ON BUL642D2G High speed, high gain bipolar npn transistor with integrated collector−emitter and built−in efficient antisaturation network Datasheet

BUL642D2
High Speed, High Gain
Bipolar NPN Transistor with
Integrated
Collector−Emitter and
Built−in Efficient
Antisaturation Network
http://onsemi.com
3 AMPERES
825 VOLTS
75 WATTS
POWER TRANSISTOR
The BUL642D2 is a state−of−the−art High Speed High Gain
Bipolar Transistor (H2BIP). Tight dynamic characteristics and lot to
lot minimum spread (150 ns on storage time) make it ideally suitable
for Light Ballast Application. A new development process brings
avalanche energy capability, making the device extremely rugged.
Features
• Low Base Drive Requirement
• High Peak DC Current Gain (55 Typical) @ IC = 300 mA/5 V
• Extremely Low Storage Time Min/Max Guarantees Due to the
•
•
•
•
•
H2BIP Structure which Minimizes the Spread
Integrated Collector−Emitter Free Wheeling Diode
Fully Characterized Dynamic VCEsat
“Six Sigma” Process Providing Tight and Reproducible Parameter
Spreads
Avalanche Energy 20 mJ Typical Capability
Pb−Free Package is Available*
MARKING
DIAGRAM
4
TO−220AB
CASE 221A
STYLE 1
1
2
BUL642D2G
AYWW
3
BUL642D2
A
Y
WW
G
= Device Code
= Assembly Location
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
Device
Package
Shipping
BUL642D2
TO−220
50 Units/Rail
TO−220
(Pb−Free)
50 Units/Rail
BUL642D2G
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2005
August, 2005 − Rev. 1
1
Publication Order Number:
BUL642D2/D
BUL642D2
MAXIMUM RATINGS
Symbol
Value
Unit
Collector−Emitter Sustaining Voltage
Rating
VCEO
440
Vdc
Collector−Base Breakdown Voltage
VCES
825
Vdc
Emitter−Base Voltage
VEBO
11
Vdc
Collector Current
− Continuous
− Peak (Note 1)
IC
ICM
3.0
8.0
Adc
Base Current
− Continuous
− Peak (Note 1)
IB
IBM
2.0
4.0
Adc
PD
75
0.6
W
W/°C
TJ, Tstg
−65 to +150
°C
*Total Device Dissipation @ TC = 25°C
*Derate above 25°C
Operating and Storage Temperature
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
TYPICAL GAIN
Rating
Symbol
Value
Unit
hFE
hFE
45
50
−
−
Symbol
Value
Unit
Thermal Resistance, Junction−to−Case
RqJC
1.6
°C/W
Thermal Resistance, Junction−to−Ambient
RqJA
62.5
°C/W
TL
260
°C
Typical Gain @ IC = 1 A, VCE = 2 V
Typical A, VCE = 1 V
THERMAL CHARACTERISTICS
Characteristic
Maximum Lead Temperature for Soldering Purposes: 1/8 in. from Case for 5 seconds
1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10%
http://onsemi.com
2
BUL642D2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
440
−
−
−
Unit
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage
VCEO(sus)
(IC = 200 mA, L = 25 mH)
Collector−Base Breakdown Voltage
Emitter−Base Breakdown Voltage
Vdc
(ICBO = 1 mA)
VCBO
825
−
(IEBO = 1 mA)
Vdc
VEBO
11
−
−
Vdc
Collector Cutoff Current
(VCE = Rated VCEO, IB = 0)
@ TC = 25°C
@ TC = 125°C
ICEO
−
−
−
−
200
1000
mAdc
Collector Cutoff Current
