TECHNICAL NOTE High-performance Clock Generator Series Compact 1ch Clock Generators for Digital Cameras BU3071HFV, BU3072HFV, BU3073HFV, BU3076HFV BU7322HFV, BU7325HFV ●Description These Clock Generators incorporates compact package compared to oscillators, which provides the generation of high-frequency CCD, USB, VIDEO clocks necessary for digital still cameras and digital video cameras. ●Features 1) SEL pin allowing for the selection of frequencies 2) Selection of OE pin enabling Power-down function 3) Crystal-oscillator-level clock precision with high C/N characteristics and low jitter 4) Microminiature HVSOF6 Package incorporated 5) Single power supply of 3.3 V ●Applications Digital Still Camera, Digital Video Camera, and others ●Lineup Supply voltage Operating temperature range Reference input clock Output clock Power-down function Operating current (TYP) Package BU3071HFV 3.0 V~3.6V -5℃~70℃ 28.6363MHz 54.0000MHz Provided 10mA HVSOF6 BU3072HFV 3.0 V~3.6V -5℃~70℃ 48.0000MHz 27.0000MHz 36.0000MHz Provided 11mA HVSOF6 BU3073HFV 3.0 V~3.6V -5℃~70℃ 48.0000MHz 24.3750MHz 24.5454MHz Provided 11mA HVSOF6 BU3076HFV 2.85 V~3.6V -5℃~75℃ 27.0000MHz 54.0000MHz 67.5000MHz Provided 12mA HVSOF6 BU7322HFV 2.85 V~3.6V -5℃~75℃ 27.0000MHz 49.5000MHz 36.0000MHz Provided 10mA HVSOF6 BU7325HFV 2.85 V~3.6V -30℃~85℃ 27.0000MHz 48.0000MHz 78.0000MHz Provided 12mA HVSOF6 ●Absolute Maximum Ratings(Ta=25℃) Supply voltage Input voltage Storage temperature range Symbol VDD VIN Tstg Pd Limit -0.3~4.0 -0.3~VDD+0.3 -30~125 410 Unit V V ℃ mW Power dissipation *1 Operating is not guaranteed. *2 In the case of exceeding Ta = 25℃, 4.1mW should be reduced per 1℃. *3 The radiation-resistance design is not carried out. *4 Power dissipation is measured when the IC is mounted to the printed circuit board. Sep. 2008 ●Recommended Operating Range Parameter Symbol Limit Unit Supply voltage VDD 3.0~3.6 V Input H voltage VINH 0.8VDD~VDD V Input L voltage VINL 0.0~0.2VDD V Operating temperature Topr -5~70 ℃ CL 15(MAX) pF Output load ●Electrical characteristics BU3071HFV(Ta=25℃, VDD=3.3V,Crystal frequency=28.6363MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Conditions Output H voltage VOH 2.8 V IOH=-4.0mA Output L voltage VOL 0.5 V IOL=4.0mA Consumption current 1 IDD1 10 15 mA OE=H, at no load Consumption current 2 IDD2 1 1.3 mA OE=L Output frequency 54.0000 MHz IN*264/35/4 The following parameters represent design guaranteed performance. Duty Duty 45 50 55 % Measured at a voltage of 1/2 of VDD Period-Jitter 1σ PJsSD 50 psec ※1 Period-Jitter MIN-MAX Rise time PJsABS - 300 - psec ※2 Period of transition time required for the tr 2.5 nsec output to reach 80% from 20% of VDD. Provided with 15pF output load. Period of transition time required for the Fall time tf 2.5 nsec output to reach 20% from 80% of VDD. Provided with 15pF output load. Output Lock time tLOCK 1 msec ※3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN.If the input frequency is set to 28.6363MHz, the output frequency will be as listed above. BU3072HFV(Ta=25℃, VDD=3.3V, Crystal frequency=48.0000MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Conditions Output H voltage VOH 2.8 V IOH=-4.0mA Output L voltage VOL 0.5 V IOL=4.0mA Consumption current 1 Consumption current 2 Output frequency IDD1 11 16 IDD2 5 CLK_27 27.0000 CLK_36 36.0000 The following parameters represent design guaranteed performance. Duty Duty 45 50 55 Period-Jitter 1σ PJsSD 35 - mA μA MHz MHz PD=H, at no load PD=L SEL=L, IN*18/8/4 SEL=H, IN*24/8/4 % psec Measured at a voltage of 1/2 of VDD ※1 MIN-MAX of long-term jitter (100 sec from trigger) Period of transition time required for the tr 2.5 nsec output