LSP5526 2A 23V Synchronous Buck Converter Features z 廖 R 19 , 51 8 71 44 z z z The LSP5526 is a monolithic synchronous buck regulator. The device integrates 95mΩ MOSFETS that provide 2A continuous load current over a wide operating input voltage of 4.5V to 23V. Current mode control provides fast transient response and cycleby-cycle current limit. An adjustable softstart prevents inrush current at turn on. QQ : z z z z 2A Output Current Wide 4.5V to 23V Operating Input Range Integrated Power MOSFET Switches Output Adjustable from 0.925V to 18V Up to 96% Efficiency Programmable Soft-Start Stable with Low ESR Ceramic Output Capacitors Fixed 340KHZ Frequency Cycle-by-Cycle Over Current Protection Input Under Voltage Lockout Package: SOP-8L 58 5 z z z General Description 66 4 18 Distributed Power Systems Networking Systems FPGA, DSP, ASIC Power Supplies z Green Electronics/ Appliances z Notebook Computers l: z z z 34 1 Applications 公 司 , Te Typical Application Circuit 限 技 有 V IN = 1 2 V C6 10nF BS 讯 科 R4 100K 合 SW EN SS 4 4 .2 K COMP C4 1 .6 n F R3 10K C5 C7 22uF x 2 R2 10K NC 深 圳 C3 0 .1 u F R1 FB GND V O U T = 5 V /2 A 10uH LSP5526 C1 22uF 市 金 L1 V IN Please be aware that an Important Notice concerning availability, disclaimers, and use in critical applications of LSC products is at the end of this document. 1 of 16 Rev. 1.2 深圳市博美霖电子有限公司 专业代理 高先生 电话:0755-82546493 13423782956 LSP5526 2A 23V Synchronous Buck Converter Ordering Information Package : S8 : SOP-8L Package Code Package LSP5526-S8A S8 SOP-8L 19 , Tape & Reel Part Number Quantity Suffix 51 8 Device Packing : A : Tape & Reel 2500 A SOP-8L (TOP View) 2 SW 3 GND 4 7 EN 6 COMP 5 FB Name BS 2 VIN 限 讯 科 5 FB COMP 7 EN 8 SS 合 6 深 圳 市 金 SW GND 技 有 3 4 公 1 司 Pin Number , Te l: Pin Descriptions SS 34 1 VIN 8 66 4 1 18 BS 58 5 QQ : Pin Assignments 71 44 Output Voltage : Blank : ADJ 廖 R LSP5526-X X X Description Bootstrap. This pin acts as the positive rail for the high-side switch’s gate driver. Connect a 0.01uF capacitor between BS and SW. Input Supply. Bypass this pin to GND with a low ESR capacitor. See Input Capacitor in the Application Information section. Switch Output. Connect this pin to the switching end of the inductor. Ground. Feedback Input. The voltage at this pin is regulated to 0.925V. Connect to the resistor divider between output and ground to set output voltage. Compensation Pin. See Stability Compensation in the Application Information section. Enable Input. When higher than 2.7V, this pin turns the IC on. When lower than 1.1V, this pin turns the IC off. Output voltage is discharged when the IC is off. This pin should not be left open. Recommend to put a 100KΩ pull up resistor to Vin for start up. Soft-Start Control Input. SS controls the soft-start period. Connect a capacitor from SS to GND to set the soft-start period. A 0.1uF capacitor sets the soft-start period to 15ms. To disable the soft-start feature, leave SS unconnected. 