TI CD74HC253MTE4

[ /Title
(CD74
HC253
,
CD74
HCT25
3)
/Subject
(High
Speed
CMOS
Logic
Dual
4-Input
Multiplexer)
CD74HC253,
CD74HCT253
Data sheet acquired from Harris Semiconductor
SCHS170B
High-Speed CMOS Logic
Dual 4-Input Multiplexer
November 1997 - Revised October 2003
Features
Description
• Common Select Inputs
The CD74HC253 and CD74HCT253 are dual 4-to-1 line
selector/multiplexers having three-state outputs. One of four
sources for each section is selected by the common select
inputs, S0 and S1. When the output enable (1OE, 2OE) is
HIGH, the output is in the high-impedance state.
• Separate Output-Enable Inputs
• Three-State Outputs
• Fanout (Over Temperature Range)
- Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads
- Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads
Ordering Information
PART NUMBER
• Wide Operating Temperature Range . . . -55oC to 125oC
TEMP. RANGE (oC)
PACKAGE
• Balanced Propagation Delay and Transition Times
CD74HC253E
-55 to 125
16 Ld PDIP
• Significant Power Reduction Compared to LSTTL
Logic ICs
CD74HC253M
-55 to 125
16 Ld SOIC
CD74HC253MT
-55 to 125
16 Ld SOIC
CD74HC253M96
-55 to 125
16 Ld SOIC
CD74HCT253E
-55 to 125
16 Ld PDIP
CD74HCT253M
-55 to 125
16 Ld SOIC
CD74HCT253MT
-55 to 125
16 Ld SOIC
CD74HCT253M96
-55 to 125
16 Ld SOIC
• HC Types
- 2V to 6V Operation
- High Noise Immunity: NIL = 30%, NIH = 30% of VCC
at VCC = 5V
• HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility,
VIL= 0.8V (Max), VIH = 2V (Min)
- CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
NOTE: When ordering, use the entire part number. The suffix 96
denotes tape and reel. The suffix T denotes a small-quantity reel
of 250.
Pinout
CD74HC253, CD74HCT253
(PDIP, SOIC)
TOP VIEW
1OE 1
16 VCC
S1 2
15 2OE
1I3 3
14 S0
1I2 4
13 2I3
1I1 5
12 2I2
1I0 6
11 2I1
1Y 7
10 2I0
GND 8
9 2Y
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright
© 2003, Texas Instruments Incorporated
1
1
CD74HC253, CD74HCT253
Functional Diagrams
2OE
13
2I0
2I1
2I2
2I3
15
12
11
S0
10
S1
14
1I0
2
1I1
6
1I2
5
1I3
4
1OE
3
1
2OE
1OE
2OE
1OE
16
VCC
8
GND
P
N
N
P
2OE
2OE
1OE
1OE
7
9
2Y
1Y
TRUTH TABLE
SELECT INPUTS
(Note 1)
DATA INPUTS
OUTPUT
ENABLE
OUTPUT
S1
S0
I0
I1
I2
I3
OE
Y
X
X
X
X
X
X
H
Z
L
L
L
X
X
X
L
L
L
L
H
X
X
X
L
H
L
H
X
L
X
X
L
L
L
H
X
H
X
X
L
H
H
L
X
X
L
X
L
L
H
L
X
X
H
X
L
H
H
H
X
X
X
L
L
L
H
H
X
X
X
H
L
H
H = High Voltage Level, L = Low Voltage Level, X = Don’t Care, Z = High Impedance (Off).
NOTE:
1. Select inputs S1 and S0 are common to both sections.
2
CD74HC253, CD74HCT253
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Drain Current, per Output, IO
For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .±35mA
DC Output Source or Sink Current per Output Pin, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA
Thermal Resistance (Typical, Note 2)
θJA (oC/W)
E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . .
67
M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . .
73
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC
HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
Input Rise and Fall Time
2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max)
4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max)
