3.95
3.90
3.85
3.80
-50
-25
0
25
50
75
Temperature Topt(°C)
100
5) Supply Current vs. Input Voltage (Topt=25°C)
10
10
9
8
7
6
5
4
3
2
1
0
1.2
2.8V (VR1/VR2)
Supply Current ISS(µA)
Supply Current ISS(µA)
1.2V (VR1/VR2)
2.0
2.8
3.6
4.4
5.2
Input Voltage VIN(V)
6.0
10
9
8
7
6
5
4
3
2
1
0
2.8
3.6
4.4
5.2
Input Voltage VIN(V)
6.0
R5325x
Supply Current ISS(µA)
4.0V (VR1/VR2)
10
9
8
7
6
5
4
3
2
1
0
4.0
4.5
5.0
5.5
Input Voltage VIN(V)
6.0
6) Supply Current vs. Temperature
10
9
8
7
6
5
4
3
2
1
0
-50
2.8V (VR1/VR2)
VIN=2.2V
Supply Current ISS(µA)
Supply Current ISS(µA)
1.2V (VR1/VR2)
-25
0
25
50
75
Temperature Topt(°C)
100
10
9
8
7
6
5
4
3
2
1
0
-50
VIN=3.8V
-25
0
25
50
75
Temperature Topt(°C)
100
Supply Current ISS(µA)
4.0V (VR1/VR2)
10
9
8
7
6
5
4
3
2
1
0
-50
VIN=5.0V
-25
0
25
50
75
Temperature Topt(°C)
100
11
R5325x
7) Dropout Voltage vs. Set Output Voltage (Topt=25°C)
VR1/VR2
Dropout Voltage VDIF(mV)
700
150mA
100mA
30mA
10mA
1mA
600
500
400
300
200
100
0
1.0
1.5
2.0
2.5
3.0
3.5
Set Output Voltage VREG(V)
4.0
8) Ripple Rejection vs. Frequency (Topt=25°C, COUT=0.1µF)
1.2V (VR1/VR2)
70
60
50
40
30
IOUT=1mA
IOUT=30mA
IOUT=100mA
20
10
0
0.1
1
10
Frequency f(kHz)
100
4.0V (VR1/VR2)
Ripple Rejection RR(dB)
80
VIN=5.0VDC+0.2Vp-p,COUT=Ceramic 0.1µF
70
60
50
40
30
20
10
0
0.1
12
IOUT=1mA
IOUT=30mA
IOUT=100mA
1
10
Frequency f(kHz)
80
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
80
2.8V (VR1/VR2)
VIN=2.2VDC+0.2Vp-p,COUT=Ceramic 0.1µF
100
VIN=3.8VDC+0.2Vp-p,COUT=Ceramic 0.1µF
70
60
50
40
30
20
10
0
0.1
IOUT=1mA
IOUT=30mA
IOUT=100mA
1
10
Frequency f(kHz)
100
R5325x
9) Ripple Rejection vs. Input Voltage (DC bias), Topt=25°C, Ripple 0.2Vp-p
2.8V (VR1/VR2)
70
60
80
100Hz
1kHz
10kHz
100kHz
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
80
2.8V (VR1/VR2)
IOUT=1mA
50
40
30
20
10
0
2.90
3.00
3.10
3.20
Input Voltage VIN(V)
70
60
IOUT=10mA
100Hz
1kHz
10kHz
100kHz
50
40
30
20
10
0
2.90
3.30
3.00
3.10
3.20
Input Voltage VIN(V)
3.30
2.8V (VR1/VR2)
Ripple Rejection RR(dB)
80
70
60
IOUT=100mA
100Hz
1kHz
10kHz
100kHz
50
40
30
20
10
0
2.90
3.00
3.10
3.20
Input Voltage VIN(V)
3.30
10) Input Transient Response(CIN=none, Tr=Tf=5µs, IOUT=30mA)
1.5
Input Voltage
1.4
1.3
4
1.7
3
1.6
2
1
Output Voltage
1.2
1.1
1.0
-10 0 10 20 30 40 50 60 70 80 90
Time t(µs)
0
Output Voltage VOUT(V)
1.6
1.2V (VR1/VR2)
Input Voltage VIN(V)
Output Voltage VOUT(V)
1.7
COUT=Ceramic 0.1µF
1.5
COUT=Ceramic 1.0µF
3
Input Voltage
1.4
1.3
4
2
1
Output Voltage
1.2
0
Input Voltage VIN(V)
1.2V (VR1/VR2)
1.1
1.0
-10 0 10 20 30 40 50 60 70 80 90
Time t(µs)
13
R5325x
2.8V (VR1/VR2)
4
3
3.0
2.9
2
Output Voltage
2.8
1
2.7
0
5
Input Voltage
3.1
2.9
Output Voltage
1
2.7
0
4.0V (VR1/VR2)
4.0V (VR1/VR2)
Input Voltage
4.3
7
4.5
6
4.4
5
4.2
4
4.1
3
Output Voltage
4.0
2
3.9
1
Output Voltage VOUT(V)
4.4
3.8
0
-10 0 10 20 30 40 50 60 70 80 90
Time t(µs)
2
2.8
2.6
-10 0 10 20 30 40 50 60 70 80 90
Time t(µs)
4.5
4
3
3.0
2.6
-10 0 10 20 30 40 50 60 70 80 90
Time t(µs)
COUT=Ceramic 0.1µF
6
COUT=Ceramic 1.0µF
Input Voltage VIN(V)
3.2
COUT=Ceramic 1.0µF
