ETC RP1102

RP1102
905.5 MHz
•
•
•
•
SAW Resonator
Designed for 905.5 MHz Oscillators and Transmitters
Nominal Insertion Phase Shift of 180° at Resonance
Quartz Stability
Rugged, Hermetic, Low-Profile TO39 Case
The RP1102 is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization
of fixed-frequency oscillators and transmitters operating at or near 905.5 MHz. This
fundamental mode resonator is designed specifically for use in low-power transmitters
operating in the USA under FCC Part 15.249 regulations. It is also suitable for a variety of other oscillator applications.
TO39-3 Case
Electrical Characteristics
Characteristic
Center Frequency (+25°C)
Sym
Absolute Frequency
fC
Tolerance from 905.500 MHz
∆fC
2, 3, 4, 5,
2, 5, 6
Unloaded Q
IL
QU
50 Ω Loaded Q
QL
Turnover Temperature
TO
Turnover Frequency
fO
Insertion Loss
Quality Factor
Temperature Stability
Frequency Temp. Coefficient
Frequency Aging
Absolute Value during First Year
FTC
|fA|
DC Insulation Resistance between Any Two Pins
RF Equivalent RLC Model
Notes
Minimum
905.250
Motional Inductance
LM
Motional Capacitance
CM
Shunt Static Capacitance
CO
Lid Symbolization (in addition to Lot and/or Date Codes)
Units
905.750
MHz
±250
kHz
15.0
dB
74
°C
3,500
5, 6, 7
6,000
44
6, 7, 8
6
5
Maximum
9.5
59
fC+39
kHz
0.037
ppm/°C2
≤ 10
ppm/yr
1.0
RM
Motional Resistance
Typical
MΩ
198
5, 7, 9
463
µH
289.086
fF
0.106865
5, 6, 9
1.0
1.3
Ω
1.6
pF
RFM P1102
CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.
Notes:
1.
2.
3.
4.
5.
6.
7.
8.
Frequency aging is the change in fC with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically,
aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
The frequency fC is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR ≤ 1.2:1. Typically, fOSCILLATOR or fTRANSMITTER is less than the resonator fC.
One or more of the following United States patents apply: 4,454,488; 4,616,197.
Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
Unless noted otherwise, case temperature T C = +25°C± 5°C
The design, manufacturing process, and specifications of this device are subject to change without notice.
Derived mathematically from one or more of the following directly measured parameters: fC, IL, 3 dB bandwidth, f C versus TC, and CO.
Turnover temperature, TO, is the temperature of maximum (or turnover) frequency, fO. The nominal frequency at any case temperature, T C, may be calculated from: f =
fO [1 - FTC (TO - TC)2]. Typically, oscillator TO is 20° less than the specified resonator TO.
9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance CO is the measured
static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.
RF Monolithics, Inc.
Phone: (972) 233-2903
Fax: (972) 387-9148
©1998 by RF Monolithics, Inc. The stylized RFM logo are registered trademarks of RF Monolithics, Inc.
E-mail: [email protected]
http://www.rfm.com
RP1102-112598
Page 1 of 2
905.5 MHz SAW Resonator
Absolute Maximum Ratings
Rating
Value
Units
+5
dBm
±30
VDC
-40 to +85
°C
CW RF Power Dissipation (See: Typical Test Circuit)
DC Voltage Between Any Two Pins (Observe ESD Precautions)
Case Temperature
Electrical Connections
This two-port, three-terminal SAW resonator is bidirectional. However,
impedances and circuit board parasitics may not be symmetrical, requiring
slightly different oscillator component-matching values.
Equivalent LC Model
The following equivalent LC model is valid near resonance:
2
1
LM
R
Bottom View
Connection
1
2
3
C
M
M
Co
Co
Pin 1
Input or Output
Output or Input
Case Ground
3
Pin 2
Temperature Characteristics
Pin 3
fC = f O , TC = T O
Typical Test Circuit
Power Test
Electrical Test
0
The curve shown on the right
accounts for resonator contribution only and does not
include LC component temperature contributions.
(f-fo ) / fo (ppm)
Pin
0
-50
-50
-100
-100
-150
-150
-200
-80 -60 -40 -20
-200
0 +20 +40 +60 +80
∆T = TC - TO ( °C )
2
1
50 Ω
Source at P
REFLECTED
F
C
Low-Loss
Matching
Network
to 50 Ω
From 50Ω
Network
Analyzer
1
2
To 50Ω
Network
Analyzer
3
3
Typical Frequency Response
The plot shown below is a typical frequency response for
the RP series of two-port resonators. The plot is for RP1094.
- P
CW RF Power Dissipation = P
REFLECTED
INCIDENT
200.0
-10.0
100.0
Typical Application Circuits
-20.0
Conventional Two-Port Design:
0.0
-100.0
S21 magn.(dB)
This SAW resonator can be used in oscillator or transmitter designs that
require 180° phase shift at resonance in a two-port configuration. Oneport resonators can be simulated, as shown, by connecting pins 1 and 2
together. However, for most low-cost consumer products, this is only
recommended for retrofit applications and not for new designs.
-200.0
-30.0
-300.0
-400.0
-40.0
S21 phase (deg.)
P
INCIDENT
-500.0
Simulated One-Port Design:
-50.0
-600.0
-700.0
-60.0
1
Phasing
Phasing
& Match
& Match
2
901.2
-800.0
905.2
909.2
913.2
917.2
921.2
925.2
929.2
Frequency (MHz)
3
Millimeters
Inches
Dimensions
Min
Case Design
C
G
B
A
9.30
B
3.18
C
H
F
E
A
D
(3 places)
2.50
RF Monolithics, Inc.
Phone: (972) 233-2903
Fax: (972) 387-9148
©1998 by RF Monolithics, Inc. The stylized RFM logo are registered trademarks of RF Monolithics, Inc.
Max
0.366
0.125
0.098
0.138
0.46 Nominal
0.018 Nominal
E
5.08 Nominal
0.200 Nominal
F
2.54 Nominal
0.100 Nominal
G
2.54 Nominal
0.100 Nominal
J
45°
3.50
Min
D
H
J
(2 places)
Max
1.02
1.40
0.040
0.055
E-mail: [email protected]
http://www.rfm.com
RP1102-112598
Page 2 of 2