2 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter Block Diagram CURRENT SENSE AMPLIFIER 1.1V RAMP 2 VIN 廖 R OVP 5V FB 5 19 , OSCILLATOR 340/120KHz CLK 1 BS 3 SW ERROR AMPLIFIER 0.925V COMP 6 EN 7 CURRENT COMPARATOR 6uA EN OK QQ : SS 8 GND 58 5 IN INTERNAL 34 1 SHUTDOWN COMPARATOR REGULATORS 18 66 4 1.5V 4 OVP IN<4.10V 1.2V LOCKOUT COMPARATOR 2.5V 71 44 S Q R Q 51 8 0.3V l: Absolute Maximum Ratings Parameter 技 有 限 公 司 , Te Input Supply Voltage SW Voltage BS Voltage EN, FB, COMP Voltage Continuous SW Current Junction to Ambient Thermal Resistance (θJA) (Test on Approximately 3 in2 Copper Area 1oz copper FR4 board) SOP-8L Power Dissipation Maximum Junction Temperature Storage Temperature Range Value Unit -0.3 to 25 -0.3 to VIN + 0.3 VSW – 0.3 to VSW + 6 -0.3 to 5. Internally limited V V V V A 87 °C/W Internal limit 150 -65 to 150 W °C °C 合 讯 科 (Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.) 深 圳 市 金 Recommended Operating Conditions Parameter Input Supply Voltage Operating Junction Temperature Min Max Unit 4.5 -20 23 +125 V °C 3 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter Electrical Characteristics Te , 司 3.3 A/V 920 480 340 120 92 220 1.4 uA/V V/V KHz KHz % nS V 19 , Unit V V mΩ mΩ uA A 71 44 58 5 ΔICOMP = ±10uA QQ : VEN = 0V, VSW = 0V Minimum Duty Cycle 34 1 VFB = 0 VFB = 0.8V 18 66 4 VEN Rising VEN = 0 VEN = 3V, VFB = 1.0V VEN Rising VSS = 0V CSS = 0.1uF Hysteresis = 25°C 1.1 2 180 2.2 3.80 2.5 130 0.3 1.3 4.05 100 6 15 160 mV 2.7 3.0 1.5 4.40 V mV uA mA V mV uA mS °C 限 公 Min Typ Max 0.900 0.925 0.950 1.1 95 95 10 2.7 3.5 51 8 Test Conditions 4.5V ≤ VIN ≤ 23V l: Parameter Symbol Feedback Voltage VFB Feedback Overvoltage Threshold High-Side Switch-On Resistance* Low-Side Switch-On Resistance* High-Side Switch Leakage Upper Switch Current Limit COMP to Current GCOMP Limit Transconductance Error Amplifier Transconductance GEA Error Amplifier DC Gain* AVEA Switching Frequency fSW Short Circuit Switching Frequency Maximum Duty Cycle DMAX Minimum On Time* EN Shutdown Threshold Voltage EN Shutdown Threshold Voltage Hysteresis EN Lockout Threshold Voltage EN Lockout Hysteresis Supply Current in Shutdown IC Supply Current in Operation Input UVLO Threshold Rising UVLO Input UVLO Threshold Hysteresis Soft-start Current Soft-start Period Thermal Shutdown Temperature* 廖 R (VIN = 12V, TA= 25°C unless otherwise specified.) 深 圳 市 金 合 讯 科 技 有 Note: * Guaranteed by design 4 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter 廖 R Application Description BS SW 10uH LSP5526 EN SS GND C4 1 .6 n F R3 10K C5 NC R2 10K C7 22uF x 2 D1 B 1 3 0/S K 1 3 (O p tio n ) 58 5 C3 0 .1 u F 4 4 .2 K COMP QQ : C1 22uF R1 FB 51 8 R4 100K V O U T = 5 V /2 A L1 V IN 71 44 V IN = 1 2 V 19 , C6 10nF 市 金 合 讯 科 技 有 限 公 司 , Te l: 18 66 4 34 1 LSP5526 Circuit, 5V/2A output LSP5526 Circuit, 3.3V/2A output 深 圳 Note: C6 is required for separate EN signal. 5 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter Output Voltage Setting 廖 R VOUT 19 , R1 51 8 FB 71 44 R2 QQ : Figure1. Output Voltage Setting Figure 1 shows the connections for setting the output voltage. Select the proper ratio of the two feedback resistors R1 and R2 based on the output voltage. Typically, use R2 ≈ 10KΩ and 34 1 58 5 determine R1 from the following equation: 66 4 Table1- Recommended Resistance Values VOUT R1 R2 1.0V 1.2V 1.8V 2.5V 3.3V 5V 12V 1.0 KΩ 3.0 KΩ 9.53 KΩ 16.9 KΩ 26.1 KΩ 44.2 KΩ 121 KΩ 12 KΩ 10 KΩ 10 KΩ 10 KΩ 10 KΩ 10 KΩ 10 KΩ Inductor Selection 限 公 司 , Te l: 18 (1) 深 圳 市 金 合 讯 科 技 有 The inductor maintains a continuous current to the output load. This inductor current has a ripple that is dependent on