to reach 80% from 20% of VDD. Provided with 15pF output load. Period of transition time required for the Fall time tf 2.5 nsec output to reach 20% from 80% of VDD. Provided with 15pF output load. Output Lock time tLOCK 1 msec ※3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN.If the input frequency is set to 48.0000MHz, the output frequency will be as listed above. Long-Term-Jitter MIN-MAX Rise time LTJsABS - 0.9 1.5 2/20 nsec BU3073HFV(Ta=25℃, VDD=3.3V, Crystal frequency=48.0000MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Conditions Output H voltage VOH 2.8 V IOH=-4.0mA Output L voltage VOL 0.5 V IOL=4.0mA Consumption current 1 IDD1 11 16 mA PD=H, at no load Consumption current 2 IDD2 5 mA PD=L Output frequency CLK_375 24.3750 MHz SEL=L, IN*65/16/8 CLK_545 24.5454 MHz SEL=H, IN*45/11/8 The following parameters represent design guaranteed performance. Duty Duty 45 50 55 % Measured at a voltage of 1/2 of VDD Period-Jitter 1σ PJsSD 45 psec ※1 Long-Term-Jitter MIN-MAX of long-term jitter (100 sec LTJsABS 0.9 1.5 nsec MIN-MAX from trigger) Period of transition time required for the Rise time output to reach 80% from 20% of VDD. tr 2.5 nsec Provided with 15pF output load. Period of transition time required for the Fall time output to reach 20% from 80% of VDD. tf 2.5 nsec Provided with 15pF output load. Output Lock time tLOCK 1 msec ※3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN. If the input frequency is set to 48.0000MHz, the output frequency will be as listed above. BU3076HFV(Ta=25℃, VDD=3.3V, Crystal frequency=27.0000MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Conditions Output H voltage VOH 2.8 V IOH=-4.0mA Output L voltage VOL 0.5 V IOL=4.0mA Pull-down resistance Rpd 25 50 100 KΩ Pull-down resistance on input pin Consumption current 1 IDD1 10 15 mA 54MHz output, at no load Consumption current 2 IDD2 12 18 mA 67.5MHz output, at no load IDDst Standby current 1 μA OE=L Output frequency CLK_54 54.0000 MHz SEL=L, IN*48/6/4 CLK_67.5 67.5000 MHz SEL=H, IN*60/6/4 The following parameters represent design guaranteed performance. Duty Duty 45 50 55 % Measured at a voltage of 1/2 of VDD Period-Jitter 1σ PJsSD 50 psec ※1 Period-Jitter MIN-MAX PJsABS 300 psec ※2 Period of transition time required for the Rise time output to reach 80% from 20% of VDD. tr 1.5 nsec Provided with 15pF output load. Period of transition time required for the Fall time output to reach 20% from 80% of VDD. tf 1.5 nsec Provided with 15pF output load. Output Lock time tLOCK 200 usec ※3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN. If the input frequency is set to 27.0000MHz, the output frequency will be as listed above. 3/20 BU7322HFV(Ta=25℃, VDD=3.3V, Crystal frequency=27.0000MHz, unless otherwise specified.) Parameter Symbol Min. Typ. Max. Unit Conditions VOH 2.8 V IOH=-4.0mA Output H voltage VOL 0.5 V IOL=4.0mA Output L voltage Rpd 25 50 100 kΩ Pull-down resistance on input pin Pull-down resistance IDD 10 13.5 mA 49.5MHz output, at no load Consumption current 1 IDD2 9.5 13.0 mA 36.0MHz output, at no load Consumption current 2 μA IDDst 1 OE=L Standby current CLK_49.5 MHz SEL=L, IN*66/6/6 Output frequency 49.5000 CLK_36 - 36.0000 The following parameters represent design guaranteed performance. Duty 45 50 55 Duty PJsSD 50 Period-Jitter 1σ PJsABS 300 Period-Jitter MIN-MAX MHz SEL=H, IN*64/6/8 % psec psec Measured at a voltage of 1/2 of VDD ※1 ※2 Period of transition time required for the Rise time tr 2.5 nsec output to reach 80% from 20% of VDD. Provided with 15pF output load. Period of transition time required for the Fall time tf 2.5 nsec output to reach 20% from 80% of VDD. Provided with 15pF