OPA705 OPA2705 OPA4705 OPA 705 OPA 705 OPA 705 OPA 705 ® SBOS182 – MARCH 2001 Low-Cost, CMOS, Rail-to-Rail, I/O OPERATIONAL AMPLIFIERS FEATURES DESCRIPTION ● RAIL-TO-RAIL INPUT AND OUTPUT ● WIDE SUPPLY RANGE: Single Supply: 4V to 12V Dual Supplies: ±2 to ±6 ● LOW QUIESCENT CURRENT: 160µA ● FULL-SCALE CMRR: 90dB ● LOW OFFSET: 160µV ● HIGH SPEED: 1MHz, 0.6V/ µs ● MicroSIZE PACKAGES: SOT23-5, MSOP-8, TSSOP-14 ● LOW INPUT BIAS CURRENT: 1pA The OPA705 series low-cost op amps are optimized for applications requiring rail-to-rail input and output swing. Single, dual, and quad versions are offered in a variety of packages. While the quiescent current is less than 200µA per amplifier, the OPA705 still offers excellent dynamic performance (1MHz GBW and 0.6V/µs SR) and unity-gain stability. The OPA705 series is fully specified and guaranteed over the supply range of ±2V to ±6V. Input swing extends 300mV beyond the rail and the output swings to within 40mV of the rail. The single version (OPA705) is available in the MicroSIZE SOT23-5 and in the standard SO-8 surface-mount packages. Dual version (OPA2705) is available in the MSOP-8, SO-8, and DIP-8 packages. The quad OPA4705 is available in the TSSOP-14 and SO-14 packages. All are specified for operation from –40°C to +85°C. APPLICATIONS ● AUTOMOTIVE APPLICATIONS: Audio, Sensor Applications, Security Systems ● PORTABLE EQUIPMENT ● ACTIVE FILTERS ● TRANSDUCER AMPLIFIER ● TEST EQUIPMENT ● DATA ACQUISITION OPA705 Out 1 V– 2 +In 3 5 OPA705 NC 1 8 NC –In 2 7 V+ +In 3 6 Out V– 4 5 NC V+ SO-8, DIP-8 OPA2705 4 SOT23-5 –In Out A –In A 1 A 2 +In A 3 V– 4 B 8 V+ 7 Out B OPA4705 Out A 1 –In A 2 A 14 Out D 13 –In D D +In A 3 12 +In D V+ 4 11 V– +In B 5 10 +In C B C 6 –In B –In B 6 9 –In C 5 +In B Out B 7 8 Out C TSSOP-14, SO-14 MSOP-8, SO-8, DIP-8 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright © 2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. www.ti.com ABSOLUTE MAXIMUM RATINGS(1) ELECTROSTATIC DISCHARGE SENSITIVITY Supply Voltage, V+ to V– ................................................................. 13.2V Signal Input Terminals, Voltage(2) ..................... (V–) –0.3V to (V+) +0.3V Current(2) .................................................... 10mA Output Short-Circuit(3) .............................................................. Continuous Operating Temperature .................................................. –55°C to +125°C Storage Temperature ..................................................... –65°C to +150°C Junction Temperature .................................................................... +150°C Lead Temperature (soldering, 10s) ............................................... +300°C This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10mA or less. (3) Short-circuit to ground, one amplifier per package. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. PACKAGE/ORDERING INFORMATION PRODUCT DESCRIPTION MINIMUM RECOMMENDED GAIN OPA705NA Single, GBW = 1MHz 1 SOT23-5 331 A05 " " " " " Single, GBW = 1MHz 1 SO-8 182 OPA705UA " " " " " OPA705PA Single, GBW = 1MHz 1 DIP-8 006 OPA705PA OPA2705EA Dual, GBW = 1MHz 1 MSOP-8 337 B05 " " " " " " OPA2705UA Dual, GBW = 1MHz 1 SO-8 182 OPA2705UA " " " " " " OPA2705PA Dual, GBW = 1MHz 1 DIP-8 006 OPA2705PA OPA4705EA Quad, GBW = 1MHz 1 TSSOP-14 357 OPA4705EA " " " " " " OPA4705UA Quad, GBW = 1MHz 1 SO-14 235 OPA4705UA " " " " " " " OPA705UA " PACKAGE PACKAGE DRAWING NUMBER PACKAGE MARKING ORDERING NUMBER(1) TRANSPORT MEDIA OPA705NA/250 OPA705NA/3K OPA705UA OPA705UA/2K5 OPA705PA Tape and Reel Tape and Reel Rails Tape and Reel Rails OPA2705EA/250 OPA2705EA/2K5 OPA2705UA OPA2705UA/2K5 OPA2705PA Tape and Reel Tape and Reel Rails Tape and Reel Rails OPA4705EA/250 OPA4705EA/2K5 OPA4705UA OPA4705UA/2K5 Tape and Reel Tape and Reel Rails Tape and Reel NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /3K indicates 3000 devices per reel). Ordering 3000 pieces of “OPA705NA/3K” will get a single 3000-piece Tape and Reel. 2 OPA705, 2705, 4705 SBOS182 ELECTRICAL CHARACTERISTICS: VS = 4V to 12V Boldface limits apply over the specified temperature range, TA = –40°C to +85°C At TA = +25°C, RL = 20kΩ connected to VS / 2 and VOUT = VS / 2, unless otherwise noted. OPA705NA, UA, PA OPA2705EA, UA, PA OPA4705EA, UA PARAMETER OFFSET VOLTAGE Input Offset Voltage Drift vs Power Supply Over Temperature Channel Separation, dc f = 1kHz CONDITION VOS dVOS / dT PSRR INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio over Temperature VCM CMRR over Temperature INPUT BIAS CURRENT Input Bias Current Input Offset Current IB IOS MIN VS = ±5V, VCM = 0V TA = –40°C to +85°C VS = ±2V to ±6V, VCM = 0V VS = ±2V to ±6V, VCM = 0V RL = 20kΩ VS = ±5V, (V–) – 0.3V < VCM < (V+) + 0.3V VS = ±5V, (V–) < VCM < (V+) VS = ±5V, (V–) – 0.3V < VCM < (V+) – 2V VS = ±5V, (V–) < VCM < (V+) – 2V (V–) – 0.3 66 66 VS = ±5V, VCM = 0V VS = ±5V, VCM = 0V OPEN-LOOP GAIN Open-Loop Voltage Gain en in AOL over Temperature over Temperature OUTPUT Voltage Output Swing from Rail Output Current Short-Circuit Current Capacitive Load Drive FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise POWER SUPPLY Specified Voltage Range, Single Supply Specified Voltage Range, Dual Supplies Operating Voltage Range Quiescent Current (per amplifier) over Temperature TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5 Surface-Mount MSOP-8 Surface-Mount TSSOP-14 Surface-Mount SO-8 Surface Mount SO-14 Surface Mount DIP-8 OPA705, 2705, 4705 SBOS182 IOUT ISC VS = ±5V, VCM = 0V VS = ±5V, VCM = 0V VS = ±5V, VCM = 0V RL = 100kΩ, (V–)+0.1V < VO < (V+)–0.1V RL = 20kΩ, (V–)+0.075V < VO < (V+)–0.075V RL = 20kΩ, (V–)+0.075V < VO < (V+)–0.075V RL = 5kΩ, (V–)+0.15V < VO < (V+)–0.15V RL = 5kΩ, (V–)+0.15V < VO < (V+)–0.15V RL = 100kΩ, AOL > 80dB RL = 20kΩ, AOL > 100dB RL = 5kΩ, AOL > 100dB |VS – VOUT| < 1V CLOAD GBW SR tS THD+N IQ 100 100 ±0.5 ±4 20 100 1 98 ±5 mV µV/°C µV/V µV/V µV/V dB (V+) + 0.3 V dB dB dB dB ±10 ±10 pA pA 77 74 96 93 4 • 109 || 4 5 • 1012 || 4 Ω || pF Ω || pF 6 45 2.5 µVp-p nV/√Hz fA/√Hz 120 110 106 110 106 dB dB dB dB dB 75 150 ±10 ±40 See Typical Performance Curves 1 0.6 15 20 3 0.02 4 ±2 –40 –55 –65 200 85 125 150 θJA 200 150 100 150 100 100 mV mV mV mA mA MHz V/µs µs µs µs % 12 ±6 3.6 to 12 160 200 IO = 0 UNITS 100 40 CL = 100pF G = +1 VS = ±5V, G = +1 VS = ±5V, 5V Step, G = +1 VS = ±5V, 5V Step, G = +1 VIN • Gain = VS VS = ±5V, VO = 3Vp-p, G = +1, f = 1kHz VS VS MAX ±1 ±0.5 INPUT IMPEDANCE Differential Common-Mode NOISE Input Voltage Noise, f = 0.1Hz to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz TYP V V V µA µA °C °C °C °C/W °C/W °C/W °C/W °C/W °C/W 3 TYPICAL CHARACTERISTICS At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted. CMRR vs FREQUENCY 100 100 80 80 60 60 40 40 20 20 0 0 –20 –20 –40 –40 –60 10 100 1k 10k 100k 1M 120 CMRR Limited Range 100 80 CMRR (dB) 120 Phase (°) Gain (dB) GAIN AND PHASE vs FREQUENCY 120 CMRR Full Scale 60 40 20 –60 10M 0 1 10 100 Frequency (Hz) 1k 10k 100k 1M Frequency (Hz) PSRR vs FREQUENCY MAXIMUM AMPLITUDE vs FREQUENCY 140 7 120 6 100 5 Amplitude (V) 80 60 4 3 40 2 20 1 0 0 1 10 100 1k 10k 100k 1M 1k 100 10k 100k Frequency (Hz) CHANNEL SEPARATION vs FREQUENCY INPUT CURRENT AND VOLTAGE SPECTRAL NOISE vs FREQUENCY 160 10M 10000 10000 Current Noise Input Current and Voltage Spectral Noise nV/√Hz 140 Channel Separation (dB) 1M Frequency (Hz) 120 100 80 60 40 1000 1000 Voltage Noise 100 100 10 10 1 1 20 0 0.1 10 100 1k 10k Frequency (Hz) 4 100k 1M 0.1 0.1 1 10 100 1k 10k 100k 1M Frequency (Hz) OPA705, 2705, 4705 SBOS182 Output Current Spectral Noise fA/√Hz PSRR (dB) (V+) – (V–) = 12V TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted. COMMON-MODE REJECTION RATIO vs TEMPERATURE OPEN-LOOP GAIN vs TEMPERATURE 120 140 110 130 100 AOL (dB) CMRR (dB) Limited Scale 90 120 110 80 Full Scale 100 70 60 –80 –60 –40 –20 0 20 40 60 80 90 –100 –75 –50 –25 100 120 140 Temperature (°C) INPUT BIAS (IB) AND OFFSET (IOS) CURRENT vs TEMPERATURE 25 50 75 100 125 150 175 QUIESCENT CURRENT vs TEMPERATURE 250 100000 10000 200 1000 IB 100 IQ (µA) Bias Current (pA) 0 Temperature (°C) IOS 10 150 100 1 50 0.1 0 –100 –75 –50 –25 0.0 –50 –25 0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175 Temperature (°C) Temperature (°C) PSRR vs TEMPERATURE TOTAL HARMONIC DISTORTION PLUS NOISE (Load = 5kΩ, BW = 8kHz, 1.0Vrms, G = +1) 120 1.000 110 0.100 THD (%) PSRR (dB) 100 90 80 0.010 70 60 0.001 –75 –50 –25 0 10 25 50 75 100 110 130 150 Temperature (°C) OPA705, 2705, 4705 SBOS182 1 10 100 1k 10k 100k Frequency (Hz) 5 TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted. INPUT BIAS CURRENT (IB) vs COMMON-MODE VOLTAGE (VCM) TEMPERATURE = 125°C 15 20 10 15 Input Bias Current (nA) Input Bias Current (pA) INPUT BIAS CURRENT (IB) vs COMMON-MODE VOLTAGE (VCM) TEMPERATURE = °25C 5 0 –5 10 5 0 –10 –5 –15 –10 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –6 –5 –4 –3 –2 –1 0 SHORT-CIRCUIT CURRENT vs SUPPLY VOLTAGE 4 5 6 60 ISC N (Sinking) Short-Circuit Current (mA) Quiescent Current (µA) 3 QUIESCENT CURRENT vs SUPPLY VOLTAGE 190 180 170 160 150 140 130 120 50 40 30 ISC P (Sourcing) 20 10 0 2 4 6 8 10 12 14 2 4 6 8 10 12 Supply Voltage (V) Supply Voltage (V) OUTPUT VOLTAGE SWING vs OUTPUT CURRENT SMALL-SIGNAL OVERSHOOT (%) vs CAPACITIVE LOAD AND GAIN 6 14 90 +125°C 4 G = +1 80 +25°C 70 –55°C Sourcing 2 Overshoot (%) Output Voltage (V) 2 Common-Mode Voltage, VCM (V) 200 0 –2 Sinking 60 50 G = –1 40 30 20 –55°C –4 G = +5 10 +125°C +25°C –6 0 0 10 20 30 40 Output Current (±mA) 6 1 Common-Mode Voltage, VCM (V) 50 60 70 10 100 1k 10k Load Capacitance Value (pF) OPA705, 2705, 4705 SBOS182 TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted. SETTLING TIME vs GAIN VOS PRODUCTION DISTRIBUTION 100 25 90 20 70 Frequency (%) Settling Time (µs) 80 0.01% 60 50 40 30 10 5 0.1% 20 15 10 0 100 –5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 1 Non-Inverting Gain (V/V) Voltage Offset (µV) SMALL SIGNAL STEP RESPONSE (G = +1V/V, RL = 20kΩ, CL = 100pF) VOS DRIFT PRODUCTION DISTRIBUTION 25 15 50mV/div Frequency (%) 20 10 5 0 ≤ 30 ≤ 27 ≤ 24 ≤ 21 ≤ 18 ≤ 15 ≤ 12 ≤9 ≤6 ≤3 <0 <3 <6 <9 < 12 < 15 < 18 < 21 < 24 < 27 < 30 > 30 5µs/div Voltage Offset (µV/°C) 1V/div LARGE SIGNAL STEP RESPONSE (G = +1V/V, RL = 20kΩ, CL = 100pF) 10µs/div OPA705, 2705, 4705 SBOS182 7 APPLICATIONS INFORMATION Power-supply pins should be bypassed with 1000pF ceramic capacitors in parallel with 1µF tantalum capacitors. OPA705 series op amps can operate on 160µA quiescent current from a single (or split) supply in the range of 4V to 12V (±2V to ±6V), making them highly versatile and easy to use. The OPA705 is unity-gain stable and offers 1MHz bandwidth and 0.6V/µs slew rate. OPERATING VOLTAGE OPA705 series op amps are fully specified and guaranteed from +4V to +12V over a temperature range of –40ºC to +85ºC. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics. Rail-to-rail input and output swing helps maintain dynamic range, especially in low supply applications. Figure 1 shows the input and output waveforms for the OPA705 in unitygain configuration. Operation is from a ±5V supply with a 100kΩ load connected to VS /2. The input is a 10Vp-p sinusoid. Output voltage is approximately 10Vp-p. RAIL-TO-RAIL INPUT The input common-mode voltage range of the OPA705 series extends 300mV beyond the supply rails at room temperature. This is achieved with a complementary input stage—an Nchannel input differential pair in parallel with a P-channel differential pair, as shown in Figure 2. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 2.0V to 300mV above the positive supply, while the Pchannel pair is on for inputs from 300mV below the negative supply to approximately (V+) – 1.5V. There is a small transition region, typically (V+) – 2.0V to (V+) – 1.5V, in which both pairs are on. This 500mV transition region can vary ±100mV with process variation. Thus, the transition region (both stages on) can range from (V+) – 2.1V to (V+) – 1.4V on the low end, up to (V+) – 1.9V to (V+) – 1.6V on the high end. Within the 500mV transition region PSRR, CMRR, offset voltage, and offset drift, and THD may vary compared to operation outside this region. G = +1, VS = ±5V 2.0V/div Input Output (inverted on scope) 200µs/div FIGURE 1. Rail-to-Rail Input and Output. V+ VO VIN+ VIN– V– FIGURE 2. Simplified Schematic. 8 OPA705, 2705, 4705 SBOS182 INPUT VOLTAGE Device inputs are protected by ESD diodes that will conduct if the input voltages exceed the power supplies by more than approximately 300mV. Momentary voltages greater than 300mV beyond the power supply can be tolerated if the current is limited to 10mA. This is easily accomplished with an input resistor, as shown in Figure 3. Many input signals are inherently current-limited to less than 10mA; therefore, a limiting resistor is not always required. The OPA705 features no phase inversion when the inputs extend beyond supplies if the input current is limited, as seen in Figure 4. CAPACITIVE LOAD AND STABILITY The OPA705 series op amps can drive up to 1000pF pure capacitive load. Increasing the gain enhances the amplifier’s ability to drive greater capacitive loads (see the typical performance curve “Small Signal Overshoot vs Capacitive Load”). +V IOVERLOAD 10mA max RAIL-TO-RAIL OUTPUT A class AB output stage with common-source transistors is used to achieve rail-to-rail output. This output stage is capable of driving 1kΩ loads connected to any point between V+ and ground. For light resistive loads (> 100kΩ), the output voltage can swing to 40mV from the supply rail. With moderate resistive loads (20kΩ), the output can swing to within 75mV from the supply rails while maintaining high open-loop gain (see the typical performance curve “Output Voltage Swing vs Output Current”). VOUT OPA705 VIN R V– One method of improving capacitive load drive in the unitygain configuration is to insert a 10Ω to 20Ω resistor inside the feedback loop, as shown in Figure 5. This reduces ringing with large capacitive loads while maintaining DC accuracy. FIGURE 3. Input Current Protection for Voltages Exceeding the Supply Voltage. RS 20Ω OPA705 VOUT VIN CL RL VS = ±5.0V, VIN = 11Vp-p 2.0V/div FIGURE 5. Series Resistor in Unity-Gain Buffer Configuration Improves Capacitive Load Drive. 20µs/div FIGURE 4. OPA705—No Phase Inversion with Inputs Greater than the Power-Supply Voltage. OPA705, 2705, 4705 SBOS182 APPLICATION CIRCUITS The OPA705 series op amps are optimized for driving medium-speed sampling data converters. Figure 6 shows the OPA2705 in a dual-supply buffered reference configuration for the DAC7644. The DAC7644 is a 16-bit, low-power, quad-voltage output converter. Small size makes the combination ideal for automatic test equipment, data acquisition systems, and other low-power space-limited applications. 9 NC 48 NC 47 NC 46 NC 45 VOUTA Sense 44 VOUTA 43 VREFL AB Sense 42 VREFL AB 41 VREFH AB 40 VREFH AB Sense 39 DAC7644 VOUTB Sense 38 VOUTB 37 +V V– VOUT –2.5V 1/2 OPA2705 Ref Negative Reference 500pF V+ 500pF 1/2 OPA2705 VOUT +2.5V Ref Positive Reference –V FIGURE 6. OPA705 as Dual Supply Configuration-Buffered References for the DAC7644. 10 OPA705, 2705, 4705 SBOS182 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, license, warranty or endorsement thereof. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2001, Texas Instruments Incorporated