the inductance value: higher inductance reduces the peak-to-peak ripple current. The trade off for high inductance value is the increase in inductor core size and series resistance, and the reduction in current handling capability. In general, select an inductance value L based on the ripple current requirement: L= VOUT • ( VIN − VOUT ) V IN f SW I OUTMAX K RIPPLE (2) where VIN is the input voltage, VOUT is the output voltage, fSW is the switching frequency, IOUTMAX is the maximum output current, and KRIPPLE is the ripple factor. Typically, choose KRIPPLE = 30% to correspond to the peak-to-peak ripple current being 30% of the maximum output current. With this inductor value, the peak inductor current is IOUT • (1 + KRIPPLE / 2). Make sure that this peak inductor current is less than the upper switch current limit. Finally, select the inductor core 6 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter size so that it does not saturate at the current limit. Typical inductor values for various output voltages are shown in Table 2. 19 , 廖 R VOUT 1.0V 1.2V 1.5V 1.8V 2.5V 3.3V 5V 9V L 4.7uH 4.7uH 10uH 10uH 10uH 10uH 10uH 33uH Table 2. Typical Inductor Values 58 5 QQ : 71 44 51 8 Input Capacitor The input capacitor needs to be carefully selected to maintain sufficiently low ripple at the supply input of the converter. A low ESR capacitor is highly recommended. Since large current flows in and out of this capacitor during switching, its ESR also affects efficiency. The input capacitance needs to be higher than 10uF. The best choice is the ceramic type; however, low ESR tantalum or electrolytic types may also be used provided that the RMS ripple current rating is higher than 50% of the output current. The input capacitor should be placed close to the VIN and GND pins of the IC, with the shortest traces possible. In the case of tantalum or electrolytic types, they can be further away if a small parallel 0.1uF ceramic capacitor is placed right next to the IC. , Te l: 18 66 4 34 1 Output Capacitor The output capacitor also needs to have low ESR to keep low output voltage ripple. In the case of ceramic output capacitors, RESR is very small and does not contribute to the ripple. Therefore, a lower capacitance value can be used for ceramic capacitors. In the case of tantalum or electrolytic capacitors, the ripple is dominated by RESR multiplied by the ripple current. In that case, the output capacitor is chosen to have sufficiently low ESR. For ceramic output capacitors, typically choose a capacitance of about 22uF. For tantalum or electrolytic capacitors, choose a capacitor with less than 50mΩ ESR. 技 有 限 公 司 Optional Schottky Diode During the transition between high-side switch and low-side switch, the body diode of the low side power MOSFET conducts the inductor current. The forward voltage of this body diode is high. An optional Schottky diode may be paralleled between the SW pin and GND pin to improve overall efficiency. Table 3 lists example Schottky diodes and their Manufacturers. Voltage/Current Rating Vendor B130 SK13 30V, 1A 30V, 1A Lite-on semiconductor corp. Lite-on semiconductor corp. 讯 科 Part Number 深 圳 市 金 合 Table 3-Diode Selection Guide 7 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter Stability Compensation COMP CCOMP 19 , 廖 R RCOMP CCOMP2 is needed only for high ESR output capacitor QQ : Figure 2. Stability Compensation 71 44 51 8 CCOMP2 0 . 