ETC OPA2705UA

OPA705
OPA2705
OPA4705
OPA
705
OPA
705
OPA
705
OPA
705
®
SBOS182 – MARCH 2001
Low-Cost, CMOS, Rail-to-Rail, I/O
OPERATIONAL AMPLIFIERS
FEATURES
DESCRIPTION
● RAIL-TO-RAIL INPUT AND OUTPUT
● WIDE SUPPLY RANGE:
Single Supply: 4V to 12V
Dual Supplies: ±2 to ±6
● LOW QUIESCENT CURRENT: 160µA
● FULL-SCALE CMRR: 90dB
● LOW OFFSET: 160µV
● HIGH SPEED: 1MHz, 0.6V/ µs
● MicroSIZE PACKAGES:
SOT23-5, MSOP-8, TSSOP-14
● LOW INPUT BIAS CURRENT: 1pA
The OPA705 series low-cost op amps are optimized for applications requiring rail-to-rail input and output swing. Single,
dual, and quad versions are offered in a variety of packages.
While the quiescent current is less than 200µA per amplifier,
the OPA705 still offers excellent dynamic performance
(1MHz GBW and 0.6V/µs SR) and unity-gain stability.
The OPA705 series is fully specified and guaranteed over
the supply range of ±2V to ±6V. Input swing extends
300mV beyond the rail and the output swings to within
40mV of the rail.
The single version (OPA705) is available in the MicroSIZE
SOT23-5 and in the standard SO-8 surface-mount packages.
Dual version (OPA2705) is available in the MSOP-8,
SO-8, and DIP-8 packages. The quad OPA4705 is available
in the TSSOP-14 and SO-14 packages. All are specified for
operation from –40°C to +85°C.
APPLICATIONS
● AUTOMOTIVE APPLICATIONS:
Audio, Sensor Applications, Security Systems
● PORTABLE EQUIPMENT
● ACTIVE FILTERS
● TRANSDUCER AMPLIFIER
● TEST EQUIPMENT
● DATA ACQUISITION
OPA705
Out
1
V–
2
+In
3
5
OPA705
NC
1
8
NC
–In
2
7
V+
+In
3
6
Out
V–
4
5
NC
V+
SO-8, DIP-8
OPA2705
4
SOT23-5
–In
Out A
–In A
1
A
2
+In A
3
V–
4
B
8
V+
7
Out B
OPA4705
Out A
1
–In A
2
A
14
Out D
13
–In D
D
+In A
3
12
+In D
V+
4
11
V–
+In B
5
10
+In C
B
C
6
–In B
–In B
6
9
–In C
5
+In B
Out B
7
8
Out C
TSSOP-14, SO-14
MSOP-8, SO-8, DIP-8
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright © 2001, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
www.ti.com
ABSOLUTE MAXIMUM RATINGS(1)
ELECTROSTATIC
DISCHARGE SENSITIVITY
Supply Voltage, V+ to V– ................................................................. 13.2V
Signal Input Terminals, Voltage(2) ..................... (V–) –0.3V to (V+) +0.3V
Current(2) .................................................... 10mA
Output Short-Circuit(3) .............................................................. Continuous
Operating Temperature .................................................. –55°C to +125°C
Storage Temperature ..................................................... –65°C to +150°C
Junction Temperature .................................................................... +150°C
Lead Temperature (soldering, 10s) ............................................... +300°C
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling
and installation procedures can cause damage.
NOTES: (1) Stresses above these ratings may cause permanent damage.
Exposure to absolute maximum conditions for extended periods may
degrade device reliability. (2) Input terminals are diode-clamped to the power
supply rails. Input signals that can swing more than 0.3V beyond the supply
rails should be current-limited to 10mA or less. (3) Short-circuit to ground,
one amplifier per package.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits
may be more susceptible to damage because very small
parametric changes could cause the device not to meet its
published specifications.
PACKAGE/ORDERING INFORMATION
PRODUCT
DESCRIPTION
MINIMUM
RECOMMENDED
GAIN
OPA705NA
Single, GBW = 1MHz
1
SOT23-5
331
A05
"
"
"
"
"
Single, GBW = 1MHz
1
SO-8
182
OPA705UA
"
"
"
"
"
OPA705PA
Single, GBW = 1MHz
1
DIP-8
006
OPA705PA
OPA2705EA
Dual, GBW = 1MHz
1
MSOP-8
337
B05
"
"
"
"
"
"
OPA2705UA
Dual, GBW = 1MHz
1
SO-8
182
OPA2705UA
"
"
"
"
"
"
OPA2705PA
Dual, GBW = 1MHz
1
DIP-8
006
OPA2705PA
OPA4705EA
Quad, GBW = 1MHz
1
TSSOP-14
357
OPA4705EA
"
"
"
"
"
"
OPA4705UA
Quad, GBW = 1MHz
1
SO-14
235
OPA4705UA
"
"
"
"
"
"
"
OPA705UA
"
PACKAGE
PACKAGE
DRAWING
NUMBER
PACKAGE
MARKING
ORDERING
NUMBER(1)
TRANSPORT
MEDIA
OPA705NA/250
OPA705NA/3K
OPA705UA
OPA705UA/2K5
OPA705PA
Tape and Reel
Tape and Reel
Rails
Tape and Reel
Rails
OPA2705EA/250
OPA2705EA/2K5
OPA2705UA
OPA2705UA/2K5
OPA2705PA
Tape and Reel
Tape and Reel
Rails
Tape and Reel
Rails
OPA4705EA/250
OPA4705EA/2K5
OPA4705UA
OPA4705UA/2K5
Tape and Reel
Tape and Reel
Rails
Tape and Reel
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /3K indicates 3000 devices per reel). Ordering 3000 pieces
of “OPA705NA/3K” will get a single 3000-piece Tape and Reel.
2
OPA705, 2705, 4705
SBOS182
ELECTRICAL CHARACTERISTICS: VS = 4V to 12V
Boldface limits apply over the specified temperature range, TA = –40°C to +85°C
At TA = +25°C, RL = 20kΩ connected to VS / 2 and VOUT = VS / 2, unless otherwise noted.
OPA705NA, UA, PA
OPA2705EA, UA, PA
OPA4705EA, UA
PARAMETER
OFFSET VOLTAGE
Input Offset Voltage
Drift
vs Power Supply
Over Temperature
Channel Separation, dc
f = 1kHz
CONDITION
VOS
dVOS / dT
PSRR
INPUT VOLTAGE RANGE
Common-Mode Voltage Range
Common-Mode Rejection Ratio
over Temperature
VCM
CMRR
over Temperature
INPUT BIAS CURRENT
Input Bias Current
Input Offset Current
IB
IOS
MIN
VS = ±5V, VCM = 0V
TA = –40°C to +85°C
VS = ±2V to ±6V, VCM = 0V
VS = ±2V to ±6V, VCM = 0V
RL = 20kΩ
VS = ±5V, (V–) – 0.3V < VCM < (V+) + 0.3V
VS = ±5V, (V–) < VCM < (V+)
VS = ±5V, (V–) – 0.3V < VCM < (V+) – 2V
VS = ±5V, (V–) < VCM < (V+) – 2V
(V–) – 0.3
66
66
VS = ±5V, VCM = 0V
VS = ±5V, VCM = 0V
OPEN-LOOP GAIN
Open-Loop Voltage Gain
en
in
AOL
over Temperature
over Temperature
OUTPUT
Voltage Output Swing from Rail
Output Current
Short-Circuit Current
Capacitive Load Drive
FREQUENCY RESPONSE
Gain-Bandwidth Product
Slew Rate
Settling Time, 0.1%
0.01%
Overload Recovery Time
Total Harmonic Distortion + Noise
POWER SUPPLY
Specified Voltage Range, Single Supply
Specified Voltage Range, Dual Supplies
Operating Voltage Range
Quiescent Current (per amplifier)
over Temperature
TEMPERATURE RANGE
Specified Range
Operating Range
Storage Range
Thermal Resistance
SOT23-5 Surface-Mount
MSOP-8 Surface-Mount
TSSOP-14 Surface-Mount
SO-8 Surface Mount
SO-14 Surface Mount
DIP-8
OPA705, 2705, 4705
SBOS182
IOUT
ISC
VS = ±5V, VCM = 0V
VS = ±5V, VCM = 0V
VS = ±5V, VCM = 0V
RL = 100kΩ, (V–)+0.1V < VO < (V+)–0.1V
RL = 20kΩ, (V–)+0.075V < VO < (V+)–0.075V
RL = 20kΩ, (V–)+0.075V < VO < (V+)–0.075V
RL = 5kΩ, (V–)+0.15V < VO < (V+)–0.15V
RL = 5kΩ, (V–)+0.15V < VO < (V+)–0.15V
RL = 100kΩ, AOL > 80dB
RL = 20kΩ, AOL > 100dB
RL = 5kΩ, AOL > 100dB
|VS – VOUT| < 1V
CLOAD
GBW
SR
tS
THD+N
IQ
100
100
±0.5
±4
20
100
1
98
±5
mV
µV/°C
µV/V
µV/V
µV/V
dB
(V+) + 0.3
V
dB
dB
dB
dB
±10
±10
pA
pA
77
74
96
93
4 • 109 || 4
5 • 1012 || 4
Ω || pF
Ω || pF
6
45
2.5
µVp-p
nV/√Hz
fA/√Hz
120
110
106
110
106
dB
dB
dB
dB
dB
75
150
±10
±40
See Typical Performance Curves
1
0.6
15
20
3
0.02
4
±2
–40
–55
–65
200
85
125
150
θJA
200
150
100
150
100
100
mV
mV
mV
mA
mA
MHz
V/µs
µs
µs
µs
%
12
±6
3.6 to 12
160
200
IO = 0
UNITS
100
40
CL = 100pF
G = +1
VS = ±5V, G = +1
VS = ±5V, 5V Step, G = +1
VS = ±5V, 5V Step, G = +1
VIN • Gain = VS
VS = ±5V, VO = 3Vp-p, G = +1, f = 1kHz
VS
VS
MAX
±1
±0.5
INPUT IMPEDANCE
Differential
Common-Mode
NOISE
Input Voltage Noise, f = 0.1Hz to 10Hz
Input Voltage Noise Density, f = 1kHz
Current Noise Density, f = 1kHz
TYP
V
V
V
µA
µA
°C
°C
°C
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
3
TYPICAL CHARACTERISTICS
At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted.
CMRR vs FREQUENCY
100
100
80
80
60
60
40
40
20
20
0
0
–20
–20
–40
–40
–60
10
100
1k
10k
100k
1M
120
CMRR Limited Range
100
80
CMRR (dB)
120
Phase (°)
Gain (dB)
GAIN AND PHASE vs FREQUENCY
120
CMRR Full Scale
60
40
20
–60
10M
0
1
10
100
Frequency (Hz)
1k
10k
100k
1M
Frequency (Hz)
PSRR vs FREQUENCY
MAXIMUM AMPLITUDE vs FREQUENCY
140
7
120
6
100
5
Amplitude (V)
80
60
4
3
40
2
20
1
0
0
1
10
100
1k
10k
100k
1M
1k
100
10k
100k
Frequency (Hz)
CHANNEL SEPARATION vs FREQUENCY
INPUT CURRENT AND VOLTAGE
SPECTRAL NOISE vs FREQUENCY
160
10M
10000
10000
Current
Noise
Input Current and Voltage
Spectral Noise nV/√Hz
140
Channel Separation (dB)
1M
Frequency (Hz)
120
100
80
60
40
1000
1000
Voltage
Noise
100
100
10
10
1
1
20
0
0.1
10
100
1k
10k
Frequency (Hz)
4
100k
1M
0.1
0.1
1
10
100
1k
10k
100k
1M
Frequency (Hz)
OPA705, 2705, 4705
SBOS182
Output Current Spectral
Noise fA/√Hz
PSRR (dB)
(V+) – (V–) = 12V
TYPICAL CHARACTERISTICS (Cont.)
At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted.
COMMON-MODE REJECTION RATIO
vs TEMPERATURE
OPEN-LOOP GAIN vs TEMPERATURE
120
140
110
130
100
AOL (dB)
CMRR (dB)
Limited Scale
90
120
110
80
Full Scale
100
70
60
–80 –60 –40 –20
0
20
40
60
80
90
–100 –75 –50 –25
100 120 140
Temperature (°C)
INPUT BIAS (IB) AND OFFSET (IOS)
CURRENT vs TEMPERATURE
25
50
75 100 125 150 175
QUIESCENT CURRENT vs TEMPERATURE
250
100000
10000
200
1000
IB
100
IQ (µA)
Bias Current (pA)
0
Temperature (°C)
IOS
10
150
100
1
50
0.1
0
–100 –75 –50 –25
0.0
–50
–25
0
25
50
75
100
125
150
175
0
25
50
75
100 125 150 175
Temperature (°C)
Temperature (°C)
PSRR vs TEMPERATURE
TOTAL HARMONIC DISTORTION PLUS NOISE
(Load = 5kΩ, BW = 8kHz, 1.0Vrms, G = +1)
120
1.000
110
0.100
THD (%)
PSRR (dB)
100
90
80
0.010
70
60
0.001
–75 –50 –25
0
10
25
50
75 100 110 130 150
Temperature (°C)
OPA705, 2705, 4705
SBOS182
1
10
100
1k
10k
100k
Frequency (Hz)
5
TYPICAL CHARACTERISTICS (Cont.)
At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted.
INPUT BIAS CURRENT (IB)
vs COMMON-MODE VOLTAGE (VCM)
TEMPERATURE = 125°C
15
20
10
15
Input Bias Current (nA)
Input Bias Current (pA)
INPUT BIAS CURRENT (IB)
vs COMMON-MODE VOLTAGE (VCM)
TEMPERATURE = °25C
5
0
–5
10
5
0
–10
–5
–15
–10
–6
–5 –4
–3
–2
–1
0
1
2
3
4
5
6
–6
–5 –4
–3
–2
–1
0
SHORT-CIRCUIT CURRENT
vs SUPPLY VOLTAGE
4
5
6
60
ISC N (Sinking)
Short-Circuit Current (mA)
Quiescent Current (µA)
3
QUIESCENT CURRENT vs SUPPLY VOLTAGE
190
180
170
160
150
140
130
120
50
40
30
ISC P (Sourcing)
20
10
0
2
4
6
8
10
12
14
2
4
6
8
10
12
Supply Voltage (V)
Supply Voltage (V)
OUTPUT VOLTAGE SWING vs OUTPUT CURRENT
SMALL-SIGNAL OVERSHOOT (%)
vs CAPACITIVE LOAD AND GAIN
6
14
90
+125°C
4
G = +1
80
+25°C
70
–55°C
Sourcing
2
Overshoot (%)
Output Voltage (V)
2
Common-Mode Voltage, VCM (V)
200
0
–2
Sinking
60
50
G = –1
40
30
20
–55°C
–4
G = +5
10
+125°C +25°C
–6
0
0
10
20
30
40
Output Current (±mA)
6
1
Common-Mode Voltage, VCM (V)
50
60
70
10
100
1k
10k
Load Capacitance Value (pF)
OPA705, 2705, 4705
SBOS182
TYPICAL CHARACTERISTICS (Cont.)
At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted.
SETTLING TIME vs GAIN
VOS PRODUCTION DISTRIBUTION
100
25
90
20
70
Frequency (%)
Settling Time (µs)
80
0.01%
60
50
40
30
10
5
0.1%
20
15
10
0
100
–5.0
–4.5
–4.0
–3.5
–3.0
–2.5
–2.0
–1.5
–1.0
–0.5
0.1
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10
1
Non-Inverting Gain (V/V)
Voltage Offset (µV)
SMALL SIGNAL STEP RESPONSE
(G = +1V/V, RL = 20kΩ, CL = 100pF)
VOS DRIFT PRODUCTION DISTRIBUTION
25
15
50mV/div
Frequency (%)
20
10
5
0
≤ 30
≤ 27
≤ 24
≤ 21
≤ 18
≤ 15
≤ 12
≤9
≤6
≤3
<0
<3
<6
<9
< 12
< 15
< 18
< 21
< 24
< 27
< 30
> 30
5µs/div
Voltage Offset (µV/°C)
1V/div
LARGE SIGNAL STEP RESPONSE
(G = +1V/V, RL = 20kΩ, CL = 100pF)
10µs/div
OPA705, 2705, 4705
SBOS182
7
APPLICATIONS INFORMATION
Power-supply pins should be bypassed with 1000pF ceramic
capacitors in parallel with 1µF tantalum capacitors.
OPA705 series op amps can operate on 160µA quiescent
current from a single (or split) supply in the range of 4V to
12V (±2V to ±6V), making them highly versatile and easy
to use. The OPA705 is unity-gain stable and offers 1MHz
bandwidth and 0.6V/µs slew rate.
OPERATING VOLTAGE
OPA705 series op amps are fully specified and guaranteed
from +4V to +12V over a temperature range of –40ºC to
+85ºC. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics.
Rail-to-rail input and output swing helps maintain dynamic
range, especially in low supply applications. Figure 1 shows
the input and output waveforms for the OPA705 in unitygain configuration. Operation is from a ±5V supply with a
100kΩ load connected to VS /2. The input is a 10Vp-p
sinusoid. Output voltage is approximately 10Vp-p.
RAIL-TO-RAIL INPUT
The input common-mode voltage range of the OPA705 series
extends 300mV beyond the supply rails at room temperature.
This is achieved with a complementary input stage—an Nchannel input differential pair in parallel with a P-channel
differential pair, as shown in Figure 2. The N-channel pair is
active for input voltages close to the positive rail, typically
(V+) – 2.0V to 300mV above the positive supply, while the Pchannel pair is on for inputs from 300mV below the negative
supply to approximately (V+) – 1.5V. There is a small
transition region, typically (V+) – 2.0V to (V+) – 1.5V, in
which both pairs are on. This 500mV transition region can
vary ±100mV with process variation. Thus, the transition
region (both stages on) can range from (V+) – 2.1V to (V+)
– 1.4V on the low end, up to (V+) – 1.9V to (V+) – 1.6V on
the high end. Within the 500mV transition region PSRR,
CMRR, offset voltage, and offset drift, and THD may vary
compared to operation outside this region.
G = +1, VS = ±5V
2.0V/div
Input
Output (inverted on scope)
200µs/div
FIGURE 1. Rail-to-Rail Input and Output.
V+
VO
VIN+
VIN–
V–
FIGURE 2. Simplified Schematic.
8
OPA705, 2705, 4705
SBOS182
INPUT VOLTAGE
Device inputs are protected by ESD diodes that will conduct
if the input voltages exceed the power supplies by more than
approximately 300mV. Momentary voltages greater than
300mV beyond the power supply can be tolerated if the
current is limited to 10mA. This is easily accomplished with
an input resistor, as shown in Figure 3. Many input signals
are inherently current-limited to less than 10mA; therefore,
a limiting resistor is not always required. The OPA705
features no phase inversion when the inputs extend beyond
supplies if the input current is limited, as seen in Figure 4.
CAPACITIVE LOAD AND STABILITY
The OPA705 series op amps can drive up to 1000pF pure
capacitive load. Increasing the gain enhances the amplifier’s
ability to drive greater capacitive loads (see the typical
performance curve “Small Signal Overshoot vs Capacitive
Load”).
+V
IOVERLOAD
10mA max
RAIL-TO-RAIL OUTPUT
A class AB output stage with common-source transistors is
used to achieve rail-to-rail output. This output stage is
capable of driving 1kΩ loads connected to any point between V+ and ground. For light resistive loads (> 100kΩ),
the output voltage can swing to 40mV from the supply rail.
With moderate resistive loads (20kΩ), the output can swing
to within 75mV from the supply rails while maintaining high
open-loop gain (see the typical performance curve “Output
Voltage Swing vs Output Current”).
VOUT
OPA705
VIN
R
V–
One method of improving capacitive load drive in the unitygain configuration is to insert a 10Ω to 20Ω resistor inside the
feedback loop, as shown in Figure 5. This reduces ringing
with large capacitive loads while maintaining DC accuracy.
FIGURE 3. Input Current Protection for Voltages Exceeding
the Supply Voltage.
RS
20Ω
OPA705
VOUT
VIN
CL
RL
VS = ±5.0V, VIN = 11Vp-p
2.0V/div
FIGURE 5. Series Resistor in Unity-Gain Buffer Configuration Improves Capacitive Load Drive.
20µs/div
FIGURE 4. OPA705—No Phase Inversion with Inputs
Greater than the Power-Supply Voltage.
OPA705, 2705, 4705
SBOS182
APPLICATION CIRCUITS
The OPA705 series op amps are optimized for driving
medium-speed sampling data converters. Figure 6 shows the
OPA2705 in a dual-supply buffered reference configuration
for the DAC7644. The DAC7644 is a 16-bit, low-power,
quad-voltage output converter. Small size makes the combination ideal for automatic test equipment, data acquisition
systems, and other low-power space-limited applications.
9
NC
48
NC
47
NC
46
NC
45
VOUTA Sense
44
VOUTA
43
VREFL AB Sense
42
VREFL AB
41
VREFH AB
40
VREFH AB Sense
39
DAC7644
VOUTB Sense
38
VOUTB
37
+V
V–
VOUT
–2.5V
1/2
OPA2705
Ref
Negative
Reference
500pF
V+
500pF
1/2
OPA2705
VOUT
+2.5V
Ref
Positive
Reference
–V
FIGURE 6. OPA705 as Dual Supply Configuration-Buffered References for the DAC7644.
10
OPA705, 2705, 4705
SBOS182
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.
Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.
Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.
Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm
Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265
Copyright  2001, Texas Instruments Incorporated