(VCE = Rated VCES, VEB = 0)
@ TC = 25°C
@ TC = 125°C
ICES
−
−
−
−
100
1000
mAdc
IEBO
−
−
100
mAdc
−
−
−
−
1.1
1.5
−
−
−
−
0.5
1.5
hFE
16
18
−
−
−
−
VCE(dsat)
−
−
2.0
5.0
−
−
Emitter−Cutoff Current
(VEB = 10 Vdc, IC = 0)
ON CHARACTERISTICS
Base−Emitter Saturation Voltage
VBE(sat)
(IC = 0.5 Adc, IB = 100 mAdc
(IC = 1 Adc, IB = 0.2 Adc)
Collector−Emitter Saturation Voltage
VCE(sat)
(IC = 0.5 Adc, IB = 50 mAdc)
(IC = 2 Adc, IB = 0.2 Adc)
DC Current Gain
Vdc
(IC = 0.5 Adc, VCE = 1 Vdc)
(IC = 0.5 Adc, VCE = 3 Vdc)
Vdc
−
DYNAMIC SATURATION VOLTAGE
@ 1 ms
@ TC = 25°C
@ TC = 125°C
@ 3 ms
@ TC = 25°C
−
−
0.2
1.3
−
−
@ 1 ms
@ TC = 25°C
@ TC = 125°C
−
−
4.5
10
−
−
@ 3 ms
@ TC = 25°C
−
−
1.0
3.0
−
−
fT
−
13
−
MHz
Output Capacitance @ Vcb = 10 V, IE = 0, f = 1 MHz
Cob
−
70
150
pF
Input Capacitance @ VEB = 8 V, f = 1 MHz
Cib
−
500
1000
pF
VEC
−
−
0.8
1.0
1.5
2.0
V
Dynamic
Saturation
Voltage:
IC = 0.5 Adc
IB1 = 50 mAdc
VCC = 125 Vdc
IC = 1 Adc
IB1 = 100 mAdc
VCC = 300 Vdc
V
DYNAMIC CHARACTERISTICS
Current Gain Bandwidth IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz
DIODE CHARACTERISTICS
Forward Diode Voltage
(IEC = 0.5 Adc)
(IEC = 1.0 Adc)
SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 70 ms)
Delay Time
IC = 0.5 Adc
td
−
60
400
ns
Rise Time
IB1 = 45 mA
tr
−
160
1100
ns
Storage Time
IB2 = 500 mA
ts
−
0.5
1400
ms
Fall Time
VCC = 125 V
tf
−
0.4
600
ns
http://onsemi.com
3
BUL642D2
100
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
100
25°C
125°C
−20°C
10
VCE = 5 V
1.0
0.01
0.1
1
125°C
25°C
−20°C
10
VCE = 5 V
1.0
0.01
10
0.1
1
10
IC, COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
Figure 1. DC Current Gain
Figure 2. DC Current Gain
10
10
IC = 4 A
VCE(sat), VOLTAGE (V)
VCE(sat), VOLTAGE (V)
IC = 2A
IC = 5 A
IC = 1 A
1.0
IC = 3 A
125°C
1.0
−20°C
0.1
25°C
IC = 500 mA
IC/IB = 5.0
0.01
0.01
0.1
0.01
0.1
1.0
10
IB, BASE CURRENT (mA)
0.1
1
10
IC, COLLECTOR CURRENT (AMP)
Figure 3. Collector Saturation Region
Figure 4. Collector−Emitter Saturation Voltage
10
VCE, VOLTAGE (V)
VCE, VOLTAGE (V)
10
25°C
1.0
125°C
−20°C
1.0
125°C
IC/IB = 10
0.1
0.1
0.01
0.1
1.0
10
0.01
IC, COLLECTOR CURRENT (AMP)
25°C
−20°C
0.1
1.0
IC/IB = 20
10
IC, COLLECTOR CURRENT (AMP)
Figure 5. Collector−Emitter Saturation Voltage
Figure 6. Collector−Emitter Saturation Voltage
http://onsemi.com
4
BUL642D2
10
Vbe, VOLTAGE (V)
Vbe, VOLTAGE (V)
10
−20°C
1.0
−20°C
1.0
25°C
125°C
0.1
125°C
25°C
IC/IB = 5.0
0.1
0.01
0.1
1.0
IC/IB = 10
0.01
0.01
10
1.0
IC, COLLECTOR CURRENT (AMP)
Figure 7. Base−Emitter Saturation Voltage
Figure 8. Base−Emitter Saturation Voltage
FORWARD DIODES VOLTAGE (V)
10
−20°C
1.0
25°C
125°C
0.1
IC/IB = 20
0.01
0.01
1.0
25°C
125°C
0.1
0.1
1.0
10
0.01
0.1
1.0
10
IC, COLLECTOR CURRENT (AMP)
REVERSE EMITTER−COLLECTOR (AMP)
Figure 9. Base−Emitter Saturation Voltage
Figure 10. Forward Diode Voltage
10000
1000
Cib
Ib2 = IC/2 @ 125°C
1000
T, TIME (mS)
C, CAPACITANCE (pF)
10
IC, COLLECTOR CURRENT (AMP)
10
Vbe, VOLTAGE (V)
0.1
100
Cob
Ib2 = IC @ 125°C
Ib2 = IC @ 25°C
100
Ib2 = IC/2 @ 25°C
10
1.0
VCC = 125 V, Pw = 100 mS, G = 10
10
10
0.1
100
Vr, REVERSE VOLTAGE (V)
0.3
0.5
0.7
0.9
1.1
1.3
Figure 12. Resistive Switch Time,
Storage Time TON
Figure 11. Capacitance
http://onsemi.com
5
1.5
BUL642D2
3.0
750
VCC = 125 V, Pw = 100 mS, G = 10
650
Ib2 = IC/2 @ 125°C
T, TIME (mS)
T, TIME (mS)
VCC = 125 V, Pw = 100 mS, G = 10
550
2.0
Ib2 = IC @ 125°C
1.0
Ib2 = IC/2 @ 125°C
Ib2 = IC/2 @ 25°C
450
Ib2 = IC @ 25°C
350
I = I /2 @ 25°C
250 b2 C
150
Ib2 = IC @ 25°C
0
0.1
0.3
0.5
50
0.7
0.9
1.1
1.3
Ib2 = IC @ 125°C
0.1
1.5
0.3
IC, COLLECTOR CURRENT (AMP)
0.7
0.9
1.1
1.3
1.5
IC, COLLECTOR CURRENT (AMP)
Figure 13. Resistive Switch Time,
Storage Time
Figure 14. Resistive Switch Time, Fall Time
100
1.0
5 ms
10
1 ms
10 ms
POWER DERATING FACTOR
IC, COLLECTOR CURRENT (AMPS)
0.5
1 ms
DC
1.0
0.1
SECOND BREAKDOWN
DERATING
0.8
0.6
0.4
0.2
THERMAL DERATING
0
0.01
10
100
1000
20
40
60
80
100
120
VCE, COLLECTOR−EMITTER VOLTAGE (V)
TC, CASE TEMPERATURE (°C)
Figure 15.
Figure 16. Power Derating
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC−VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate. The data of Figure 15 is
based on TC = 25°C; Tj(pk) is variable depending on power
level. Second breakdown pulse limits do not derate like
140
160
thermal limitations. Allowable current at the voltages shown
on Figure 10 may be found at any case temperature by using
the appropriate curve on Figure 16.
Tj(pk) may be calculated from the data in Figure 18. At any
case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations
imposed by second breakdown.
http://onsemi.com
6
BUL642D2
Energy
VCE
IC
NPD CHARACTERIZATION LAB
Figure 17. Typical Avalanche Energy Test/Waveforms
1
r(t) TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
b
P(pk)
0.1
t1
t2
DUTY CYCLE, D = t1/t2
0.01
0.01
0.1
1
10
t, TIME (ms)
Figure 18. Thermal Response
http://onsemi.com
7
RqJC(t) = r(t) RqJC
RqJC = 5 °C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
100
1000
BUL642D2
PACKAGE DIMENSIONS
TO−220
CASE 221A−09
ISSUE AA
−T−
B
SEATING
PLANE
C
F
T
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
1 2 3
U
H
K
Z
L
R
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
J
G
D
N
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.147
0.095
0.105
0.110
0.155
0.018
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
−−−
−−−
0.080
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
3.73
2.42
2.66
2.80
3.93
0.46
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
−−−
−−−
2.04
BASE
COLLECTOR
EMITTER
COLLECTOR
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
8
For additional information, please contact your
local Sales Representative.
BUL642D2/D
Similar pages