CED63A3/CEU63A3 N-Channel Enhancement Mode Field Effect Transistor FEATURES 30V, 55A, RDS(ON) = 11mΩ @VGS = 10V. RDS(ON) = 14mΩ @VGS = 4.5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-251 & TO-252 package. G D G S CEU SERIES TO-252(D-PAK) ABSOLUTE MAXIMUM RATINGS Parameter G D S CED SERIES TO-251(I-PAK) Tc = 25 C unless otherwise noted Symbol Limit 30 Units V VGS ±20 V ID 55 A IDM 150 A 57 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C Operating and Store Temperature Range 0.45 W/ C TJ,Tstg -55 to 150 C Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 2.2 C/W Thermal Resistance, Junction-to-Ambient RθJA 50 C/W Rev 2. 2006.Nov http://www.cetsemi.com Details are subject to change without notice . 1 CED63A3/CEU63A3 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 30 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 30V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics b Gate Threshold Voltage VGS(th) Static Drain-Source RDS(on) On-Resistance Forward Transconductance Dynamic Characteristics gFS VGS = VDS, ID = 250µA 3 V VGS = 10V, ID = 30A 1 8.5 11 mΩ VGS = 4.5V, ID = 24A 11 14 mΩ VDS = 10V, ID = 30A 22 S 2115 pF 405 pF 255 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 15V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 15V, ID = 45A, VGS = 10V, RGEN = 24Ω 17 35 ns 17.8 35.6 ns 157 226 ns Turn-Off Fall Time tf 78 156 ns Total Gate Charge Qg 33.2 45.4 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 15V, ID = 45A, VGS = 10V 5.5 nC 8.3 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 30A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 2 30 A 1.2 V 6 CED63A3/CEU63A3 75 VGS=10,8,6,5V 40 ID, Drain Current (A) ID, Drain Current (A) 50 30 VGS=4V 20 VGS=3V 10 60 45 30 25 C 15 -55 C TJ=125 C 0 0 1 2 3 0 4 RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 1200 800 Coss 400 Crss 0 5 10 15 20 25 5 2.2 1.9 ID=30A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 4 Figure 2. Transfer Characteristics Ciss 1.1 1.0 0.9 0.8 0.7 0.6 -50 3 Figure 1. Output Characteristics 1600 1.2 2 VGS, Gate-to-Source Voltage (V) 2000 1.3 1 VDS, Drain-to-Source Voltage (V) 2400 0 0 -25 0 25 50 75 100 125 150 VGS=0V 10 2 10 1 10 0 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 V =15V DS ID=45A 10 6 4 2 0 0 3 RDS(ON)Limit 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CED63A3/CEU63A3 9 18 27 10 100ms 1ms 10 10 36 2 10ms DC 1 6 TC=25 C TJ=150 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 t1 0.05 0.02 0.01 Single Pulse 10 -2 10 -5 t2 1. RθJC (t)=r (t) * RθJC 2. RθJC =See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 0 10 1 2