High Bandwidth, Analog/Video Optocouplers Technical Data HCPL-4562 HCNW4562 Features Bandwidth[1]: • Wide 17 MHz (HCPL-4562) 9 MHz (HCNW4562) • High Voltage Gain[1]: 2.0 (HCPL-4562) 3.0 (HCNW4562) • Low GV Temperature Coefficient: -0.3%/ °C • Highly Linear at Low Drive Currents • High-Speed AlGaAs Emitter • Safety Approval UL Recognized - 2500 V rms for 1 minute (5000 V rms for 1 minute for HCPL4562#020 and HCNW4562) per UL 1577 CSA Approved VDE 0884 Approved -VIORM = 1414 V peak for HCNW4562 BSI Certified (HCNW4562) • Available in 8-Pin DIP and Widebody Packages Applications Description • Video Isolation for the Following Standards/ Formats: NTSC, PAL, SECAM, S-VHS, ANALOG RGB • Low Drive Current Feedback Element in Switching Power Supplies, e.g., for ISDN Networks • A/D Converter Signal Isolation • Analog Signal Ground Isolation • High Voltage Insulation The HCPL-4562 and HCNW4562 optocouplers provide wide bandwidth isolation for analog signals. They are ideal for video isolation when combined with their application circuit (Figure 4). High linearity and low phase shift are achieved through an AlGaAs LED combined with a high speed detector. These single channel optocouplers are available in 8-Pin DIP and Widebody package configurations. Functional Diagram NC 1 8 VCC ANODE 2 7 VB CATHODE 3 6 VO NC 4 5 GND CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. Powered by ICminer.com Electronic-Library Service CopyRight 2003 2 Selection Guide Single Channel Packages 8-Pin DIP (300 Mil) Widebody (400 Mil) HCPL-4562 HCNW4562 Ordering Information Specify Part Number followed by Option Number (if desired). Example: HCPL-4562#XXX 020 = UL 5000 V rms/1 Minute Option* 300 = Gull Wing Surface Mount Option† 500 = Tape and Reel Packaging Option Option data sheets are available. Contact your Agilent sales representative or authorized distributor for information. *For HCPL-4562 only. †Gull wing surface mount option applies to through hole parts only. Schematic ICC 2 ANODE VCC + VF CATHODE 8 IF IO – 6 VO 3 5 IB 7 VB Powered by ICminer.com Electronic-Library Service CopyRight 2003 GND 3 Package Outline Drawings 8-Pin DIP Package (HCPL-4562) 11.00 MAX. (0.433) 11.15 ± 0.15 (0.442 ± 0.006) 8 7 6 9.00 ± 0.15 (0.354 ± 0.006) 5 TYPE NUMBER A HCNWXXXX DATE CODE YYWW 1 2 3 4 10.16 (0.400) TYP. 1.55 (0.061) MAX. 7° TYP. + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 5.10 MAX. (0.201) 3.10 (0.122) 3.90 (0.154) 0.51 (0.021) MIN. 2.54 (0.100) TYP. 1.78 ± 0.15 (0.070 ± 0.006) 0.40 (0.016) 0.56 (0.022) DIMENSIONS IN MILLIMETERS (INCHES). 8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-4562) PAD LOCATION (FOR REFERENCE ONLY) 9.65 ± 0.25 (0.380 ± 0.010) 8 7 6 1.016 (0.040) 1.194 (0.047) 5 4.826 TYP. (0.190) 6.350 ± 0.25 (0.250 ± 0.010) 1 2 3 9.398 (0.370) 9.906 (0.390) 4 1.194 (0.047) 1.778 (0.070) 1.19 (0.047) MAX. 1.780 (0.070) MAX. 9.65 ± 0.25 (0.380 ± 0.010) 7.62 ± 0.25 (0.300 ± 0.010) 4.19 MAX. (0.165) 1.080 ± 0.320 (0.043 ± 0.013) 0.635 ± 0.130 2.54 (0.025 ± 0.005) (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). Powered by ICminer.com Electronic-Library Service CopyRight 2003 0.381 (0.015) 0.635 (0.025) 0.635 ± 0.25 (0.025 ± 0.010) + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002) 12° NOM. 4 8-Pin Widebody DIP Package (HCNW4562) 11.00 MAX. (0.433) 11.15 ± 0.15 (0.442 ± 0.006) 8 7 6 9.00 ± 0.15 (0.354 ± 0.006) 5 TYPE NUMBER Agilent HCNWXXXX DATE CODE YYWW 1 2 3 4 10.16 (0.400) TYP. 1.55 (0.061) MAX. 7° TYP. + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 5.10 MAX. (0.201) 3.10 (0.122) 3.90 (0.154) 0.51 (0.021) MIN. 2.54 (0.100) TYP. 1.78 ± 0.15 (0.070 ± 0.006) 0.40 (0.016) 0.56 (0.022) DIMENSIONS IN MILLIMETERS (INCHES). 