output load. tLOCK 200 usec Output Lock time ※3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN. If the input frequency is set to 27.0000MHz, the output frequency will be as listed above. BU7325HFV(Ta=25℃, VDD=3.3V, Crystal frequency=27.0000MHz, unless otherwise specified.) Parameter Output H voltage Output L voltage Pull-down resistance Consumption current 1 Consumption current 2 Standby current Output frequency Symbol VOH VOL Rpd IDD1 IDD2 IDDst CLK_48 Min. 2.8 25 - Typ. 50 11 12 48.0000 Max. 0.5 100 15 16.5 1 - MHz Conditions IOH=-4.0mA IOL=4.0mA Pull-down resistance on input pin OE=H, SEL=L, at no load OE=H, SEL=H, at no load OE=L SEL=L, IN*96/9/6 CLK_78 - 78.0000 - MHz SEL=H, IN*104/9/4 % psec psec Measured at a voltage of 1/2 of VDD The following parameters represent design guaranteed performance. Duty 45 50 55 Duty PJsSD 50 Period-Jitter 1σ PJsABS 300 Period-Jitter MIN-MAX Unit V V kΩ mA mA μA ※1 ※2 Period of transition time required for the Rise time tr 1.5 nsec output to reach 80% from 20% of VDD. Provided with 15pF output load. Period of transition time required for the Fall time tf 1.5 nsec output to reach 20% from 80% of VDD. Provided with 15pF output load. tLOCK 200 usec Output Lock time ※3 Note) The output frequency is determined by the arithmetic (frequency division) expression of a frequency input to IN. If the input frequency is set to 27.0000MHz, the output frequency will be as listed above. Common to BU3071HFV, BU3072HFV, BU3073HFV, BU3076HFV, BU7322HFV, BU7325HFV 1 Period-Jitter 1σ This parameter represents standard deviation (1σ) on cycle distribution data at the time when the output clock cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd. 2 Period-Jitter MIN-MAX This parameter represents a maximum distribution width on cycle distribution data at the time when the output clock cycles are sampled 1000 times consecutively with the TDS7104 Digital Phosphor Oscilloscope of Tektronix Japan, Ltd. 3 Output Lock Time This parameter represents elapsed time after power supply turns ON to reach a voltage of 3.0 V, after the system is switched from Power-Down state to normal operation state, or after the output frequency is switched, until it is stabilized at a specified frequency, respectively. 4/20 ●Reference data (BU3071HFV basic data) RBW:1kHz 5nsec/div 10dB/div 1V/div 1V/div VBW:100Hz 500psec/div Fig.1 54MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) 10kHz/div Fig.3 54MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) Fig.2 54MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) ●Reference data (BU3072HFV basic data) RBW:1kHz 1V/div 1V/div 10dB/div VBW:100Hz 10nsec/div 10kHz/div 500psec/div Fig.5 27MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) Fig.4 27MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) Fig.6 27MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) RBW:1kHz 1V/div 1V/div 10dB/div VBW:100Hz 5nsec/div Fig.7 36MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) 500psec/div Fig.8 36MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) 5/20 10kHz/div Fig.9 36MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) ●Reference data (BU3073HFV basic data) RBW:1kHz 10dB/div 1V/div 1V/div VBW:100Hz 10nsec/div 10kHz/div 500psec/div Fig.10 24.375MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) Fig.11 24.375MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) Fig.12 24.375MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) RBW:1kHz 10dB/div 1V/div 1V/div VBW:100Hz 10nsec/div 500psec/div Fig.13 24.5454MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) 10kHz/div Fig.14 24.5454MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) Fig.15 24.5454MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) ●Reference data (BU3076HFV basic data) RBW:1kHz 5nsec/div 10dB/div 1V/div 1V/div VBW:100Hz 10kHz/div 500psec/div Fig.16 54MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) Fig.17 54MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) Fig.18 54MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) RBW:1kHz 2nsec/div Fig.19 67.5MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) 10dB/div 1V/div 1V/div VBW:100Hz 500psec/div Fig.20 67.5MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) 6/20 10kHz/div Fig.21 67.5MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) ●Reference data (BU7322HFV basic data) RBW:1kHz 10dB/div 1V/div 1V/div VBW:100Hz 5nsec/div 500psec/div Fig.22 49.5MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) 10kHz/div Fig.23 49.5MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) Fig.24 49.5MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) RBW:1kHz 10dB/div 1V/div 1V/div VBW:100Hz 10nsec/div 500psec/div Fig.25 36MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) Fig.26 36MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) 10kHz/div Fig.27 36MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) ●Reference data (BU7325HFV basic data) 10dB/div 1V/div 1V/div RBW:1kHz VBW:100Hz 5nsec/div 500psec/div Fig.28 48MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) 10kHz/div Fig.30 48MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) Fig.29 48MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) RBW:1kHz 10dB/div 1V/div 1V/div VBW:100Hz 10nsec/div 500psec/div 10kHz/div Fig.31 78MHz output waveform (VDD=3.3V,CL=15pF,Ta=25℃) Fig.32 78MHz Period-Jitter (VDD=3.3V,CL=15pF,Ta=25℃) Fig.33 78MHz spectrum (VDD=3.3V,CL=15pF,Ta=25℃) 7/20 5 5 54 53 4 4 52 51 VDD=3.7V 50 49 48 VDD=3.3V VDD=2.9V 47 46 3 2 VDD=2.9V VDD=3.3V VDD=3.7V 1 -25 0 25 50 75 -25 100 80 60 VDD=3.7V VDD=3.3V 20 VDD=2.9V 0 -25 0 25 50 75 25 50 75 100 100 temperature:T [℃] Fig.37 54MHz Period-Jitter 1σ temperature characteristics 2 VDD=2.9V 1 VDD=3.3V VDD=3.7V 600 500 400 300 VDD=3.7V 200 100 VDD=2.9V VDD=3.3V 0 -25 0 25 50 75 100 temperature:T [℃] Fig.38 54MHz Jitter-MinMax temperature characteristics 8/20 -25 0 25 50 75 100 temperature:T [℃] Fig.35 54MHz Rise-time temperature characteristics Period-Jitter MIN-MAX:JsABS [psec] 100 40 0 temperature:T [℃] temperature:T[℃] Fig.34 54MHz Duty temperature characteristics 3 0 0 45 Period-Jitter 1σ:JsSD [psec] Fall time:tf [nsec] 55 Rise time:tr [nsec] Duty:Duty[%] ●Reference data (BU3071HFV Temperature and Supply voltage variations data) Fig.36 54MHz Fall-time temperature characteristics ●Reference data (BU3072HFV Temperature and Supply voltage variations data) 55 5 5 4 4 52 51 Rise time:tr [nsec] VDD=3.7V 50 49 VDD=2.9V 48 VDD=3.3V 47 3 VDD=2.9V 2 1 46 -25 0 25 50 75 -25 100 0 temperature:T [℃] Period-Jitter 1σ:JsSD [psec] 25 50 75 1 VDD=3.3V VDD=3.7V -25 100 0 25 50 75 100 temperature:T [℃] Fig.40 27MHz Rise-time temperature characteristics 100 Fig.41 27MHz Fall-time temperature characteristics 600 60 50 40 30 Period-Jitter MIN-MAX:JsABS [psec] 90 80 70 VDD=3.7V 20 10 VDD=2.9V VDD=3.3V 0 -25 0 25 50 75 500 400 300 VDD=3.7V 200 100 VDD=2.9V -25 0 25 75 100 Fig.43 27MHz Jitter-MinMax temperature characteristics 55 54 53 Rise time:tr [nsec] 52 VDD=3.7V VDD=2.9V 48 VDD=3.3V 47 46 45 50 temperature:T [℃] Fig.42 27MHz Period-Jitter 1σ temperature characteristics 51 50 49 VDD=3.3V 0 100 temperature:T [℃] Duty:Duty [%] VDD=2.9V temperature:T [℃] Fig.39 27MHz Duty temperature characteristics 5 5 4 4 3 VDD=3.3V 2 VDD=2.9V 1 0 25 50 75 100 temperature:T [℃] 70 60 VDD=2.9V 50 40 30 20 VDD=3.3V 10 0 VDD=3.7V -25 0 25 50 75 0 25 50 75 100 100 temperature:T [℃] Fig.47 36MHz Period-Jitter 1σtemperature characteristics Fig.45 36MHz Rise-time temperature characteristics Period-Jitter MIN-MAX:JsABS [psec] 90 80 VDD=3.3V VDD=2.9V VDD=3.7V temperature:T [℃] 100 2 0 -25 Fig.44 36MHz Duty temperature characteristics 3 1 VDD=3.7V 0 -25 Period-Jitter 1σ:JsSD [psec] 2 0 0 45 3 VDD=3.3V VDD=3.7V Fall time:tf [nsec] Duty:Dyty [%] 53 Fall time:tf [nsec] 54 600 500 400 VDD=2.9V 300 200 VDD=3.3V 100 VDD=3.7V 0 -25 0 25 50 75 100 temperature:T [℃] Fig.48 36MHz Jitter-MinMax temperature characteristics 9/20 -25 0 25 50 75 temperature:T [℃] 100 Fig.46 36MHz Fall-time temperature characteristics 5 5 54 53 52 4 4 51 50 VDD=3.7V 49 48 47 VDD=3.3V VDD=2.9V 2 1 VDD=3.7V -25 0 25 50 75 2 VDD=2.9V 1 VDD=3.7V VDD=3.3V 0 -25 100 0 25 50 75 100 temperature:T [℃] temperature:T [℃] Fig.49 24.375MHz Duty temperature characteristics Fig.50 24.375MHz Rise-time temperature characteristics 100 3 VDD=3.3V 0 45 -25 0 25 50 75 temperature:T [℃] 100 Fig.51 24.375MHz Fall-time temperature characteristics 600 60 50 Period-Jitter MIN-MAX:JsABS [psec] 90 80 70 Period-Jitter 1σ:JsSD [psec] 3 VDD=2.9V 46 Fall time:tf [nsec)] 55 Rise time:tr [nsec] Duty:Duty [%] ●Reference data (BU3073HFV Temperature and Supply voltage variations data) VDD=3.7V 40 30 20 10 VDD=3.3V VDD=2.9V 0 -25 0 25 50 75 500 VDD=3.7V 400 300 200 VDD=2.9V VDD=3.3V 100 0 -25 100 0 25 50 75 100 temperature:T [℃] temperature:T [℃] Fig.52 24.375MHz Period-Jitter 1σ temperature characteristics Fig.53 24.375MHz Jitter-MinMax temperature characteristics 55 5 5 4 4 Rise time:tr [nsec] Duty:Duty [%] 53 52 51 VDD=3.7V 50 49 48 VDD=2.9V VDD=3.3V 47 3 2 1 -25 0 25 50 75 temperature:T [℃] 90 80 70 60 50 40 VDD=3.7V 30 20 VDD=2.9V VDD=3.3V 10 0 -25 0 25 50 75 100 temperature:T [℃] Fig.57 24.5454MHz Period-Jitter 1σ temperature characteristics Period-Jitter MIN-MAX:JsABS [psec] 100 0 25 50 75 temperature:T [℃] 100 VDD=2.9V 1 VDD=3.7V 600 VDD=3.7V 500 400 300 200 VDD=3.3V VDD=2.9V 100 0 -25 0 25 50 75 100 temperature:T [℃] Fig.58 24.5454MHz Jitter-MinMax temperature characteristics 10/20 -25 0 25 VDD=3.3V 50 75 100 temperature:T [℃] Fig.55 24.5454MHz Rise-time temperature characteristics Fig.54 24.5454MHz Duty temperature characteristics 2 0 -25 100 3 VDD=3.3V 0 45 Period-Jitter 1σ:JsSD [psec] VDD=2.9V VDD=3.7V 46 Fall time:tf [nsec] 54 Fig.56 24.5454MHz Fall-time temperature characteristics 5 5 53 52 51 4 4 VDD=3.7V 50 49 48 47 46 45 VDD=3.3V 3 2 1 3 VDD=2.9V 2 1 VDD=3.7V 25 50 75 70 60 50 VDD=2.9V 30 20 10 VDD=3.7V VDD=3.3V 0 -25 0 25 50 75 100 VDD=3.7V -25 0 25 50 VDD=2.9V 30 VDD=3.3V 0 -25 0 25 50 75 100 5 4 4 3 VDD=2.9V VDD=3.3V 2 VDD=3.7V 1 75 100 temperature:T [℃] Fig.67 67.5MHz Period-Jitter 1σtemperature characteristics 3 VDD=2.9V 2 1 VDD=3.3V VDD=3.7V 0 0 25 50 75 100 600 500 400 300 VDD=3.7V VDD=2.9V 200 VDD=3.3V 100 0 -25 0 25 50 75 100 temperature:T [℃] Fig.68 67.5MHz Jitter-MinMax temperature characteristics 11/20 -25 0 25 50 75 100 temperature:T [℃] Fig.65 67.5MHz Rise-time temperature characteristics Period-Jitter MIN-MAX:JsABS [psec] 60 10 50 temperature:T [℃] 70 VDD=3.7V Fig.61 54MHz Fall-time temperature characteristics 5 -25 Fig.64 67.5MHz Duty temperature characteristics 20 100 0 100 temperature:T [℃] 40 75 VDD=3.3V 0 75 50 200 Rise time:tr [nsec] VDD=3.7V 50 25 temperature:T [℃] Fig.63 54MHz Jitter-MinMax temperature characteristics VDD=2.9V 25 0 temperature:T [℃] 48 0 -25 VDD=2.9V 300 100 52 -25 100 400 55 54 53 47 46 45 75 500 Fig.62 54MHz Period-Jitter 1σ temperature characteristics VDD=3.3V 50 600 temperature:T [℃] 51 50 49 25 Fig.60 54MHz Rise-time