TI CD54HC541F3A

[ /Title
(CD74
HC540
,
CD74
HCT54
0,
CD74
HC541
,
CD74
HCT54
CD54/74HC540, CD74HCT540,
CD54/74HC541, CD54/74HCT541
Data sheet acquired from Harris Semiconductor
SCHS189C
January 1998 - Revised July 2004
High-Speed CMOS Logic
Octal Buffer and Line Drivers, Three-State
Features
Description
• ’HC540, CD74HCT540 . . . . . . . . . . . . . . . . . . . Inverting
The ’HC540 and CD74HCT540 are Inverting Octal Buffers
and Line Drivers with Three-State Outputs and the capability
to drive 15 LSTTL loads. The ’HC541 and ’HCT541 are NonInverting Octal Buffers and Line Drivers with Three-State Outputs that can drive 15 LSTTL loads. The Output Enables
(OE1) and (OE2) control the Three-State Outputs. If either
OE1 or OE2 is HIGH the outputs will be in the high impedance state. For data output OE1 and OE2 both must be LOW.
• ’HC541, ’HCT541 . . . . . . . . . . . . . . . . . . . . . . Non-Inverting
• Buffered Inputs
• Three-State Outputs
• Bus Line Driving Capability
• Typical Propagation Delay = 9ns at VCC = 5V,
CL = 15pF, TA = 25oC
Ordering Information
• Fanout (Over Temperature Range)
- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
PART NUMBER
CD54HC540F3A
• Wide Operating Temperature Range . . . -55oC to 125oC
• Balanced Propagation Delay and Transition Times
TEMP. RANGE
(oC)
-55 to 125
PACKAGE
20 Ld CERDIP
CD54HC541F3A
-55 to 125
20 Ld CERDIP
CD54HCT541F3A
-55 to 125
20 Ld CERDIP
CD74HC540E
-55 to 125
20 Ld PDIP
• Significant Power Reduction Compared to LSTTL
Logic ICs
CD74HC540M
-55 to 125
20 Ld SOIC
CD74HC540M96
-55 to 125
20 Ld SOIC
• HC Types
- 2V to 6V Operation
- High Noise Immunity: NIL = 30%, NIH = 30% of VCC
at VCC = 5V
CD74HC541E
-55 to 125
20 Ld PDIP
• HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
VIL= 0.8V (Max), VIH = 2V (Min)
- CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
CD74HC541M
-55 to 125
20 Ld SOIC
CD74HC541M96
-55 to 125
20 Ld SOIC
CD74HC541PW
-55 to 125
20 Ld TSSOP
CD74HC541PWR
-55 to 125
20 Ld TSSOP
CD74HCT540E
-55 to 125
20 Ld PDIP
CD74HCT540M
-55 to 125
20 Ld SOIC
CD74HCT540M96
-55 to 125
20 Ld SOIC
CD74HCT541E
-55 to 125
20 Ld PDIP
CD74HCT541M
-55 to 125
20 Ld SOIC
CD74HCT541M96
-55 to 125
20 Ld SOIC
NOTE: When ordering, use the entire part number. The suffix 96
denotes tape and reel.