8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW4562) 11.15 ± 0.15 (0.442 ± 0.006) 8 7 6 PAD LOCATION (FOR REFERENCE ONLY) 5 6.15 (0.242)TYP. 9.00 ± 0.15 (0.354 ± 0.006) 12.30 ± 0.30 (0.484 ± 0.012) 1 2 3 4 1.3 (0.051) 0.9 (0.035) 12.30 ± 0.30 (0.484 ± 0.012) 1.55 (0.061) MAX. 11.00 MAX. (0.433) 4.00 MAX. (0.158) 1.78 ± 0.15 (0.070 ± 0.006) 2.54 (0.100) BSC 0.75 ± 0.25 (0.030 ± 0.010) 1.00 ± 0.15 (0.039 ± 0.006) + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). Powered by ICminer.com Electronic-Library Service CopyRight 2003 7° NOM. 5 TEMPERATURE – °C Solder Reflow Temperature Profile (Gull Wing Surface Mount Option Parts) 260 240 220 200 180 160 ∆T = 145°C, 1°C/SEC ∆T = 115°C, 0.3°C/SEC CSA Approved under CSA Component Acceptance Notice #5, File CA 88324. 140 120 100 80 ∆T = 100°C, 1.5°C/SEC 60 40 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 VDE Approved according to VDE 0884/06.92 (HCNW4562 only). TIME – MINUTES Note: Use of nonchlorine activated fluxes is highly recommended. Regulatory Information The devices contained in this data sheet have been approved by the following organizations: UL Recognized under UL 1577, Component Recognition Program, File E55361. BSI Certification according to BS415:1994 (BS EN60065:1994); BS EN60950:1992 (BS7002:1992) and EN41003:1993 for Class II applications (HCNW4562 only). Insulation and Safety Related Specifications Parameter Minimum External Air Gap (External Clearance) Minimum External Tracking (External Creepage) Minimum Internal Plastic Gap (Internal Clearance) Minimum Internal Tracking (Internal Creepage) Tracking Resistance (Comparative Tracking Index) Isolation Group Symbol L(101) 8-Pin DIP (300 Mil) Value 7.1 Widebody (400 Mil) Value 9.6 Units mm L(102) 7.4 10.0 mm 0.08 1.0 mm NA 4.0 mm 200 200 Volts IIIa IIIa CTI Conditions Measured from input terminals to output terminals, shortest distance through air. Measured from input terminals to output terminals, shortest distance path along body. Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity. Measured from input terminals to output terminals, along internal cavity. DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1) Option 300 - surface mount classification is Class A in accordance with CECC 00802. Powered by ICminer.com Electronic-Library Service CopyRight 2003 6 VDE 0884 Insulation Related Characteristics (HCNW4562 ONLY) Description Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage ≤ 600 V rms for rated mains voltage ≤ 1000 V rms Climatic Classification Pollution Degree (DIN VDE 0110/1.89) Maximum Working Insulation Voltage Input to Output Test Voltage, Method b* VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial Discharge < 5 pC Input to Output Test Voltage, Method a* VIORM x 1.5 = VPR, Type and sample test, tm = 60 sec, Partial Discharge < 5 pC Highest Allowable Overvoltage* (Transient Overvoltage, tini = 10 sec) Safety Limiting Values (Maximum values allowed in the event of a failure, also see Figure 17, Thermal Derating curve.) Case Temperature Input Current Output Power Insulation Resistance at TS, VIO = 500 V Symbol Characteristic Units VIORM I-IV I-III 55/85/21 2 1414 V peak VPR 2652 V peak VPR 2121 V peak VIOTM 8000 V peak TS IS,INPUT PS,OUTPUT RS 150 400 700 ≥ 109 °C mA mW Ω *Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description. Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application. Powered by ICminer.com Electronic-Library Service CopyRight 2003 7 Absolute Maximum Ratings Parameter Storage Temperature Symbol TS Operating Temperature Average Forward Input Current Device Min. -55 Max. 125 Units °C -40 HCPL-4562 85 12 °C mA HCNW4562 25 HCPL-4562 18.6 HCNW4562 40 IF(EFF) HCPL-4562 12.9 mA rms VR HCPL-4562 1.8 V HCNW4562 3 HCNW4562 40 mW TA IF(avg) Peak Forward Input Current IF(PEAK) Effective Input Current Reverse LED Input Voltage (Pin 3-2) Input Power Dissipation PIN mA Average Output Current (Pin 6) IO(AVG) 8 mA Peak Output Current (Pin 6) Emitter-Base Reverse Voltage (Pin 5-7) Supply Voltage (Pin 8-5) IO(PEAK) VEBR VCC 16 5 30 mA V V 20 5 V mA 100 mW HCPL-4562 260 °C HCNW4562 260 °C Option 300 See Package Outline Drawings Section Output Voltage (Pin 6-5) Base Current (Pin 7) VO IB Output Power Dissipation PO Lead Solder Temperature 1.6 mm Below Seating Plane, 10 Seconds up to Seating Plane, 10 Seconds Reflow Temperature Profile TLS TRP -0.3 -0.3 Note 2 Recommended Operating Conditions Parameter Symbol Device Min. Max. Units Operating Temperature TA HCPL-4562 -10 70 °C Quiescent Input Current IFQ HCPL-4562 6 mA HCNW4562 10 HCPL-4562 10 HCNW4562 17 Peak Input Current IF(PEAK) Powered by ICminer.com Electronic-Library Service CopyRight 2003 mA Note 8 Electrical Specifications (DC) TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFQ) unless otherwise specified. Parameter Base Photo Current IPB Temperature Coefficient Symbol IPB Current Transfer Ratio DC Output Voltage Min. Typ.* Max. Units 13 HCPL-4562 ∆IPB / ∆T IPB Nonlinearity Input Forward Voltage Input Reverse Breakdown Voltage Transistor Current Gain Device HCPL-4562 HCNW4562 VF BVR HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 hFE CTR VOUT HCPL-4562 HCNW4562 HCPL-4562 HCNW4562 Powered by ICminer.com Electronic-Library Service CopyRight 2003 31 19.2 65 µA Test Conditions IF = 10 mA VPB ≥ 5 V IF = 6 mA Fig. Note 2, 6 -0.3 %/°C 2 mA < IF < 10 mA, VPB ≥ 5 V 2 0.25 0.15 % 2 mA < IF < 10 mA 6 mA < IF < 14 mA 2, 6 V IF = 5 mA IF = 10 mA IR = 10 µA IR = 100 µA 1.1 1.2 1.8 3 1.3 1.6 5 60 160 45 52 4.25 5.0 1.6 1.8 V 3 5 IC = 1 mA, VCE = 1.25 V % V VCE = 1.25 V, VPB ≥ 5 V GV = 2, VCC = 9 V 8, 9 4, 15 4 9 Small Signal Characteristics (AC) TA = 25°C, IF = 6 mA for HCPL-4562 and IF = 10 mA for HCNW4562 (i.e., Recommended IFO) unless otherwise specified. Parameter Voltage Gain Symbol Device GV HCPL-4562 (0.1 MHz) HCNW4562 Min. Typ.* Max. Units 0.8 GV Temperature Coefficient ∆GV /∆T Base Photo Current Variation ∆i PB (6 MHz) HCPL-4562 HCNW4562 -3 dB Frequency (iPB) iPB (-3 dB) HCPL-4562 HCNW4562 6 -3 dB Frequency (G V) GV (-3 dB) HCPL-4562 HCNW4562 6 Gain Variation ∆GV (6 MHz) HCPL-4562 HCNW4562 HCPL-4562 Output Noise Voltage Isolation Mode Rejection Ratio 1.1 0.36 7 17 9 MHz VIN = 1 VP-P , fREF = 0.1 MHz 1, 11 7 ± 0.9 HCPL-4562 ±1 HCNW4562 ± 0.6 HCPL-4562 HCNW4562 2.5 0.75 IMRR 950 HCPL-4562 HCNW4562 Powered by ICminer.com Electronic-Library Service CopyRight 2003 1, 11 3, 10, 12 122 119 3.0 -dB 6 MHz VIN = 1 VP-P , fREF = 0.1 MHz HCNW4562 3.0 1 15 13 ± 1.0 VO(noise) %/°C VIN = 1 VP-P , fREF = 0.1 MHz Note 3, 10, 12 HCPL-4562 THD VIN = 1 VP-P Fig. VIN = 1 VP-P , fREF = 0.1 MHz ∆GV HCPL-4562 (10 MHz) HCNW4562 Differential Phase at f = 3.58 MHz 4.2 -0.3 1.1 0.54 0.8 1.5 1.15 2.27 Differential Gain at f = 3.58 MHz Total Harmonic Distortion 2.0 3.0 Test Conditions -dB -dB % TA = 25°C VIN = 1 VP-P , 1, 11 fREF = 0.1 MHz TA = -10°C TA = 70°C VIN = 1 VP-P , fREF = 0.1 MHz IFac = 0.7 mA p-p, IFdc = 3 to 9 mA IFac = 1 mA p-p, IFdc = 7 to 13 mA 3, 7 8 deg. IFac = 0.7 mA p-p, IFdc = 3 to 9 mA IFac = 1 mA p-p, IFdc = 7 to 13 mA 3, 7 9 4 10 % VIN = 1 VP-P , f = 3.58 MHz, GV = 2 µV rms 10 Hz to 10 MHz dB f = 120 Hz, GV = 2 1 14 11 10 Package Characteristics All Typicals at TA = 25°C Parameter Input-Output Momentary Withstand Voltage* Sym. VISO Device HCPL-4562 HCNW4562 HCPL-4562 (Option 020) Input-Output Resistance RI-O HCPL-4562 HCNW4562 Min. 2500 5000 5000 1012 Typ. Max. 1012 1013 Units V rms Test Conditions RH ≤ 50%, t = 1 min., TA = 25°C Ω VI-O = 500 Vdc TA = 25°C TA = 100°C f = 1 MHz 1011 Input-Output Capacitance CI-O HCPL-4562 HCNW4562 0.6 0.5 pF Fig. Note 5, 12 5, 13 5, 13 5 5 0.6 *The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Agilent Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage,” publication number 5963-2203E. Notes: 1. When used in the circuit of Figure 1 or Figure 4; GV = VOUT/VIN; IFQ = 6 mA (HCPL-4562), IFQ = 10 mA (HCNW4562). 2. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (HCPL-4562). 3. Maximum variation from the best fit line of IPB vs. I F expressed as a percentage of the peak-to-peak full scale output. 4. CURRENT TRANSFER RATIO (CTR) is defined as the ratio of output collector current, IO , to the forward LED input current, IF, times 100%. 5. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together. 6. Flat-band, small-signal voltage gain. 7. The frequency at which the gain is 3 dB below the flat-band gain. 8. Differential gain is the change in the small-signal gain of the optocoupler at 3.58 MHz as the bias level is varied over a given range. 9. Differential phase is the change in the small-signal phase response of the optocoupler at 3.58 MHz as the bias level is varied over a given range. 10. TOTAL HARMONIC DISTORTION (THD) is defined as the square root of the sum of the square of each harmonic distortion component. The THD of the isolated video circuit is measured using a 2.6 kΩ load in series with the 50 Ω input impedance of the spectrum analyzer. 11. ISOLATION MODE REJECTION RATIO (IMRR), a measure of the optocoupler’s ability to reject signals or noise that may exist between input and output terminals, is defined by 20 log10 [(VOUT /VIN)/(VOUT /VIM)], Powered by ICminer.com Electronic-Library Service CopyRight 2003 where VIM is the isolation mode voltage signal. 12. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (leakage detection current limit, II-O ≤ 5 µA). This test is performed before the 100% Production test shown in the VDE 0884 Insulation Related Characteristics Table, if applicable. 13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (leakage detection current limit, II-O ≤ 5 µA). This test is performed before the 100% Production test shown in the VDE 0884 Insulation Related Characteristics Table, if applicable. 11 162 Ω (HCPL-4562) 90.9 Ω (HCNW4562) Figure 1. Gain and Bandwidth Test Circuit. 162 Ω (HCPL-4562) 90.9 Ω (HCNW4562) Figure 2. Base Photo Current Test Circuit. Figure 3. Base Photo Current Frequency Response Test Circuit. Figure 4. Recommended Isolated Video Interface Circuit. Powered by ICminer.com Electronic-Library Service CopyRight 2003 IF – INPUT FORWARD VOLTAGE – mA 12 HCNW4562 HCPL-4562 100 IF + VF – 10 TA = 70 °C 1.0 TA = 25 °C TA = -10 °C 0.1 0.01 1.0 1.1 1.2 1.3 1.4 1.5 VF – FORWARD VOLTAGE – V Figure 5. Input Current vs. Forward Voltage. IPB – BASE PHOTO CURRENT – µA HCNW4562 HCPL-4562 80 70 60 50 40 TA = 25 °C VPB > 5 V 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 IF – INPUT CURRENT – mA Figure 6. Base Photo Current vs. Input Current. HCPL-4562 HCNW4562 SMALL-SIGNAL GAIN 1 1 PHASE 0 0.98 0.96 NORMALIZED IF = 6 mA f = 3.58 MHz TA = 25 °C SEE FIG. 3 0.94 0.92 0 2 4 6 GAIN -1 -2 -3 8 10 12 14 16 18 20 SMALL-SIGNAL PHASE – DEGREES 2 1.02 IF – INPUT CURRENT – mA Figure 7. Small-Signal Response vs. Input Current. Powered by ICminer.com Electronic-Library Service CopyRight 2003 NORMALIZED CURRENT TRANSFER RATIO 13 HCNW4562 HCPL-4562 1.04 1.02 1.00 0.98 NORMALIZED TA = 25 °C IF = 6.0 mA VCE = 1.25 V VPB > 5 V 0.96 0.94 0.92 0.90 0.88 0.86 -10 0 10 20 30 40 50 60 70 T – TEMPERATURE – °C CTR – NORMALIZED CURRENT TRANSFER RATIO Figure 8. Current Transfer Ratio vs. Temperature. HCNW4562 HCPL-4562 1.10 1.00 VCE = 5.0 V 0.90 VCE = 1.25 V 0.80 NORMALIZED TA = 25 °C IF = 6 mA VCE = 1.25 V VPB > 5 V 0.70 0.60 0.50 0 2 4 VCE = 0.4 V 8 10 12 14 16 18 20 6 IF – INPUT CURRENT – mA ∆iPB – BASE PHOTO CURRENT VARIATION – dB Figure 9. Current Transfer Ratio vs. Input Current. HCNW4562 HCPL-4562 -0.9 -1.1 FREQUENCY = 6 MHz -1.3 -1.5 -1.7 FREQUENCY = 10 MHz -1.9 -2.1 TA = 25 °C FREF = 0.1 MHz -2.3 -2.5 -2.7 1 2 3 4 5 6 7 8 9 10 11 12 IFQ – QUIESCENT INPUT CURRENT – mA Figure 10. Base Photo Current Variation vs. Bias Conditions. Powered by ICminer.com Electronic-Library Service CopyRight 2003 14 HCPL-4562 NORMALIZED VOLTAGE GAIN – dB 3 HCNW4562 2 TA = -10 °C 1 0 TA = 25 °C -1 TA = 70 °C -2 -3 NORMALIZED TA = 25 °C f = 0.1 MHz -4 -5 -6 -7 0.01 0.1 1.0 10 100 1000 10,000 100,000 f – FREQUENCY – KHz NORMALIZED BASE PHOTO CURRENT – dB Figure 11. Normalized Voltage Gain vs. Frequency. HCPL-4562 0.5 HCNW4562 0 -0.5 -1.0 NORMALIZED TA = 25 °C f = 0.1 MHz -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 0.01 0.1 1.0 10 100 1000 10,000 100,000 f – FREQUENCY – KHz Figure 12. Normalized Base Photo Current vs. Frequency. HCPL-4562 0 IPB PHASE SEE FIGURE 3 ∅ – PHASE – DEGREES -25 -50 -75 TA = 25 °C -100 -125 VIDEO INTERFACE CIRCUIT PHASE SEE FIGURE 4 -150 -175 -200 -225 -250 0 2 4 6 8 10 12 14 16 18 20 f – FREQUENCY – MHz Figure 13. Phase vs. Frequency. Powered by ICminer.com Electronic-Library Service CopyRight 2003 HCNW4562 IMRR – ISOLATION MODE REJECTION RATIO – dB 15 HCNW4562 HCPL-4562 150 TA = 25 °C 120 -20 dB/DECADE SLOPE 90 60 IMRR = 20 LOG10 30 0 0.01 0.1 1.0 Gv vOUT/vIM 10 100 1000 10,000 f – FREQUENCY – KHz Figure 14. Isolation Mode Rejection Ratio vs. Frequency. VO – DC OUTPUT VOLTAGE – V HCNW4562 HCPL-4562 6.0 5.5 5.0 4.5 4.0 3.5 3.0 50 100 150 200 250 300 350 400 450 hFE – TRANSISTOR CURRENT GAIN VCC IC Q4 R9 = 2 mA ADDITIONAL BUFFER STAGE Q4 Q3 Q5 R11 R10 VOUT R12 LOW IMPEDANCE LOAD OUTPUT POWER – PS, INPUT CURRENT – IS Figure 15. DC Output Voltage vs. Transistor Current Gain. HCNW4562 1000 PS (mW) 900 IS (mA) 800 700 600 500 400 300 200 100 0 0 25 50 75 100 125 150 175 TS – CASE TEMPERATURE – °C Figure 16. Output Buffer Stage for Low Impedance Loads. Figure 17. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per VDE 0884. Powered by ICminer.com Electronic-Library Service CopyRight 2003 Conversion from HCPL-4562 to HCNW4562 Figure 15 shows the dependency of the DC output voltage on hFEX. In order to obtain similar circuit performance when converting from the HCPL-4562 to the HCNW4562, it is recommended to increase the Quiescent Input Current, IFQ, from 6 mA to 10 mA. If the application circuit in Figure 4 is used, then potentiometer R4 should be adjusted appropriately. For 9 V < VCC that VO ICQ4 Q4 ≅ ––– ≤ R 11 Design Considerations of the Application Circuit The application circuit in Figure 4 incorporates several features that help maximize the bandwidth performance of the HCPL-4562/HCNW4562. Most important of these features is peaked response of the detector circuit that helps extend the frequency range over which the voltage gain is relatively constant. The number of gain stages, the overall circuit topology, and the choice of DC bias points are all consequences of the desire to maximize bandwidth performance. To use the circuit, first select R1 to set VE for the desired LED quiescent current by: V GV VE R10 IFQ = ––E ≅ ––––––––––––– R4 (∂IPB/∂IF) R7R9 (1) For a constant value VINp-p, the circuit topology (adjusting the gain with R4) preserves linearity by keeping the modulation factor (MF) dependent only on VE. iFp-p ≅ VIN/R4 p-p (2) iFp-p iPBp-p VINp-p p-p p-p p-p –––– ≅ ––––– = ––––– IFQ IPBQ VE (3) Modulation i VINp-p F(p-p) p-p (p-p) Factor (MF): ––––– = ––––– 2 IFQ 2 VE (4) For a given GV, VE, and VCC, DC output voltage will vary only with hFEX. R9 VO = VCC – VBE4 – ––– [V – (I PBQ – IBXQ) R7] R 10 BEX (5) Where: GV VER10 IPBQ ≅ –––––––– R7 R9 (6) and, VCC – 2 VBE IBXQ ≅ –––––––––– R 6 hFEX (7) < 12 V, select the value of R11 such 4.25 V –––––– ≤ 9.0 mA 470 Ω (8) The voltage gain of the second stage (Q3) is approximately equal to: R9 1 ––– ––––––––––––––––––––––––– R10 * 1 + s R C 1 9 CQ 3 + ––––––––– 2π R′11 fT44 (9) Increasing R′11 (R′11 includes the parallel combination of R11 and the load impedance) or reducing R9 (keeping R 9 /R10 ratio constant) will improve the bandwidth. If it is necessary to drive a low impedance load, bandwidth may also be preserved by adding an additional emitter following the buffer stage (Q5 in Figure 16), in which case R11 can be increased to set ICQ4 ≅ 2 mA. Finally, adjust R4 to achieve the desired voltage gain. VOUT ∂IPB R7R9 GV ≅ –––– ≅ –––– –––––– VIN ∂IF R4R10 (10) ∂IPB where typically –––– = 0.0032 ∂IF Definition: GV = Voltage Gain IFQ = Quiescent LED forward current iFp-p = Peak-to-peak small signal LED forward current VINp-p = Peak-to-peak small signal input voltage iPBp-p = Peak-to-peak small signal base photo current IPBQ = Quiescent base photo current VBEX = Base-Emitter voltage of HCPL-4562/ HCNW4562 transistor IBXQ = Quiescent base current of HCPL-4562/ HCNW4562 transistor hFEX = Current Gain (IC/IB ) of HCPL-4562/ HCNW4562 transistor VE = Voltage across emitter degeneration resistor R4 fT4 = Unity gain frequency of Q5 CCQ 3 = Effective capacitance from collector of Q3 to ground www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies Obsoletes 5954-8484, 5962-7208E 5965-3579E (11/99)