temperature characteristics Period-Jitter MIN-MAX:JsABS [psec] 80 40 0 temperature:T [ ℃] 100 90 VDD=3.3V 0 -25 100 Fall time:tf [nsec] 0 Fig.59 54MHz Duty temperature characteristics Duty:Duty [%] VDD=3.3V VDD=3.7V 0 temperature:T [℃] Period-Jitter 1σ:JsSD [psec] VDD=2.9V VDD=2.9V -25 Period-Jitter 1σ:JsSD [psec] Fall time:tf [nsec] 55 54 Rise time:tr [nsec] Duty:Duty [%] ●Reference data (BU3076HFV Temperature and Supply voltage variations data) Fig.66 67.5MHz Fall-time temperature characteristics ●Reference data (BU7322HFV Temperature and Supply voltage variations data) 5 5 55 54 4 Rise time:tr [nsec] Duty:Duty [%] 52 VDD=3.7V 51 50 49 48 47 VDD=2.75V VDD=3.3V 4 VDD=2.75V Fall time:tf [nsec] 53 3 2 VDD=3.3V VDD=3.7V 1 VDD=2.75V 3 2 VDD=3.7V VDD=3.3V 1 46 45 0 -25 0 25 50 75 100 0 -25 0 90 80 70 VDD=2.75V VDD=3.3V -25 0 25 50 75 VDD=3.7V 300 VDD=2.75V -25 0 25 50 75 100 temperature:T [℃] Fig.73 49.5MHz Jitter-MinMax temperature characteristics 5 4 VDD=2.75V Fall time:tf [nsec] VDD=3.3V VDD=2.75V 47 46 45 3 2 VDD=3.7V VDD=3.3V 1 0 25 50 75 -25 100 0 25 50 75 100 Fig.75 36MHz Rise-time temperature characteristics 70 Period-Jitter MIN-MAX:JsABS [psec] 600 60 50 40 VDD=2.75V 30 20 VDD=3.3V 10 VDD=3.7V 0 -25 0 25 50 75 100 temperature:T [℃] Fig.77 36MHz Period-Jitter 1σ temperature characteristics 2 VDD=3.7V VDD=3.3V 1 500 400 VDD=2.75V 300 200 100 VDD=3.7V VDD=3.3V 0 -25 0 25 50 75 100 temperature:T [℃] Fig.78 36MHz Jitter-MinMax temperature characteristics 12/20 -25 0 25 50 75 100 temperature:T [℃] temperature:T [℃] temperature:T [℃] Fig.74 36MHz Duty temperature characteristics VDD=2.75V 3 0 0 -25 100 0 100 Rise time:tr [nsec] 48 75 VDD=3.3V 100 4 VDD=3.7V 50 Fig.71 49.5MHz Fall-time temperature characteristics 5 51 50 49 25 temperature:T [℃] 200 55 54 53 52 0 400 Fig.72 49.5MHz Period-Jitter 1σ temperature characteristics Duty:Duty [%] -25 500 temperature:T [℃] Period-Jitter 1σ:JsSD [psec] 100 600 Period-Jitter MIN-MAX:JsABS [psec] Period-Jitter 1σ:JsSD [psec] 100 20 10 0 75 Fig.70 49.5MHz Rise-time temperature characteristics Fig.69 49.5MHz Duty temperature characteristics VDD=3.7V 50 temperature:T [℃] temperature:T [℃] 60 50 40 30 25 Fig.76 36MHz Fall-time temperature characteristics ●Reference data (BU7325HFV Temperature and Supply voltage variations data) VDD=3.7V 50 49 48 47 46 VDD=3.3V VDD=2.75V 5 5 4 4 3 VDD=3.7V 2 VDD=3.3V 1 25 50 75 -25 100 0 Period-Jitter MIN-MAX:JsABS [psec] 90 80 70 60 50 VDD=2.75V 30 20 VDD=3.7V VDD=3.3V 0 -25 0 25 50 75 0 25 VDD=2.75V 300 VDD=3.3V 200 100 VDD=3.7V 0 -25 Rise time:tr [nsec] 50 75 0 25 100 5 4 4 3 VDD=2.75V 2 1 VDD=3.3V VDD=3.7V 3 VDD=2.75V 2 1 VDD=3.7V 0 -25 VDD=3.7V 0 100 temperature:T [℃] Fig.87 78MHz Period-Jitter 1σ temperature characteristics Period-Jitter MIN-MAX:JsABS [psec] 20 75 25 50 75 100 temperature:T [℃] VDD=2.75V 50 0 600 500 400 300 VDD=2.75V VDD=3.3V 200 100 VDD=3.7V 0 -25 0 25 50 75 100 temperature:T [℃] Fig.88 78MHz Jitter-MinMax temperature characteristics 13/20 -25 0 25 50 75 100 temperature:T [℃] Fig.85 78MHz Rise-time temperature characteristics 40 25 75 5 100 50 0 50 0 60 VDD=3.3V 100 Fig.81 48MHz Fall-time temperature characteristics VDD=3.3V VDD=2.75V 70 -25 25 50 75 temperature:T [℃] Fig.83 48MHz Jitter-MinMax temperature characteristics Fig.84 78MHz Duty temperature characteristics 10 0 400 temperature:T [℃] 30 -25 temperature:T [℃] VDD=3.7V -25 0 100 500 100 Fig.82 48MHz Period-Jitter 1σ temperature characteristics VDD=3.3V VDD=3.3V 600 temperature:T [℃] 55 54 53 52 51 50 49 48 47 46 45 75 Fig.80 48MHz Rise-time temperature characteristics 100 10 50 temperature:T [℃] temperature:T [℃] 40 25 Fall time:tf [nsec] 0 Fig.79 48MHz Duty temperature characteristics Period-Jitter 1σ:JsSD [psec] VDD=2.75V 2 VDD=3.7V -25 Duty:Duty [%] 3 1 VDD=2.75V 0 45 Period-Jitter 1σ:JsSD [psec] Fall time:tf [nsec] 54 53 52 51 Rise time:tr [nsec] Duty:Duty [%] 55 Fig.86 78MHz Fall-time temperature characteristics ●Block diagram, pin assignment/functions (BU3071HFV) 1:VDD 6:IN 2:VSS 5:TEST 3:OUT 4:OE 6pin:IN PLL 1/4 3pin:OUT 4pin:OE Fig.89 PIN NO. 1 2 3 4 5 6 PIN name VDD VSS OUT OE TEST IN Fig.90 Function Power supply GND Clock output terminal Output enable (L: disable, H: enable), equipped with Pull-down function, output fixed to L at disable TEST pin, equipped with Pull-down function Clock input pin (28.6363 MHz input) (BU3072HFV) PLL 1:VDD 6:IN 2:VSS 5:SEL 3:OUT 4:PD 6pin:IN 1/4 DATA1 DATA2 3pin:OUT 5pin:SEL 4pin:PD Fig.91 PIN NO. 1 2 3 4 5 6 PIN name VDD VSS OUT PD SEL IN Fig.92 Function Power supply GND Clock output terminal (L:27.0000MHz, H:36.0000MHz) Power-down (L: Hi-Z, H: enable), equipped with Pull-down function, output set to Hi-Z at disable Output selection (L: 27.0000 MHz, H: 36.0000 MHz) Clock input pin (48.0000 MHz input) (BU3073HFV) PLL 1:VDD 6:IN 2:VSS 5:SEL 3:OUT 4:PD 6pin:IN 1/8 DATA1 DATA2 3pin:OUT 5pin:SEL 4pin:PD Fig.93 PIN NO. 1 2 3 4 5 6 PIN name VDD VSS OUT PD SEL IN Fig.94 Function Power supply GND Clock output terminal (L:24.3750MHz, H:24.5454MHz) Power-down (L: disable, H: enable), equipped with Pull-down function, output set to L at disable Output selection (L:24.3750MHz, H:24.5454MHz) Clock input pin (48.0000MHz input) 14/20 (BU3076HFV) PLL 1:VDD 6:IN 2:VSS 5:SEL 3:OUT 4:OE 6pin:IN DATA1 DATA2 1/4 3pin:OUT 5pin:SEL 4pin:OE Fig.95 PIN NO. 1 2 3 4 5 6 PIN name VDD VSS OUT OE SEL IN Fig.96 Function Power supply GND Clock output terminal (L:54.0000MHz, H:67.5000MHz) Power-down (L: disable, H: enable), equipped with Pull-down function, output set to L at disable Output selection (L:54.0000MHz, H:67.5000MHz) Clock input pin (27.0000MHz input) (BU7322HFV) PLL 1:VDD 6:IN 2:VSS 5:SEL 3:OUT 4:OE 6pin:IN 1/6 1/8 DATA1 DATA2 3pin:OUT 5pin:SEL 4pin:OE Fig.97 PIN NO. 1 2 3 4 5 6 PIN name VDD VSS OUT OE SEL IN Fig.98 Function Power supply GND Clock output terminal (L:49.5000MHz, H:36.0000MHz) Power-down (L:disable ,H:enable) equipped with Pull-down function, disable output set to L at disable Output selection (L:49.5000MHz, H:36.0000MHz) equipped with Pull-down function Clock input pin (27.0000MHz input) (BU7325HFV) PLL 1:VDD 6:IN 2:VSS 5:SEL 3:OUT 4:OE 6pin:IN DATA1 DATA2 1/6 1/4 3pin:OUT 5pin:SEL 4pin:OE Fig.99 PIN NO. 1 2 3 4 5 6 PIN name VDD VSS OUT OE SEL IN Fig.100 Function Power supply GND Clock output terminal (L:48.0000MHz, H:78.0000MHz) Power-down (L:disable ,H:enable) equipped with Pull-down function, disable output set to L at disable Output selection (L:48.0000MHz, H:78.0000MHz) Clock input pin (27.0000MHz input) 15/20 ●Application circuit example (BU3071HFV) (BU3072HFV) 1:VDD 6:IN 28.6363MHz 2:VSS 5:TEST 3:OUT 4:OE 1:VDD 6:IN 2:VSS 5:SEL 3:OUT 4:PD 48MHz H:36.0000MHz H:enable 54.0000MHz L:27.0000MHz H:36.0000MHz L:27.0000MHz H:enable L:disable Fig.101 Fig.102 (BU3073HFV) (BU3076HFV) 1:VDD 6:IN 2:VSS 5:SEL 3:OUT 4:PD 48MHz H:24.5454MHz L:24.3750MHz H:24.5454MHz L:24.3750MHz L:Hi-Z H:67.5000MHz L:54.00000MHz 1:VDD 6: IN 2: VSS 5: SEL 3: OUT 4: OE 27MHz H:67.5000MHz L:54.0000MHz H:enable H:enable L:disable L:disable Fig.104 Fig.103 (BU7322HFV) H:36.0000MHz L:49.5000MHz (BU7325HFV) 1:VDD 6: IN 2: VSS 5: SEL 3: OUT 4: OE 27MHz H:36.0000MHz L:49.5000MHz H:78.0000MHz L:48.0000MHz 1:VDD 6: IN 2: VSS 5: SEL 3: OUT 4: OE 27MHz H:78.0000MHz L:48.0000MHz H:enable H:enable L:disable Fig.106 Fig.105 L:disable For VDD and VSS, insert a bypass capacitor of approx. 0.1 F as close as possible to the pin. Bypass capacitors with good high-frequency characteristics are recommended. Even though we believe that the typical application circuit is worth of a recommendation, please be sure to thoroughly recheck the characteristics before use. 16/20 ●Equivalent circuit 3-pin (Output pin) From the inside of IC From the inside of IC PD=L ; Hi-Z ; enable Fig.107 Fig.108 BU3071HFV, BU3073HFV, BU3076HFV BU7322HFV, BU7325HFV BU3072HFV 4-pin (Input pin) To the inside of IC Fig.109 5-pin (Input pin) To the inside of IC To the inside of IC Fig.110 BU3072HFV, BU3073HFV, BU3076HFV BU7322HFV, BU7325HFV Fig.111 BU3071HFV 6-pin (Input pin) From the inside of IC To the inside of IC To the inside of IC To the inside of IC To the inside of IC Fig.112 BU3072HFV, BU3073HFV, BU3076HFV BU7322HFV, BU7325HFV Fig.113 BU3071HFV 17/20 ●Appearance of Marker (Dimension including burr: Max. 1.8) (0.45) Marker ○ ○ (1.5) (1.2) (1.4) (0.15) (Dimension including burr: Max. 2.8) 3.0±0.1 2.6±0.1 1.6±0.1 LOT No. 0.75MAX 0.145±0.05 0.5 0.22±0.05 Fig.114 ・List of markers Model name BU3071HFV BU3072HFV BU3073HFV BU3076HFV BU7322HFV BU7325HFV Marker AB AC AD AA AE AH 18/20 (UNIT:mm) ●Cautions on use (1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as applied voltage (VDD or VIN), operating temperature range (Topr), etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc. (2) Recommended operating conditions These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed under the conditions of each parameter. (3) Reverse connection of power supply connector The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection, such as mounting an external diode between the power supply and the IC’s power supply terminal. (4) Power supply line Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, for the digital block power supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner. Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant. (5) GND voltage Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient. (6) Short circuit between terminals and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down. (7) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them. (8) Inspection with set PCB On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB. (9) Input terminals In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics. (10) Ground wiring pattern If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well. (11) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc. 19/20 ●Product Designation B U 3 Part No. 0 7 1 Type 3071 3072 3073 3076 7322 7325 H F V - T R Package and forming specification TR: Embossed tape and reel Package Type HFV:HVSOF6 HVSOF6 <Dimension> <Tape and Reel information> Tape (MAX 1.8 include BURR) (0.45) (1.5) 1.6±0.1 (1.4) 0.75Max. 123 (0.15) (1.2) (MAX 2.8 include BURR) 2.6±0.1 3.0±0.1 654 Embossed carrier tape Quantity 3000pcs Direction of feed TR (The direction is the 1pin of product is at the upper light when you hold reel on the left hand and you pull out the tape on the right hand) 0.145±0.05 S X X X X X X 0.1 S 0.22±0.05 X X X X X X X X X X X X X X X X X X X X X X X X 0.5 1Pin Direction of feed Reel (Unit:mm) ※When you order , please order in times the amount of package quantity. Catalog No.08T800A '08.9 ROHM © Appendix Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM CO.,LTD. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ROHM Customer Support System www.rohm.com Copyright © 2009 ROHM CO.,LTD. THE AMERICAS / EUROPE / ASIA / JAPAN Contact us : webmaster @ rohm.co. jp 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172 Appendix-Rev4.0