6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
2. The package thermal impedance is calculated in accordance with JESD 51-7.
DC Electrical Specifications
TEST
CONDITIONS
PARAMETER
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
VI (V)
IO (mA)
VCC
(V)
VIH
-
-
2
1.5
-
-
1.5
4.5
3.15
-
-
3.15
-
3.15
-
V
6
4.2
-
-
4.2
-
4.2
-
V
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
-
1.5
-
V
HC TYPES
High Level Input
Voltage
Low Level Input
Voltage
High Level Output
Voltage
CMOS Loads
VIL
VOH
-
VIH or VIL
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
II
VCC or
GND
-
2
-
-
0.5
-
0.5
-
0.5
V
4.5
-
-
1.35
-
1.35
-
1.35
V
6
-
-
1.8
-
1.8
-
1.8
V
-0.02
2
1.9
-
-
1.9
-
1.9
-
V
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-0.02
6
5.9
-
-
5.9
-
5.9
-
V
-
-
-
-
-
-
-
-
-
V
-6
4.5
3.98
-
-
3.84
-
3.7
-
V
-7.8
6
5.48
-
-
5.34
-
5.2
-
V
0.02
2
-
-
0.1
-
0.1
-
0.1
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
0.02
6
-
-
0.1
-
0.1
-
0.1
V
-
-
-
-
-
-
-
-
-
V
-6
4.5
-
-
0.26
-
0.33
-
0.4
V
-7.8
6
-
-
0.26
-
0.33
-
0.4
V
-
6
-
-
±0.1
-
±1
-
±1
µA
3
CD74HC253, CD74HCT253
DC Electrical Specifications
(Continued)
TEST
CONDITIONS
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
VI (V)
IO (mA)
VCC
(V)
ICC
VCC or
GND
0
6
-
-
8
-
80
-
160
µA
High Level Input
Voltage
VIH
-
-
4.5 to
5.5
2
-
-
2
-
2
-
V
Low Level Input
Voltage
VIL
-
-
4.5 to
5.5
-
-
0.8
-
0.8
-
0.8
V
High Level Output
Voltage
CMOS Loads
VOH
VIH or VIL
-0.02
4.5
4.4
-
-
4.4
-
4.4
-
V
-4
4.5
3.98
-
-
3.84
-
3.7
-
V
0.02
4.5
-
-
0.1
-
0.1
-
0.1
V
4
4.5
-
-
0.26
-
0.33
-
0.4
V
PARAMETER
Quiescent Device
Current
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
HCT TYPES
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
VOL
VIH or VIL
Low Level Output
Voltage
TTL Loads
II
VCC and
GND
0
5.5
-
-
±0.1
-
±1
-
±1
µA
ICC
VCC or
GND
0
5.5
-
-
8
-
80
-
160
µA
Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load
∆ICC
(Note 3)
VCC
-2.1
-
4.5 to
5.5
-
100
360
-
450
-
490
µA
Three-State Leakage
Current
IOZ
VIL or VIH
VO =
VCC or
GND
5.5
-
-
±0.5
-
±5
-
±10
µA
Input Leakage
Current
Quiescent Device
Current
NOTE:
3. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA.
HCT Input Loading Table
INPUT
UNIT LOADS
1IO - 1I3, 2IO-2l3
0.4
1EO, 2EO, S0, S1
1
NOTE: Unit Load is ∆ICC limit specified in DC Electrical Table, e.g.,
360µA max at 25oC.
Switching Specifications Input tr, tf = 6ns
PARAMETER
TEST
SYMBOL CONDITIONS
-40oC TO
85oC
25oC
-55oC TO
125oC
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
2
-
-
175
-
220
-
265
ns
4.5
-
-
35
-
44
-
53
ns
CL =15pF
5
-
14
-
-
-
-
-
ns
CL = 50pF
6
-
-
30
-
37
-
45
ns
HC TYPES
Propagation Delay
Select to Outputs
tPLH,
tPHL
CL = 50pF
4
CD74HC253, CD74HCT253
Switching Specifications Input tr, tf = 6ns
PARAMETER
Data to Outputs
Disable Delay Times
Enable Delay Times
Output Transition Times
Input Capacitance
(Continued)
TEST
SYMBOL CONDITIONS
tPLH,
tPHL
-55oC TO
125oC
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
2
-
-
175
-
220
-
265
ns
4.5
-
-
35
-
44
-
53
ns
CL =15pF
5
-
14
-
-
-
-
-
ns
CL = 50pF
6
-
-
30
-
37
-
45
ns
tPHZ, tPLZ CL = 50pF
2
-
-
150
-
190
-
225
ns
CL = 50pF
4.5
-
-
30
-
38
-
45
ns
CL = 15pF
5
-
12
-
-
-
-
-
ns
CL = 50pF
6
-
-
26
-
33
-
38
ns
CL = 50pF
2
-
-
110
-
140
-
165
ns
CL = 50pF
4.5
-
-
22
-
28
-
33
ns
CL = 15pF
5
-
9
-
-
-
-
-
ns
CL = 50pF
6
-
-
19
-
24
-
28
ns
tTLH, tTHL CL = 50pF
2
-
-
60
-
75
-
90
ns
4.5
-
-
12
-
15
-
18
ns
6
-
-
10
-
13
-
15
ns
-
-
-
10
-
10
-
10
pF
tPZH,
tPZL
CL = 50pF
-40oC TO
85oC
25oC
CI
-
Three-State Output Capacitance
CO
-
-
-
-
20
-
20
-
20
pF
Power Dissipation Capacitance
(Notes 4, 5)
CPD
-
5
-
46
-
-
-
-
-
pF
CL = 50pF
4.5
-
-
40
-
50
-
60
ns
CL =15pF
5
-
16
-
-
-
-
ns
tPLH,
tPHL
CL = 50pF
4.5
-
-
38