7
6
Input Voltage
4.3
4.2
5
4
4.1
Output Voltage
3
4.0
2
3.9
1
Input Voltage VIN(V)
3.1
5
Output Voltage VOUT(V)
Input Voltage
3.3
Input Voltage VIN(V)
3.2
6
Input Voltage VIN(V)
Output Voltage VOUT(V)
3.3
Output Voltage VOUT(V)
2.8V (VR1/VR2)
COUT=Ceramic 0.1µF
3.8
0
-10 0 10 20 30 40 50 60 70 80 90
Time t(µs)
11) Load Transient Response (CIN=Ceramic 0.1µF)
2.8V (VR1/VR2)
VR2 Output Voltage
Load Current=1mA
0
4
8 12 16 20 24 28 32 36
Time t(µs)
150
100
50
VR2 Output Current 50mA↔100mA
0
3.0
2.8
2.6
3.0
2.8
2.6
2.4
VR1 Output Voltage
Load Current=1mA
VR2 Output Voltage
-4
0
4
8 12 16 20 24 28 32 36
Time t(µs)
Output Current IOUT(mA)
VR1 Output Voltage
-4
14
150
100
50
0
Output Voltage VOUT(V)
VR1 Output Current 50mA↔100mA
3.8
3.0
2.8
2.6
3.0
2.8
2.6
2.4
2.8V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns
Output Current IOUT(mA)
Output Voltage VOUT(V)
COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns
R5325x
VR1 Output Current 1mA↔50mA
VR1 Output Voltage
VR2 Output Voltage
Load Current=1mA
25
50 75 100 125 150 175
Time t(µs)
VR2 Output Current 1mA↔50mA
VR1 Output Voltage
Load Current=1mA
VR2 Output Voltage
0
25
2.8V (VR1/VR2)
2.8V (VR1/VR2)
VR1 Output Voltage
VR2 Output Voltage
Load Current=1mA
-4
0
4
Output Voltage VOUT(V)
150
100
50
VR1 Output Current 50mA↔100mA
0
COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns
Output Current IOUT(mA)
Output Voltage VOUT(V)
COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns
3.0
2.8
2.6
3.0
2.8
2.6
2.4
8 12 16 20 24 28 32 36
Time t(µs)
150
100
50
VR2 Output Current 50mA↔100mA
0
3.0
2.8
2.6
3.0
2.8
2.6
2.4
VR1 Output Voltage
Load Current=1mA
VR2 Output Voltage
-4
0
2.8V (VR1/VR2)
8 12 16 20 24 28 32 36
Time t(µs)
VR1 Output Voltage
VR2 Output Voltage
Load Current=1mA
20 40 60 80 100 120 140 160 180
Time t(µs)
COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns
Output Voltage VOUT(V)
100
50
1
VR1 Output Current 1mA↔50mA
3.0
2.8
2.6
3.0
2.8
2.6
2.4
-20 0
4
2.8V (VR1/VR2)
Output Current IOUT(mA)
Output Voltage VOUT(V)
COUT=Ceramic 1.0µF,VIN=3.8V,Tr=Tf=500ns
50 75 100 125 150 175
Time t(µs)
Output Current IOUT(mA)
0
100
50
1
100
50
1
VR2 Output Current 1mA↔50mA
3.0
2.8
2.6
3.0
2.8
2.6
2.4
-25
VR1 Output Voltage
Load Current=1mA
VR2 Output Voltage
0
25
Output Current IOUT(mA)
3.0
2.8
2.6
3.1
2.8
2.5
2.2
-25
5.2
4.9
4.6
4.3
3.0
2.8
2.6
3.1
2.8
2.5
2.2
-25
COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns
Output Current IOUT(mA)
100
50
1
Output Voltage VOUT(V)
Output Voltage VOUT(V)
2.8V (VR1/VR2)
Output Current IOUT(mA)
2.8V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.8V,Tr=Tf=500ns
50 75 100 125 150 175
Time t(µs)
15
R5325x
2.8V (VR1/VR2)
Output Voltage VOUT(V)
VR1/VR2 Output Current 50mA↔100mA
150
100
50
0
Output Voltage
2.8
2.7
Output Current IOUT(mA)
COUT=Ceramic 2.2µF,VIN=3.8V,Tr=Tf=500ns
2.6
0 10 20 30 40 50 60 70 80 90 100
Time t(µs)
12) Turn on Speed by CE signal CIN=Ceramic 0.1µF
3
2
1
0
Output Voltage
0.8
IOUT=1mA
IOUT=30mA
0.4
0
-10 0 10 20 30 40 50 60 70 80 90
Time t(µs)
CE Input Voltage
1
0
1.2
Output Voltage
0.8
0.4
0
-40 0
2
0
Output Voltage
1
0
-20 0
16
3
20 40 60 80 100 120 140 160 180
Time t(µs)
Output Voltage VOUT(V)
2
COUT=Ceramic 1.0µF,VIN=3.3V,IOUT=30mA
4
1
3
40 80 120 160 200 240 280 320 360
Time t(µs)
2.8V (VR1/VR2)
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
CE Input Voltage
3
2
2.8V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.3V,IOUT=30mA
4
4
3
CE Input Voltage
2
1
0
3
2
Output Voltage
1
0
-20 0
20 40 60 80 100 120 140 160 180
Time t(µs)
CE Input Voltage VCE(V)
1.2
Output Voltage VOUT(V)
4
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
CE Input Voltage
1.2V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.3V,IOUT=30mA
CE Input Voltage VCE(V)
1.2V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.3V
R5325x
6
CE Input Voltage
3
0
4
Output Voltage
2
0
-20 0
Output Voltage VOUT(V)
9
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
4.0V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=6.0V,IOUT=30mA
6
CE Input Voltage
3
0
4
Output Voltage
2
0
-20 0
20 40 60 80 100 120 140 160 180
Time t(µs)
9
CE Input Voltage VCE(V)
4.0V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=6.0V,IOUT=30mA
20 40 60 80 100 120 140 160 180
Time t(µs)
13) Turn-off Speed with CE Signal CIN=Ceramic 0.1µF(B version)
2.4
2
CE Input Voltage
1
1.6
0
1.2
0.8
3
Output Voltage
IOUT=1mA
IOUT=30mA
0.4
0
-10 0 10 20 30 40 50 60 70 80 90
Time t(µs)
2.0
5
4
7
3
6
2
CE Input Voltage
4
1
3
0
2
1
0
-20 0
0
Output Voltage
IOUT=1mA
IOUT=30mA
40 80 120 160 200 240 280 320 360
Time t(µs)
2.8V (VR1/VR2)
Output Voltage
IOUT=1mA
IOUT=30mA
20 40 60 80 100 120 140 160 180
Time t(µs)
Output Voltage VOUT(V)
6
2
1
0.4
0
-40 0
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
COUT=Ceramic 0.1µF,VIN=3.3V
CE Input Voltage
1.2
2.8V (VR1/VR2)
7
3
1.6
0.8
4
5
COUT=Ceramic 1.0µF,VIN=3.3V
4
3
2
CE Input Voltage
4
1
3
0
2
1
Output Voltage
IOUT=1mA
IOUT=30mA
CE Input Voltage VCE(V)
2.0
2.8
Output Voltage VOUT(V)
2.4
4
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
2.8
1.2V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=3.3V
CE Input Voltage VCE(V)
1.2V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=3.3V
0
-10 0 100 200 300 400 500 600 700 800 900
Time t(µs)
17
R5325x
CE Input Voltage
6
0
4
Output Voltage
2
0
-20 0
18
5
IOUT=1mA
IOUT=30mA
20 40 60 80 100 120 140 160 180
Time t(µs)
Output Voltage VOUT(V)
8
10
CE Input Voltage VCE(V)
Output Voltage VOUT(V)
10
4.0V (VR1/VR2)
COUT=Ceramic 1.0µF,VIN=6.0V
8
5
CE Input Voltage
6
0
4
Output Voltage
2
IOUT=1mA
IOUT=30mA
0
-10 0 100 200 300 400 500 600 700 800 900
Time t(µs)
CE Input Voltage VCE(V)
4.0V (VR1/VR2)
COUT=Ceramic 0.1µF,VIN=6.0V
R5325x
TECHNICAL NOTES
CE2
IN
VDD
C1
CE1
VOUT2
R5325x
Series
GND
OUT2
C3
OUT1
VOUT1
C2
(External Components)
Output Capacitor; Ceramic Type C1,C2,C3
0.1µF
Kyocera
CM05B104K06AB
Murata
GRM155B31C104KA87B
1.0µF
Kyocera
CM05X5R105K06AB
TDK
C1005JB0J105K
Murata
GRM155B30J105KE18B
1.Mounting on PCB
Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result.
Connect a capacitor with a capacitance value as much as 1.0µF or more as C1 between VDD and GND pin, and
as close as possible to the pins.
Set external components, especially the output capacitor, as close as possible to the ICs, and make wiring as
short as possible.
2.Phase Compensation
In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For
this purpose, use a capacitor C2 with good frequency characteristics and ESR (Equivalent Series Resistance).
(Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for
phase compensation, the operation might be unstable. Because of this, test these ICs with as same external
components as ones to be used on the PCB.)
If you use a tantalum type capacitor and ESR value of the capacitor is large, output might be unstable.
Evaluate your circuit with considering frequency characteristics.
Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature
characteristics are different. Evaluate the circuit with actual using capacitors.
19
PACKAGE INFORMATION
•
PE-SOT-23-6-0510
SOT-23-6 (SC-74)
Unit: mm
PACKAGE DIMENSIONS
2.9±0.2
+0.2
1.1 −0.1
1.9±0.2
(0.95)
(0.95)
6
5
0.8±0.1
0 to 0.1
2
+0.1
0.15 −0.05
+0.1
0.4−0.2
0.2 MIN.
1
2.8±0.3
+0.2
1.6 −0.1
4
TAPING SPECIFICATION
+0.1
φ1.5 0
4.0±0.1
2.0±0.05
4
1
2
3
2.0MAX.
3.5±0.05
5
3.2
6
8.0±0.3
1.75±0.1
0.3±0.1
3.3
4.0±0.1
∅1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
21±0.8
+1
60 0
2±0.5
0
180 −1.5
13±0.2
11.4±1.0
9.0±0.3
PACKAGE INFORMATION
PE-SOT-23-6-0510
POWER DISSIPATION (SOT-23-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Free Air
Power Dissipation
420mW
250mW
Thermal Resistance
θja=(125−25°C)/0.42W=263°C/W
400°C/W
500
40
On Board
420
400
300
200
40
Power Dissipation PD(mW)
600
100
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
2.4
1.0
0.7 MAX.
0.95 0.95
1.9
(Unit: mm)
PACKAGE INFORMATION
•
PE-PLP1820-6-0611
PLP1820-6
Unit: mm
PACKAGE DIMENSIONS
1.6±0.1
1.80
0.20±0.1
B
A
4
0.05 M AB
6
0.25±0.1
×4
0.25±0.1
2.00
1.0±0.1
0.05
INDEX
3
1
0.5
0.6Max.
0.1NOM.
0.3±0.1
Bottom View
Attention: Tabs or Tab suspension leads in the
parts have VDD or GND level.(They are
connected to the reverse side of this IC.)
Refer to PIN DISCRIPTION.
Do not connect to other wires or land patterns.
0.05
4.0±0.1
2.4
3.5±0.05
2.0±0.05
8.0±0.3
1.5 +0.1
0
0.25±0.1
1.75±0.1
TAPING SPECIFICATION
1.1±0.1
2.2
1.1Max.
