CED6336/CEU6336 N-Channel Enhancement Mode Field Effect Transistor PRELIMINARY FEATURES 60V, 25A , RDS(ON) = 41mΩ @VGS = 10V. RDS(ON) = 55mΩ @VGS = 4.5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-251 & TO-252 package. G D G S CEU SERIES TO-252(D-PAK) ABSOLUTE MAXIMUM RATINGS Parameter G D S CED SERIES TO-251(I-PAK) Tc = 25 C unless otherwise noted Symbol Limit 60 Units V VGS ±20 V ID 25 A IDM 100 A 40 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C Operating and Store Temperature Range 0.06 W/ C TJ,Tstg -55 to 150 C Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 3.2 C/W Thermal Resistance, Junction-to-Ambient RθJA 50 C/W This is preliminary information on a new product in development now . Details are subject to change without notice . 1 Rev 1. 2007.Jan http://www.cetsemi.com CED6336/CEU6336 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 60 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 60V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) RDS(on) VGS = VDS, ID = 250µA 3 V VGS = 10V, ID = 12.5A 1 33 41 mΩ VGS = 4.5V, ID = 10A 41 55 mΩ Dynamic Characteristics c Forward Transconductance gFS Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 15V, ID = 25A VDS = 30V, VGS = 0V, f = 1.0 MHz 10 S 750 pF 110 pF 70 pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 30V, ID = 4.4A, VGS = 10V, RGEN = 1Ω 16 32 ns 5 10 ns 38 76 ns Turn-Off Fall Time tf 6 12 ns Total Gate Charge Qg 22.2 29.5 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 30V, ID = 5.3A, VGS = 10V 3.2 nC 4.7 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 12.5A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 2 25 A 1.2 V 6 CED6336/CEU6336 25 50 20 ID, Drain Current (A) ID, Drain Current (A) VGS=10,8,6,5V VGS=4.0V 15 10 5 40 30 20 25 C 10 TJ=125 C 0 0.0 0.5 1.0 1.5 2.0 0 2.5 RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 600 400 Coss 200 Crss 0 6 12 18 24 30 5.0 2.0 1.7 ID=25A VGS=10V 1.4 1.1 0.8 0.5 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 4.0 Figure 2. Transfer Characteristics Ciss 1.1 1.0 0.9 0.8 0.7 0.6 -50 3.0 Figure 1. Output Characteristics 800 1.2 2.0 VGS, Gate-to-Source Voltage (V) 1000 1.3 1.0 VDS, Drain-to-Source Voltage (V) 1200 0 0.0 -55 C -25 0 25 50 75 100 125 150 VGS=0V 10 2 10 1 10 0 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 V =30V DS ID=5.3A 10 8 6 4 2 0 0 2 100us 1ms 10ms RDS(ON)Limit ID, Drain Current (A) VGS, Gate to Source Voltage (V) CED6336/CEU6336 4 8 12 16 20 24 10 1 100ms DC 10 0 10 -1 10 -2 TA=25 C TJ=150 C Single Pulse 10 -2 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 -1 PDM 0.1 t1 0.05 0.02 0.01 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -2 10 -5 t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 0 10 1 2