-
48
-
57
ns
CL =15pF
5
-
16
-
-
-
-
-
ns
tPLH,
tPHL
CL = 50pF
4.5
-
30
-
38
-
45
ns
CL =15pF
5
-
12
-
-
-
-
-
ns
tPZH,
tPZL
CL = 50pF
4.5
-
-
30
-
38
-
45
ns
HCT TYPES
Propagation Delay
Select to Outputs
Data to Outputs
Disable Delay Times
Enable Delay Times
Output Transition Time
tPLH,
tPHL
CL =15pF
tTLH, tTHL CL = 50pF
5
-
12
-
-
-
-
-
ns
4.5
-
-
12
-
15
-
18
ns
Input Capacitance
CIN
-
-
-
-
10
-
10
-
10
pF
Three-State Output Capacitance
CO
-
-
-
-
20
-
20
-
20
pF
Power Dissipation Capacitance
(Notes 4, 5)
CPD
-
5
-
52
-
-
-
-
-
pF
NOTES:
4. CPD is used to determine the dynamic power consumption, per multiplexer.
5. PD = VCC2 fi (CPD + CL) where fi = Input Frequency, CL = Output Load Capacitance, VCC = Supply Voltage.
5
CD74HC253, CD74HCT253
Test Circuits and Waveforms
tr = 6ns
tf = 6ns
90%
50%
10%
INPUT
GND
tTLH
tPHL
6ns
10%
2.7
1.3
OUTPUT LOW
TO OFF
90%
OUTPUT HIGH
TO OFF
50%
OUTPUTS
DISABLED
FIGURE 3. HC THREE-STATE PROPAGATION DELAY
WAVEFORM
OTHER
INPUTS
TIED HIGH
OR LOW
OUTPUT
DISABLE
IC WITH
THREESTATE
OUTPUT
GND
1.3V
tPZH
90%
OUTPUTS
ENABLED
OUTPUTS
ENABLED
0.3
10%
tPHZ
tPZH
3V
tPZL
tPLZ
50%
OUTPUTS
ENABLED
6ns
GND
10%
tPHZ
tf
OUTPUT
DISABLE
tPZL
tPLZ
OUTPUT HIGH
TO OFF
6ns
tr
VCC
90%
tPLH
FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION
DELAY TIMES, COMBINATION LOGIC
6ns
OUTPUT LOW
TO OFF
1.3V
10%
INVERTING
OUTPUT
FIGURE 1. HC AND HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC
50%
tTLH
90%
tPLH
tPHL
GND
tTHL
90%
50%
10%
INVERTING
OUTPUT
3V
2.7V
1.3V
0.3V
INPUT
tTHL
OUTPUT
DISABLE
tf = 6ns
tr = 6ns
VCC
1.3V
OUTPUTS
DISABLED
OUTPUTS
ENABLED
FIGURE 4. HCT THREE-STATE PROPAGATION DELAY
WAVEFORM
OUTPUT
RL = 1kΩ
CL
50pF
VCC FOR tPLZ AND tPZL
GND FOR tPHZ AND tPZH
NOTE: Open drain waveforms tPLZ and tPZL are the same as those for three-state shown on the left. The test circuit is Output RL = 1kΩ to
VCC, CL = 50pF.
FIGURE 5. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT
6
PACKAGE OPTION ADDENDUM
www.ti.com
23-Apr-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
CD74HC253E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC253EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HC253M
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC253ME4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC253MG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC253MT
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC253MTE4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HC253MTG4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT253E
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT253EE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
CD74HCT253M
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT253M96
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT253M96E4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT253M96G4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT253ME4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT253MG4
ACTIVE
SOIC
D
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT253MT
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT253MTE4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CD74HCT253MTG4
ACTIVE
SOIC
D
16
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
23-Apr-2007
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
CD74HCT253M96
Package Package Pins
Type Drawing
SOIC
D
16
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
2500
330.0
16.4
Pack Materials-Page 1
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
6.5
10.3
2.1
8.0
W
Pin1
(mm) Quadrant
16.0
Q1
PACKAGE MATERIALS INFORMATION
www.ti.com
19-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CD74HCT253M96
SOIC
D
16
2500
333.2
345.9
28.6
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated