ETC SY100EP15V

3.3V/5V 2.5GHz PECL/ECL
1:4 FANOUT BUFFER
WITH 2:1 INPUT MUX
Micrel
ECL Pro™
ECL
Pro™
SY100EP15V
SY100EP15V
FINAL
FEATURES
■ High-speed 1:4 PECL/ECL fanout buffer
■ 2:1 multiplexer input
■ Guaranteed AC parameters over temp/voltage:
• > 2.5GHz fMAX (toggle)
• < 225ps rise/fall times
• < 25ps within device skew
• < 425ps propagation delay (CLK-to-Q)
■ Low jitter design:
• < 1ps (rms) cycle-to-cycle jitter
• < 1ps (pk-pk) total jitter
■ Flexible power supply: 3.3V/5V
■ Wide operating temperature range: –40°C to +85°C
■ VBB reference for AC-coupled or single-ended
applications
■ Output enable/disable function
■ 100K PECL/ECL compatible logic
■ Input accepts PECL/LVPECL/ECL/HSTL logic levels
■ Available in a 16-Pin TSSOP package
ECL Pro™
DESCRIPTION
The SY100EP15V is a high-speed, low-skew, PECL/ECL
1:4 precision fanout buffer with a 2:1 mux front end in a
small 16-pin TSSOP package. The 2:1 mux input accepts a
single-ended PECL/ECL source (CLK1) and a differential
PECL/ECL/HSTL source (CLK0). All I/O pins are 100K EP
PECL/ECL logic compatible.
AC performance is guaranteed over the industrial –40°C
to +85°C temperature range and 3.3V to 5V supply voltage.
This device will operate in PECL/LVPECL or ECL/LVECL
mode. For clock applications, the high-speed design
combined with an extremely fast rise/fall time of less than
225ps produces a toggle frequency as high as 2.5GHz
(~400mVPP swing).
A VBB output reference pin is available for AC–coupled
and single-ended input applications. In addition, a
synchronous output enable function is provided.
The SY100EP15V is part of Micrel’s high-speed, precision
edge timing and distribution family. For applications that
require a different I/O combination, consult Micrel's website
at www.micrel.com, and choose from a comprehensive
product line of high-speed, low-skew fanout buffers,
translators, and clock dividers.
PIN CONFIGURATION/BLOCK DIAGRAM
Q0 1
/Q0 2
16 VCC
Q D
Q1 3
/Q1 4
Q2 5
15 /EN
14 CLK1
1
0
13 VBB
12 /CLK0
/Q2 6
11 CLK0
Q3 7
10 SEL
/Q3 8
9 VEE
ECL Pro is a trademark of Micrel, Inc.
1
Rev.: C
Amendment: /0
Issue Date:
March 2003
ECL Pro™
SY100EP15V
Micrel
PIN DESCRIPTION
Pin
Pin Number
Function
1, 2, 3, 4
5, 6, 7, 8
Q0 – Q3
/Q0 – /Q3
9
VEE
Negative Power Supply: For PECL/LVPECL applications, connect to GND.
10
SEL
100KEP (LV)PECL/(LV)ECL Compatible 2:1 Mux Input Select Control. See “Truth Table.” The
select (SEL) pin includes an internal 75kΩ pull-down resistor. Default condition when left floating
is LOW, and CLK0 input is selected.
11, 12
CLK0, /CLK0
Differential (LV)PECL/(LV)ECL/HSTL Compatible Input: The inputs include an internal 75kΩ
pull-down resistor on CLK0 and internal 75kΩ pull-up and pull-down on /CLK0. Default condition
for CLK0 is LOW when left floating and VCC/2 for /CLK0 when left floating.
13
VBB
Reference Output Voltage: This reference is typically used to bias the unused inverting input for
single-ended input applications, or as the termination point for AC-coupled differential input
applications. VBB reference value is approximately VCC–1.3V, and tracks Vcc 1:1. Maximum
sink/source capability for VBB is 0.50mA. For single ended inputs, connect to the unused input
through a 50Ω resistor. Decouple the VBB pin with a 0.01µF capacitor to VCC.
14
CLK1
Single-Ended (LV)PECL/(LV)ECL Compatible Input: This pin includes an internal 75kΩ
pull-down resistor. Default condition is LOW when left floating.
15
/EN
100KEP (LV)PECL/(LV)ECL Compatible Input: This synchronous pin controls the output state.
See “Truth Table.” To ensure proper synchronous operation, adhere to the Set-up and Hold
times, as described in the AC electrical table. When /EN pin goes HIGH, Q outputs go LOW, and
/Q outputs go HIGH on the next falling clock transition. This synchronous operation avoids any
chance of generating a runt pulse.
16
VCC
Positive Power Supply: Bypass with 0.1µF//0.01µF low ESR capacitors.
Outputs 0 through 3: 100KEP (LV)PECL/(LV)ECL compatible differential outputs. Terminate
with 50Ω to VCC–2V. Unused output pairs may be left floating, or pulled-down with a 2kΩ
resistor to the most negative supply. Unused single-ended outputs must have a balanced load.
For AC-coupled applications, the output stage emitter follower must have a DC current path to
ground. See “Termination” section.
TRUTH TABLE(1)
CLK0
CLK1
SEL
/EN
Q
L
X
L
L
L
H
X
L
L
H
X
L
H
L
L
X
H
H
L
H
X
L
H
L
H
H
L
X
Note 1.
= Negative edge.
2
ECL Pro™
SY100EP15V
Micrel
ABSOLUTE MAXIMUM RATINGS(1)
Symbol
Rating
Value
Unit
6.0
V
–6.0 to 0
+6.0 to 0
V
50
100
mA
±0.5
mA
VCC – VEE
Power Supply Voltage
VIN
Input Voltage (VCC = 0V, VIN not more negative than VEE)
Input Voltage (VEE = 0V, VIN not more positive than VCC)
IOUT
Output Current
IBB
VBB Sink/Source Current(2)
TA
Operating Temperature Range
–40 to +85
°C
TSTORE
Storage Temperature Range
–65 to +150
°C
θJA
Package Thermal Resistance
(Junction-to-Ambient)
115
75
65
°C/W
θJC
Package Thermal Resistance
(Junction-to-Case)
21
°C/W
–Continuous
–Surge
–Still-Air (single-layer PCB)
–Still-Air (multi-layer PCB)
–500lfpm (multi-layer PCB)
Note 1.
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation
is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM
RATlNG conditions for extended periods may affect device reliability.
Note 2.
Due to the limited drive capability, use for inputs of same package only.
DC ELECTRICAL CHARACTERISTICS(1)
TA = –40°C
Symbol
VCC
TA = +25°C
TA = +85°C
Parameter
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Power Supply Voltage
(PECL)
(LVPECL)
(ECL)
(LVECL)
4.5
2.97
–5.5
–3.63
5.0
3.3
–5.0
–3.3
5.5
3.63
–4.5
–2.97
4.5
2.97
–5.5
–3.63
5.0
3.3
–5.0
–3.3
5.5
3.63
–4.5
–2.97
4.5
2.97
–5.5
–3.63
5.0
3.3
–5.0
–3.3
5.5
3.63
–4.5
–2.97
Unit
Condition
V
ICC
Power Supply Current
—
—
70
—
52
72
—
—
75
mA
IIH
Input HIGH Current
—
—
150
—
—
150
—
—
150
µA
VIN = VIH
IIL
Input LOW Current
CLK0, CLK1
/CLK0
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
µA
µA
VIN = VIL
VIN = VIL
Input Capacitance (TSSOP)
—
—
—
—
1.0
—
—
—
—
pF
CIN
Note 1.
100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
3
ECL Pro™
SY100EP15V
Micrel
(100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 3.0V ±10%, VEE = 0V
TA = –40°C
Symbol
Parameter
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
Condition
VIL
Input LOW Voltage
(Single-Ended)
1355
—
1675
1355
—
1675
1355
—
1675
mV
VCC = 3.3V
VIH
Input HIGH Voltage
(Single-Ended)
2075
—
2420
2075
—
2420
2075
—
2420
mV
VCC = 3.3V
VOL
Output LOW Voltage
1355
1480
1605
1355
1480
1605
1355
1480
1605
mV
VCC = 3.3V
VOH
Output HIGH Voltage
2155
2280
2405
2155
2280
2405
2155
2280
2405
mV
VCC = 3.3V
VBB
Reference
Voltage(2)
1775
1875
1975
1775
1875
1975
1775
1875
1975
mV
VCC = 3.3V
VIHCMR
Input HIGH Voltage
Common Mode Range(3)
1.2
—
VCC
1.2
—
VCC
1.2
—
VCC
V
Note 1.
100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output
parameters varies 1:1 with VCC. Output load is 50Ω to VCC–2V.
Note 2.
VBB varies 1:1 with VCC.
Note 3.
The VIHCMR range is referenced to the most positive side of the differential input signal.
(100KEP) PECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 5.0V ±10%, VEE = 0V
TA = –40°C
Symbol
TA = +25°C
TA = +85°C
Parameter
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
Condition
VIL
Input LOW Voltage
(Single-Ended)
3055
—
3375
3055
—
3375
3055
—
3375
mV
VCC = 5V
VIH
Input HIGH Voltage
(Single-Ended)
3775
—
4120
3775
—
4120
3775
—
4120
mV
VCC = 5V
VOL
Output LOW Voltage
3055
3180
3305
3055
3180
3305
3055
3180
3305
mV
VCC = 5V
VOH
Output HIGH Voltage
3855
3980
4105
3855
3980
4105
3855
3980
4105
mV
VCC = 5V
3475
3575
3675
3475
3575
3675
3475
3575
3675
mV
VCC = 5V
1.2
—
VCC
1.2
—
VCC
1.2
—
VCC
V
VBB
VIHCMR
Note 1.
Output Voltage
Reference(2)
Voltage(3)
Input HIGH
Common Mode Range
100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output
parameters varies 1:1 with VCC. Output load is 50Ω to VCC–2V.
Note 2.
VBB varies 1:1 with VCC.
Note 3.
The VIHCMR range is referenced to the most positive side of the differential input signal.
4
ECL Pro™
SY100EP15V
Micrel
(100KEP) LVECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 0V, VEE = –2.97V to –3.63V
TA = –40°C
Symbol
Parameter
Min.
Typ.
TA = +25°C
Max.
Min.
Typ.
TA = +85°C
Max.
Min.
Typ.
Max.
Unit
Condition
VIL
Input LOW Voltage
(Single-ended)
–1945
—
–1625 –1945
—
–1625 –1945
—
–1625
mV
VIH
Input HIGH Voltage
(Single-ended)
–1165
—
–880
—
–880
—
–880
mV
VOL
Output LOW Voltage
–1945 –1820 –1695 –1945 –1820 –1695 –1945 –1820 –1695
mV 50Ω to VCC–2V
VOH
Output HIGH Voltage
–1145 –1020
mV 50Ω to VCC–2V
VBB
Output Reference Voltage
–1525 –1425 –1325 –1525 –1425 –1325 –1525 –1425 –1325
VIHCMR
Input HIGH Voltage
Common Mode Range(2)
VEE +1.2
–895
—
0.0
–1165
–1145 –1020
VEE +1.2
–895
—
0.0
–1165
–1145 –1020
VEE +1.2
–895
—
0.0
mV
V
Note 1.
100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2.
The VIHCMR range is referenced to the most positive side of the differential input signal.
(100K) ECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 0V, VEE = –4.5V to –5.5V
TA = –40°C
Symbol
Parameter
Min.
Typ.
TA = +25°C
Max.
Min.
Typ.
TA = +85°C
Max.
Min.
Typ.
Max.
Unit
Condition
VIL
Input LOW Voltage
–1945
—
–1625 –1945
—
–1625 –1945
—
–1625
mV
VIH
Input HIGH Voltage
–1225
—
–880
—
–880
—
–880
mV
VOL
Output LOW Voltage
–1945 –1820 –1695 –1945 –1820 –1695 –1945 –1820 –1695
mV 50Ω to VCC–2V
VOH
Output HIGH Voltage
–1145 –1020
mV 50Ω to VCC–2V
VBB
Output Reference Voltage
–1525 –1425 –1325 –1525 –1425 –1325 –1525 –1425 –1325
VIHCMR
Input HIGH Voltage
Common Mode Range(2)
VEE +1.2
–895
—
0.0
–1225
–1145 –1020
VEE +1.2
—
–895
0.0
–1225
–1145 –1020
VEE +1.2
—
–895
0.0
mV
V
Note 1.
100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2.
The VIHCMR range is referenced to the most positive side of the differential input signal.
HSTL INPUT DC ELECTRICAL CHARACTERISTICS
VCC = 2.97V to 3.63V, VEE = 0V
TA = –40°C
Symbol
Parameter
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
VIH
Input HIGH Voltage
1200
—
—
1200
—
—
1200
—
—
mV
VIL
Input LOW Voltage
—
—
400
—
—
400
—
—
400
mV
5
ECL Pro™
SY100EP15V
Micrel
AC ELECTRICAL CHARACTERISTICS
LVPECL: VCC = 2.97V to 3.63V, VEE = 0V; PECL: VCC = 4.5V to 5.5V, VEE = 0V
ECL: VCC = 0V, VEE = –4.5V to –5.5V; LVECL: VCC = 0V, VEE = –2.97V to –3.63V
TA = –40°C
Symbol
Parameter
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
fMAX(1)
Maximum Frequency
2.5
—
—
2.5
—
—
2.5
—
—
GHz
tPD
PropagationDelay to Output
PECL/ECL
Diff. IN-to-Q
IN (Single-Ended)-to-Q
SEL-to-Q
275
250
250
—
—
—
425
450
450
275
250
250
375
400
400
425
450
450
275
250
250
—
—
—
425
450
450
ps
ps
ps
275
250
250
—
—
—
425
450
450
275
250
250
375
400
400
425
450
450
275
250
250
—
—
—
425
450
450
ps
ps
ps
—
—
—
—
25
150
—
—
15
100
25
150
—
—
—
—
25
150
ps
ps
/EN to CLK
100
0
—
100
0
—
100
0
—
ps
/EN to CLK
200
50
—
200
50
—
200
50
—
ps
—
—
0.2
<1
1
—
—
—
0.2
<1
1
—
—
—
0.2
<1
1
—
ps(rms)
ps(pk-pk)
LVPECL/LVECL
Diff. IN-to-Q
IN (Single-Ended)-to-Q
SEL-to-Q
tSKEW(2)
Within-Device Skew
Part-to-Part Skew
tS(3)
Set-Up Time
tH(3)
Hold Time
(Diff.)
(Diff.)
Jitter(4)
tJITTER
Cycle-to-Cycle
Total Jitter (622MHz clock)(5)
VID
Input Voltage Range
150
800
1200
150
800
1200
150
800
1200
mV
t r, t f
Output Rise/Fall Times
(20% to 80%)
75
—
225
75
130
225
85
—
225
ps
Note 1.
fMAX is defined as the maximum toggle frequency. Measured with 750mV input signal, 50% duty cycle, output swing ≥ 400mV(diff), all loading
with 50W to VCC–2V.
Note 2.
Skew is measured between outputs under identical transitions.
Note 3.
Set-up and hold times apply to synchronous applications that intend to enable/disable before then ext clock cycle. For asynchronous applications, set-up and hold time does not apply.
Note 4.
Cycle-to-cycle jitter definition: The variation in period between adjacent cycles over a random sample of adjacent cycle pairs. TJITTER_CC = Tn–
Tn+1 where T is the time between rising edges of the output signal.
Note 5.
Total jitter definition: with an ideal clock input, no more than one output edge in 1012 output edges will deviate by more than the specified
peak-to-peak jitter value.
PRODUCT ORDERING CODE
Ordering
Code
Package
Type
Operating
Range
Marking
Code
SY100EP15VK4C
K4-16-1
Commercial
XEP15V
SY100EP15VK4CTR(1)
K4-16-1
Commercial
XEP15V
SY100EP15VK4I(2)
K4-16-1
Industrial
XEP15V
SY100EP15VK4ITR(1, 2)
K4-16-1
Industrial
XEP15V
Note 1.
Tape and Reel.
Note 2.
Recommended for new designs.
6
ECL Pro™
SY100EP15V
Micrel
TERMINATION RECOMMENDATIONS
+3.3V
+3.3V
ZO = 50Ω
R1
130Ω
R1
130Ω
+3.3V
R2
82Ω
R2
82Ω
Vt = VCC –2V
ZO = 50Ω
Figure 1. Parallel Termination–Thevenin Equivalent
Note 1.
Note 2.
For +2.5V systems: R1 = 250Ω, R2 = 62.5Ω
For +5.0V systems: R1 = 82Ω, R2 = 130Ω
+3.3V
+3.3V
Z = 50Ω
Z = 50Ω
50Ω
50Ω
“source”
50Ω
Rb
“destination”
(Optional)
C1
0.01µF
Figure 2. Three-Resistor “Y–Termination”
Note 1.
Note 2.
Note 3.
Note 4.
Power-saving alternative to Thevenin termination.
Place termination resistors as close to destination inputs as possible.
Rb resistor sets the DC bias voltage, equal to Vt. For +3.3V systems Rb = 46Ω to 50Ω. For +5V systems, Rb = 110Ω.
C1 is an optional bypass capacitor intended to compensate for any tr/tf mismatches.
+3.3V
+3.3V
Q
+3.3V
R1
130Ω
R1
130Ω
ZO = 50Ω
+3.3V
50Ω
/Q
VBB
Vt = VCC –2V
R2
82Ω
R2
82Ω
0.01µF
+3.3V
Figure 3. Terminating Unused I/O
Note 1.
Unused output (/Q) must be terminated to balance the output.
Note 2.
Micrel's differential I/O logic devices include a VBB reference pin .
Note 3.
Note 4.
Connect unused input through 50Ω to VBB. Bypass with a 0.01µF capacitor to VCC, not GND.
For +2.5V systems: R1 = 250Ω, R2 = 62.5Ω.
7
ECL Pro™
SY100EP15V
Micrel
16 LEAD TSSOP (K4-16-1)
Rev. 01
MICREL, INC.
TEL
1849 FORTUNE DRIVE SAN JOSE, CA 95131
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2003 Micrel, Incorporated.
8