925 V AVEA G COMP I OUT (4) 34 1 AVDC = 58 5 The feedback loop of the IC is stabilized by the components at the COMP pin, as shown in Figure 2. The DC loop gain of the system is determined by the following equation: G EA 2πAVEACCOMP (5) 18 f P1 = 66 4 The dominant pole P1 is due to CCOMP: I OUT (6) 2πVOUT C OUT Te fP 2 = l: The second pole P2 is the output pole: 司 , The first zero Z1 is due to RCOMP and CCOMP: 1 fZ 1 = (7) 限 公 2πR COMP C COMP 1 2πR COMP C COMP 2 (8) 讯 科 fP 3 = 技 有 And finally, the third pole is due to RCOMP and CCOMP2 (if CCOMP2 is used): 合 The following steps should be used to compensate the IC: 市 金 STEP1. Set the crossover frequency at 1/10 of the switching frequency via RCOMP: 深 圳 RCOMP = 2πVOUT C OUT f SW 10G EA G COMP • 0.925V (9) but limit RCOMP to 10KΩ maximum. STEP2. Set the zero fZ1 at 1/4 of the crossover frequency. If RCOMP is less than 10KΩ, the equation for CCOMP is: 8 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter 0.637 (F ) RCOMP × fc (10) 19 , STEP3. If the output capacitor’s ESR is high enough to cause a zero at lower than 4 times the crossover frequency, an additional compensation capacitor CCOMP2 is required. The 51 8 condition for using CCOMP2 is: π × COUT × RESR × fs ≥ 1 71 44 (11) QQ : And the proper value for CCOMP2 is: C OUT R ESRCOUT (12) 58 5 R COMP 34 1 C COMP 2 = A reference table as follows: Ccomp (C4) (nF) 3.3 3.9 5.6 8.2 10 10 5.6 4.7 3.3 2.2 2 3.3 l: 18 Rcomp (R3) (kΩ) Te Ccomp2 (C5) (pF) none none none none none none 限 技 有 Inductor (uH) 4.7 4.7 10 10 10 10 4.7 470uF/ 6.3V/ 120mΩ 10 6.8 680 10 深 圳 市 金 合 讯 科 22uF x2 Ceramic , 1.0 1.2 1.8 2.5 3.3 5 1.0 1.2 1.8 2.5 3.3 5 司 5 – 12 5 - 15 5 - 23 5 - 23 5 - 23 5 - 23 5 - 12 5 - 15 5 - 23 5 - 23 5 - 23 5 - 23 Cout 公 Vout (V) 66 4 Table 4- Component Selection Guide for Stability Compensation Vin Range (V) 廖 R C COMP = 9 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 Comp=5.6k/3.3nF L=10uH 19 , Comp=8.2k/2.2nF L=10uH Comp=8.2k/2.2nF L=4.7uH 51 8 Comp=10k/3.3nF L=10uH 34 1 58 5 QQ : 71 44 Comp=10k/2.2nF L=10uH 1 1.5 2 2.5 3 3.5 Vout, V 4 4.5 5 5.5 18 0.5 66 4 Vout overshoot, mV Comp=3.3k/5.6nF L= 4.7uH Vout Overshoot vs Vout (Vin=12V, Cout=44uF, dIout =1A) 廖 R Comp=3.3k/5.6nF L=10uH Te l: Figure 3. Load Transient Testing vs Compensation Value 司 , Typical Performance Characteristics Heavy Load Operation (2A Load) 公 Light Load Operation (No load) Vin=12V, Vout=3,3V 深 圳 市 金 合 讯 科 技 有 限 Vin=12V, Iin=8.2 mA, Vout=3,3V Startup Vin=12V, Vout=3.3V, Iout=1A 10 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter through Enable. QQ : 71 44 51 8 19 , 廖 R through Vin. 深 圳 市 金 合 讯 科 技 有 限 公 司 , Te l: 18 66 4 34 1 58 5 Short Circuit Protection Vin=12V 11 of 16 Rev. 1.2 LSP5526 18 SWITCHES RdsON vs JUNCTION TEMPERATURE (Vin=12V) 公 司 , Te l: 0.16 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.08 30 50 70 90 110 130 JUNCTION TEMPERATURE (C) 150 170 深 圳 市 金 合 讯 科 技 有 10 限 SWITCHES RdsON 66 4 34 1 58 5 QQ : 71 44 51 8 19 , 廖 R 2A 23V Synchronous Buck Converter 12 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter LOGO 19 , 廖 R Marking Information LSC 51 8 Part ID LSP5526 QQ : 71 44 VYYWWUZ 34 1 Internal Code Date code 58 5 V YYWW UZ 66 4 YY:Year(09=2009,10=2010,11=2011,12=2012...) WW:Week(01~53) Output Voltage 深 圳 市 金 合 讯 科 技 有 限 公 司 , Te l: 18 Blank:ADJ 13 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter 1.35 1.75 A1 0.10 0.25 B 0.33 0.51 C 0.19 0.25 D 4.70 5.10 E 3.70 4.10 公 限 技 有 讯 科 合 Te Max , Min A E 1.27BSC H 5.80 6.20 L 0.40 1.27 θ 0 8° 深 圳 市 金 Dimensions In Millimeters 司 Symbol l: 18 66 4 34 1 58 5 QQ : 71 44 51 8 19 , 廖 R SOP-8L 14 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter 深 圳 市 金 合 讯 科 技 有 限 公 司 , Te l: 18 66 4 34 1 58 5 QQ : 71 44 51 8 19 , 廖 R Tape/Reel 15 of 16 Rev. 1.2 LSP5526 2A 23V Synchronous Buck Converter IPC/JEDEC J-STD-020D.1 Moisture Sensitivity Levels Table SOAK REQUIREMENTS 2a 4 weeks 3 168 hours 4 72 hours 5 48 hours 24 hours 6 NA NA NA NA NA 168 85 °C /85% RH +5/-0 RH ≤30 °C /60% 168 85 °C /60% RH +5/-0 RH ≤30 °C /60% 696 RH +5/-0 ≤30 °C /60% 192 30 °C /60% 40 52 RH +5/-0 RH -1/+0 -1/+0 ≤30 °C /60% 96 RH +2/-0 ≤30 °C /60% 72 RH +2/-0 2 2 2 2 2 ≤30 °C /60% 48 RH +2/-0 Time on Label ≤30 °C /60% (TOL) RH 30 °C /60% 120 168 RH -1/+0 -1/+0 30 °C /60% 20 RH +0.5/-0 30 °C /60% 15 20 RH +0.5/-0 +0.5/-0 30 °C /60% RH 30 °C /60% TOL 24 +0.5/-0 RH 10 13 +0.5/-0 +0.5/-0 NA NA NA 60 °C/ 60% RH 60 °C/ 60% RH 60 °C/ 60% RH 60 °C/ 60% RH 60 °C/ 60% RH NA 66 4 5a CONDITION ≤30 °C /85% 19 , 1 year TIME (hours) 51 8 2 TIME (hours) QQ : Unlimited CONDITION (hours) eV 0.30-0.39 58 5 1 TIME CONDITION eV 0.40-0.48 34 1 TIME LEVEL Standard 71 44 FLOOR LIFE 1 廖 R Accelerated Equivalent Note 1: CAUTION - To use the ‘‘accelerated equivalent’’ soak conditions, correlation of damage response (including electrical, after soak and 18 reflow), should be established with the ‘‘standard’’ soak conditions. Alternatively, if the known activation energy for moisture diffusion of the package materials is in the range of 0.40 - 0.48 eV or 0.30 - 0.39 eV, the ‘‘accelerated equivalent’’ may be used. Accelerated soak times may vary due to material properties (e.g .mold compound, encapsulant, etc.). JEDEC document JESD22-A120 provides a method l: for determining the diffusion coefficient. Te Note 2: The standard soak time includes a default value of 24 hours for semiconductor manufacturer’s exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor’s facility. If the actual MET is less than 24 hours the soak , time may be reduced. For soak conditions of 30 °C/60% RH, the soak time is reduced by 1 hour for each hour the MET is less than 24 司 hours. For soak conditions of 60 °C/60% RH, the soak time is reduced by 1 hour for each 5 hours the MET is less than 24 hours. If the 公 actual MET is greater than 24 hours the soak time must be increased. If soak conditions are 30 °C/60% RH, the soak time is increased 1 hour for each hour that the actual MET exceeds 24 hours. If soak conditions are 60 °C/60% RH, the soak time is increased 1 hour for Important Notice and Disclaimer 讯 科 技 有 限 each 5 hours that the actual MET exceeds 24 hours. 深 圳 市 金 合 LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use. LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application. No license is granted by implication or otherwise under any intellectual property rights of LSC. LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC. 16 of 16 Rev. 1.2