4.0±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
REUSE REEL (EIAJ-RRM-08Bc)
(1reel=5000pcs)
(R5323K,R5325K : 1reel=3000pcs)
11.4±1.0
2±0.5
21±0.8
∅60 +1
0
0
∅180 −1.5
∅13±0.2
9.0±0.3
PACKAGE INFORMATION
PE-PLP1820-6-0611
POWER DISSIPATION (PLP1820-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.54mm × 30pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Power Dissipation
880mW
Thermal Resistance
θja=(125−25°C)/0.88W=114°C/W
40
On Board
1000
880
800
600
40
Power Dissipation PD(mW)
1200
400
200
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
0.35
0.75 0.45
1.00
0.5 0.5
1.60
0.25
(Unit: mm)
MARK INFORMATION
ME-R5325N-0612
R5325N SERIES MARK SPECIFICATION
• SOT-23-6 (SC-74)
1
•
2
3
1
,
2
: Product Code (refer to Part Number vs. Product Code)
3
,
4
: Lot Number
4
Part Number vs. Product Code
Part Number
Product Code
Part Number
Product Code
1
2
1
2
R5325N001B
W
1
R5325N001A
Y
1
R5325N002B
W
2
R5325N002A
Y
2
R5325N003B
W
3
R5325N003A
Y
3
R5325N004B
W
4
R5325N004A
Y
4
R5325N005B
W
5
R5325N005A
Y
5
R5325N006B
W
6
R5325N006A
Y
6
R5325N007B
W
7
R5325N007A
Y
7
R5325N008B
W
8
R5325N008A
Y
8
R5325N009B
W
9
R5325N009A
Y
9
R5325N010B
W
A
R5325N010A
Y
A
R5325N011B
W
B
R5325N011A
Y
B
R5325N012B
W
C
R5325N012A
Y
C
R5325N013B
W
D
R5325N013A
Y
D
R5325N014B
W
G
R5325N014A
Y
G
R5325N015B
W
H
R5325N015A
Y
H
R5325N016B
W
E
R5325N016A
Y
E
R5325N017B
W
F
R5325N017A
Y
F
R5325N018B
W
J
R5325N018A
Y
J
R5325N019B
W
K
R5325N019A
Y
K
R5325N020B
W
L
R5325N020A
Y
L
R5325N021B
W
M
R5325N021A
Y
M
R5325N022B
W
N
R5325N022A
Y
N
R5325N023B
W
P
R5325N023A
Y
P
R5325N024B
W
Q
R5325N024A
Y
Q
R5325N025B
W
R
R5325N025A
Y
R
R5325N026B
W
S
R5325N026A
Y
S
R5325N027B
W
T
R5325N027A
Y
T
R5325N028B
W
U
R5325N028A
Y
U
R5325N029B
W
V
R5325N029A
Y
V
MARK INFORMATION
ME-R5325K-0612
R5325K SERIES MARK SPECIFICATION
• PLP1820-6
to
1
5
•
1
2
3
4
5
6
,
4
6
: Product Code (refer to Part Number vs. Product Code)
: Lot Number
Part Number vs. Product Code
Part Number
Product Code
Part Number
Product Code
1
2
3
4
1
2
3
4
R5325K001B
D
0
0
1
R5325K001A
R
0
0
1
R5325K002B
D
0
0
2
R5325K002A
R
0
0
2
R5325K003B
D
0
0
3
R5325K003A
R
0
0
3
R5325K004B
D
0
0
4
R5325K004A
R
0
0
4
R5325K005B
D
0
0
5
R5325K005A
R
0
0
5
R5325K006B
D
0
0
6
R5325K006A
R
0
0
6
R5325K007B
D 0
0
7
R5325K007A
R
0
0
7
R5325K008B
D
0
0
8
R5325K008A
R
0
0
8
R5325K009B
D
0
0
9
R5325K009A
R
0
0
9
R5325K010B
D
0
1
0
R5325K010A
R
0
1
0
R5325K011B
D
0
1
1
R5325K011A
R
0
1
1
R5325K012B
D
0
1
2
R5325K012A
R
0
1
2
R5325K013B
D
0
1
3
R5325K013A
R
0
1
3
R5325K014B
D
0
1
4
R5325K014A
R
0
1
4
R5325K015B
D
0
1
5
R5325K015A
R
0
1
5
6
R5325K016B
D
0
1
6
R5325K016A
R
0
1
R5325K017B
D
0
1
7
R5325K017A
R
0
1
7
R5325K018B
D
0
1
8
R5325K018A
R
0
1
8
R5325K019B
D
0
1
9
R5325K019A
R
0
1
9
R5325K020B
D
0
2
0
R5325K020A
R
0
2
0
R5325K021B
D
0
2
1
R5325K021A
R
0
2
1
2
R5325K022B
D
0
2
2
R5325K022A
R
0
2
R5325K023B
D
0
2
3
R5325K023A
R
0
2
3
R5325K024B
D
0
2
4
R5325K024A
R
0
2
4
R5325K025B
D
0
2
5
R5325K025A
R
0
2
5
R5325K026B
D
0
2
6
R5325K026A
R
0
2
6
R5325K027B
D
0
2
7
R5325K027A
R
0
2
7
R5325K028B
D
0
2
8
R5325K028A
R
0
2
8
R5325K029B
D
0
2
9
R5325K029A
R
0
2
9