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright
© 2004, Texas Instruments Incorporated
1
CD54/74HC540, CD74HCT540, CD54/74HC541, CD54/74HCT541
Pinouts
CD54HC540
(CERDIP)
CD74HC540, CD74HCT540
(PDIP, SOIC)
TOP VIEW
OE
1
A0
2
19 OE2
A1
3
18 Y0
A2
4
17 Y1
A3
5
16 Y2
A4
6
15 Y3
A5
7
14 Y4
A6
8
13 Y5
A7
9
12 Y6
GND 10
11 Y7
CD54HC541, CD54HCT541
(CERDIP)
CD74HC541
(PDIP, SOIC, TSSOP)
CD74HCT541
(PDIP, SOIC)
TOP VIEW
20 VCC
OE1
1
A0
2
19 OE2
A1
3
18 Y0
A2
4
17 Y1
A3
5
16 Y2
A4
6
15 Y3
A5
7
14 Y4
A6
8
13 Y5
A7
9
12 Y6
GND 10
11 Y7
Functional Diagram
OEA
OEB
540
541
D0
Y0
Y0
D1
Y1
Y1
D2
Y2
Y2
D3
Y3
Y3
D4
Y4
Y4
D5
Y5
Y5
D6
Y6
Y6
D7
Y7
Y7
2
20 VCC
CD54/74HC540, CD74HCT540, CD54/74HC541, CD54/74HCT541
TRUTH TABLE
INPUTS
OUTPUTS
OE1
OE2
An
540
541
L
L
H
L
H
H
X
X
Z
Z
X
H
X
Z
Z
L
L
L
H
L
H = HIGH Voltage Level
L = LOW Voltage Level
X= Don’t Care
Z = High Impedance
3
CD54/74HC540, CD74HCT540, CD54/74HC541, CD54/74HCT541
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Drain Current, per Output, IO
For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .±35mA
DC Output Source or Sink Current per Output Pin, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
PW (TSSOP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
Input Rise and Fall Time
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. The package thermal impedance is calculated in accordance with JESD 51-7.
DC Electrical Specifications
TEST
CONDITIONS
SYMBOL
VI (V)
IO (mA)
High Level Input
Voltage
VIH
-
-
Low Level Input
Voltage
VIL
High Level Output
Voltage
CMOS Loads
VOH
PARAMETER
VCC
(V)
25oC
-40oC TO 85oC -55oC TO 125oC
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
HC TYPES
-
VIH or VIL
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
II
VCC or
GND
-
2
1.5
-
-
1.5
-
1.5
-
V
4.5
3.15
-
-
3.15
-
3.15
-
V
6
4.2
-
-
4.2
-
4.2
-
V
2
-
-
0.5
-
0.5
-
0.5
V
4.5
-
-
1.35
-
1.35
-
1.35
V
6
-
-
1.8
-
1.8
-
1.8
V
-0.02
2
1.9
-
-
1.9
-
1.9
-
V
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-0.02
6
5.9
-
-
5.9
-
5.9
-
V
-
-
-
-
-
-
-
-
-
V
-6
4.5
3.98
-
-
3.84
-
3.7
-
V
-7.8
6
5.48
-
-
5.34
-
5.2
-
V
0.02
2
-
-
0.1
-
0.1
-
0.1
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
0.02
6
-
-
0.1
-
0.1
-
0.1
V
-
-
-
-
-
-
-
-
-
V
6
4.5
-
-
0.26
-
0.33
-
0.4
V
7.8
6
-
-
0.26
-
0.33
-
0.4
V
-
6
-
-
±0.1
-
±1
-
±1
µA
4
CD54/74HC540, CD74HCT540, CD54/74HC541, CD54/74HCT541
DC Electrical Specifications
(Continued)
TEST
CONDITIONS
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
VI (V)
IO (mA)
VCC
(V)
Quiescent Device
Current
ICC
VCC or
GND
0
6
-
-
8
-
80
-
160
µA
Three- State Leakage
Current
IOZ
VIL or VIH
VO =
VCC or
GND
6
-
-
±0.5
-
±5.0
-
±10
µA
High Level Input
Voltage
VIH
-
-
4.5 to
5.5
2
-
-
2
-
2
-
V
Low Level Input
Voltage
VIL
-
-
4.5 to
5.5
-
-
0.8
-
0.8
-
0.8
V
High Level Output
Voltage
CMOS Loads
VOH
VIH or VIL
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-6
4.5
3.98
-
-
3.84
-
3.7
-
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
6
4.5
-
-
0.26
-
0.33
-
0.4
V
±0.1
-
±1
-
±1
µA
PARAMETER
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
HCT TYPES
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
II
VCC and
GND
0
5.5
-
Quiescent Device
Current
ICC
VCC or
GND
0
5.5
-
-
8
-
80
-
160
µA
Three- State Leakage
Current
IOZ
VIL or VIH
VO =
VCC or
GND
5.5
-
-
±0.5
-
±5.0
-
±10
µA
Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load
∆ICC
(Note 2)
VCC
-2.1
-
4.5 to
5.5
-
100
360
-
450
-
490
µA
NOTE:
2. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
HCT Input Loading Table
UNIT LOADS
INPUT
HCT540
HCT541
A0 - A7
1
0.4
OE2
0.75
0.75
OE1
1.15
1.15
NOTE: Unit Load is ∆ICC limit specific in DC Electrical Specifications
Table, e.g., 360µA max. at 25oC.
5
CD54/74HC540, CD74HCT540, CD54/74HC541, CD54/74HCT541
Switching Specifications
PARAMETER
CL = 50pF, Input tr, tf = 6ns
SYMBOL
TEST
CONDITIONS
tPLH, tPHL
CL = 50pF
-40oC TO
85oC
25oC
-55oC TO
125oC
VCC (V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
2
-
-
110
-
140
-
165
ns
4.5
-
-
22
-
28
-
33
ns
CL = 15pF
5
-
9
-
-
-
-
-
ns
CL = 50pF
6
-
-
19
-
24
-
28
ns
CL = 50pF
2
-
-
115
-
145
-
175
ns
4.5
-
-
23
-
29
-
35
ns
CL = 15pF
5
-
9
-
-
-
-
-
ns
CL = 50pF
6
-
-
20
-
25
-
30
ns
CL = 50pF
2
-
-
160
-
200
-
240
ns
4.5
-
-
32
-
40
-
48
ns
CL = 15pF
5
-
13
-
-
-
-
-
ns
CL = 50pF
6
-
-
27
-
34
-
41
ns
CL = 50pF
2
-
-
160
-
200
-
240
ns
4.5
-
-
32
-
40
-
48
ns
CL = 15pF
5
-
14
-
-
-
-
-
ns
CL = 50pF
6
-
-
23
-
29
-
35
ns
CL = 50pF
2
-
-
60
-
75
-
90
ns
4.5
-
-
12
-
15
-
18
ns
6
-
-
10
-
13
-
15
ns
HC TYPES
Propagation Delay
Data to Outputs (540)
Data to Outputs (541)
Output Enable and Disable
to Outputs (540)
Output Enable and Disable
to Outputs (541)
Output Transition Time
tPLZ, tPHZ
tPLZ, tPHZ
tPLZ, tPHZ
tTHL, tTLH
Input Capacitance
CI
CL = 50pF
-
10
-
10
-
10
-
10
pF
Three-State Output
Capacitance
CO
-
-
20
-
20
-
20
-
20
pF
Power Dissipation Capacitance
(Notes 3, 4) (540)
CPD
CL = 15pF
5
-
50
-
-
-
-
-
pF
Power Dissipation Capacitance
(Notes 3, 4) (541)
CPD
CL = 15pF
5
-
48
-
-
-
-
-
pF
CL = 50pF
4.5
-
-
24
-
30
-
36
ns
CL = 15pF
5
-
9
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
28
-
35
-
42
ns
CL = 15pF
5
-
11
-
-
-
-
-
ns
CL = 50pF
4.5
-
-
35
-
44
-
53
ns
CL = 15pF
5
-
14
-
-
-
-
-
ns
tTLH, tTHL
CL = 50pF
4.5
-
-
12
-
15
-
18
ns
CI
CL = 50pF
-
10
-
10
-
10
-
10
pF
HCT TYPES
Propagation Delay
tPHL, tPLH
Data to Outputs (540)
Data to Outputs (541)
Output Enable and Disable
to Outputs (540, 541)
Output Transition Time
Input Capacitance
tPHL, tPLH
tPLZ, tPHZ
6
CD54/74HC540, CD74HCT540, CD54/74HC541, CD54/74HCT541
Switching Specifications
CL = 50pF, Input tr, tf = 6ns (Continued)
-40oC TO
85oC
25oC
-55oC TO
125oC
SYMBOL
TEST
CONDITIONS
VCC (V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
Three-State Output
Capacitance
CO
-
-
20
-
20
-
20
-
20
pF
Power Dissipation Capacitance
(Notes 3, 4) (540, 541)
CPD
CL = 15pF
5
-
55
-
-
-
-
-
pF
PARAMETER
NOTES:
3. CPD is used to determine the dynamic power consumption, per channel.
4. PD = VCC2 fi (CPD + CL) where fi = Input Frequency, CL = Output Load Capacitance, VCC = Supply Voltage.
Test Circuits and Waveforms
tr = 6ns
tf = 6ns
90%
50%
10%
INPUT
GND
tTLH
tPHL
tr
VCC
90%
50%
10%
OUTPUT LOW
TO OFF
OUTPUTS
ENABLED
OUTPUTS
DISABLED
OUTPUTS
ENABLED
OUTPUTS
ENABLED
FIGURE 3. HC THREE-STATE PROPAGATION DELAY
WAVEFORM
0.3
GND
1.3V
10%
OUTPUT HIGH
TO OFF
50%
3V
tPZL
tPHZ
tPZH
90%
6ns
2.7
1.3
tPLZ
10%
tPHZ
tf
GND
50%
OUTPUT HIGH
TO OFF
6ns
OUTPUT
DISABLE
tPZL
tPLZ
tPLH
FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
6ns
OUTPUT LOW
TO OFF
1.3V
10%
INVERTING
OUTPUT
FIGURE 1. HC TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
6ns
tTLH
90%
tPLH
tPHL
GND
tTHL
90%
50%
10%
INVERTING
OUTPUT
3V
2.7V
1.3V
0.3V
INPUT
tTHL
OUTPUT
DISABLE
tf = 6ns
tr = 6ns
VCC
90%
tPZH
1.3V
OUTPUTS
DISABLED
OUTPUTS
ENABLED
FIGURE 4. HCT THREE-STATE PROPAGATION DELAY
WAVEFORM
7
Test Circuits and Waveforms
OTHER
INPUTS
TIED HIGH
OR LOW
OUTPUT
DISABLE
(Continued)
IC WITH
THREESTATE
OUTPUT
OUTPUT
RL = 1kΩ
CL
50pF
VCC FOR tPLZ AND tPZL
GND FOR tPHZ AND tPZH
NOTE: Open drain waveforms tPLZ and tPZL are the same as those for three-state shown on the left. The test circuit is Output RL = 1kΩ to
VCC, CL = 50pF.
FIGURE 5. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT
8
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
CD54HC540F3A
ACTIVE
CDIP
J
20
1
TBD
A42 SNPB
N / A for Pkg Type
CD54HC541F
ACTIVE
CDIP
J
20
1
TBD
A42 SNPB
N / A for Pkg Type
CD54HC541F3A
ACTIVE
CDIP
J
20
1
TBD
A42 SNPB
N / A for Pkg Type
CD54HCT541F
ACTIVE
CDIP
J
20
1
TBD
A42 SNPB
N / A for Pkg Type
CD54HCT541F3A
ACTIVE
CDIP
J
20
1
TBD
A42 SNPB
N / A for Pkg Type
CD74HC540E
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC540EE4
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC540M
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC540M96
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC540M96E4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC540M96G4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC540ME4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC540MG4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541E
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC541EE4
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC541M
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541M96
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541M96E4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541M96G4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541MG4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541PW
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541PWE4
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541PWG4
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541PWR
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541PWRE4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541PWRG4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC541SM
OBSOLETE
SSOP
DB
20
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
CD74HCT540E
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT540EE4
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT540M
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT540M96
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT540M96E4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT540M96G4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT540MG4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT541E
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT541EE4
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT541M
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT541M96
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT541M96E4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT541M96G4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT541ME4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT541MG4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
CD74HC540M96
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
CD74HC541M96
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
CD74HC541PWR
TSSOP
PW
20
2000
330.0
16.4
6.95
7.1
1.6
8.0
16.0
Q1
CD74HCT540M96
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
CD74HCT541M96
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CD74HC540M96
SOIC
DW
20
2000
346.0
346.0
41.0
CD74HC541M96
SOIC
DW
20
2000
346.0
346.0
41.0
CD74HC541PWR
TSSOP
PW
20
2000
346.0
346.0
33.0
CD74HCT540M96
SOIC
DW
20
2000
346.0
346.0
41.0
CD74HCT541M96
SOIC
DW
20
2000
346.0
346.0
41.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated