< IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE Collector current I C .............….......................… 100A Collector-emitter voltage V CES ......................… 1 2 0 0 V Maximum junction temperature T j m a x .............. 1 7 5 °C ●Flat base Type ●Copper base plate ●Tin plating pin terminals ●RoHS Directive compliant CIB (Converter+Inverter+Chopper Brake) ●Recognized under UL1557, File E323585 APPLICATION AC Motor Control, Motion/Servo Control, Power supply, etc. OUTLINE DRAWING & INTERNAL CONNECTION Dimension in mm TERMINAL t=0.8 SECTION A INTERNAL CONNECTION Tolerance otherwise specified P(54~56) P1(48~49) Division of Dimension GUP(13) R(1~2) GVP(18) GWP(23) B(52~53) S(5~6) V(19~20) U(14~15) T(9~10) W(24~25) GUN(40) N(59~61) GVN(33) GWN(31) NTC TH1(29) GB(41) N1(44~45) Es(32) Es'(39) Caution: Each (two or three) pin terminal of P/N/P1/N1/U/V/W/B/R/S/T is connected in the module, but should use all each three pins for the external wiring. Publication Date : September 2012 1 TH2(28) 3 Tolerance 0.5 to over 3 to 6 ±0.3 over 6 to 30 ±0.5 ClampDi ±0.2 over 30 to 120 ±0.8 over 120 to 400 ±1.2 The tolerance of size between terminals is assumed to be ±0.4. < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE ABSOLUTE MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified) INVERTER PART IGBT/FWDi Rating Unit VCES Symbol Collector-emitter voltage G-E short-circuited 1200 V VGES Gate-emitter voltage C-E short-circuited ± 20 V IC Item DC, TC=119 °C Collector current ICRM Ptot IE IERM (Note1) Tjmax (Note2, 4) TC=25 °C 100 (Note3) Pulse, Repetitive Total power dissipation (Note1) Conditions (Note2, 4) 750 (Note2) Emitter current W 100 (Note3) Pulse, Repetitive Maximum junction temperature A 200 A 200 Instantaneous event (overload) 175 °C BRAKE PART IGBT/CLAMPDi Rating Unit VCES Symbol Collector-emitter voltage G-E short-circuited 1200 V VGES Gate-emitter voltage C-E short-circuited ± 20 V IC ICRM Item Conditions DC, TC=125 °C Collector current (Note2, 4) 50 (Note3) Pulse, Repetitive (Note2, 4) Ptot Total power dissipation TC=25 °C VRRM Repetitive peak reverse voltage G-E short-circuited (Note2) IF IFRM Tjmax Forward current 425 W 1200 V 50 Pulse, Repetitive Maximum junction temperature A 100 (Note3) A 100 Instantaneous event (overload) 175 °C CONVERTER PART CONVDi Rating Unit VRRM Symbol Repetitive peak reverse voltage - 1600 V Ea Recommended AC input voltage RMS 440 V IO DC output current 3-phase full wave rectifying, TC=125 °C 100 A Surge forward current The sine half wave 1 cycle peak value, f=60 Hz, non-repetitive 1000 A I t Current square time Value for one cycle of surge current 4160 As Tjmax Maximum junction temperature Instantaneous event (overload) 150 °C Rating Unit IFSM 2 Item Conditions (Note4) 2 MODULE Symbol Item Conditions Visol Isolation voltage Terminals to base plate, RMS, f=60 Hz, AC 1 min TCmax Maximum case temperature (Note4) 2500 V 125 °C Tjop Operating junction temperature Continuous operation (under switching) -40 ~ +150 Tstg Storage temperature - -40 ~ +125 °C MECHANICAL CHARACTERISTICS Symbol Ms Item Mounting torque Limits Conditions Mounting to heat sink Typ. Max. 2.5 3.0 3.5 Terminal to terminal 6.47 - - Terminal to base plate 14.27 - - ds Creepage distance da Clearance m Weight - ec Flatness of base plate On the centerline X, Y M 5 screw Min. Unit N·m mm Terminal to terminal 6.47 - - Terminal to base plate 12.33 - - - 300 - g ±0 - +100 μm Publication Date : September 2012 2 (Note5) mm < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE ELECTRICAL CHARACTERISTICS (T j =25 °C, unless otherwise specified) INVERTER PART IGBT/FWDi Symbol Item Limits Conditions Min. Typ. Max. Unit ICES Collector-emitter cut-off current VCE=VCES, G-E short-circuited - - 1.0 mA IGES Gate-emitter leakage current VGE=VGES, C-E short-circuited - - 0.5 μA VGE(th) Gate-emitter threshold voltage IC=10 mA, VCE=10 V 5.4 6.0 6.6 V (Note6) IC=100 A VCEsat Collector-emitter saturation voltage Cies Input capacitance Coes Output capacitance Cres Reverse transfer capacitance QG Gate charge td(on) Turn-on delay time tr Rise time td(off) Turn-off delay time tf Fall time T j =25 °C - 1.80 2.25 VGE=15 V, T j =125 °C - 2.00 - (Terminal) T j =150 °C - 2.05 - (Note6) IC=100 A T j =25 °C - 1.70 2.15 VGE=15 V, T j =125 °C - 1.90 - (Chip) T j =150 °C - 1.95 - (Note1) , - - 10 - - 2.0 - - 0.17 - 233 - - - 300 VCE=10 V, G-E short-circuited VCC=600 V, IC=100 A, VGE=15 V VCC=600 V, IC=100 A, VGE=±15 V, RG=6.2 Ω, Inductive load Emitter-collector voltage - - 200 - - 600 - - 300 T j =25 °C - 1.80 2.25 G-E short-circuited, T j =125 °C - 1.80 - (Terminal) T j =150 °C - 1.80 - T j =25 °C - 1.70 2.15 G-E short-circuited, T j =125 °C - 1.70 - (Chip) T j =150 °C - 1.70 - (Note6) IE=100 A VEC , (Note6) IE=100 A , , V V nF nC ns V V trr (Note1) Reverse recovery time VCC=600 V, IE=100 A, VGE=±15 V, - - 300 ns Qrr (Note1) Reverse recovery charge RG=6.2 Ω, Inductive load - 5.3 - μC Eon Turn-on switching energy per pulse VCC=600 V, IC=IE=100 A, - 8.6 - Eoff Turn-off switching energy per pulse VGE=±15 V, RG=6.2 Ω, T j =150 °C, - 10.7 - Reverse recovery energy per pulse Inductive load - 10.2 - mJ - - 3.5 mΩ - 0 - Ω Err (Note1) R CC'+EE' Internal lead resistance rg Internal gate resistance Main terminals-chip, per switch, (Note4) TC=25 °C Per switch mJ BRAKE PART IGBT/CLAMPDi Symbol ICES Item Collector-emitter cut-off current VCE=VCES, G-E short-circuited IGES Gate-emitter leakage current VGE=VGES, C-E short-circuited VGE(th) Gate-emitter threshold voltage IC=5 mA, VCE=10 V Collector-emitter saturation voltage Cies Input capacitance Coes Output capacitance Cres Reverse transfer capacitance QG Gate charge Unit Min. Typ. Max. - - 1.0 mA - - 0.5 μA 5.4 6.0 6.6 V T j =25 °C - 1.80 2.25 VGE=15 V, T j =125 °C - 2.00 - (Terminal) T j =150 °C - 2.05 - IC=50 A VCEsat Limits Conditions IC=50 A (Note6) (Note6) , T j =25 °C - 1.70 2.15 VGE=15 V, , T j =125 °C - 1.90 - (Chip) T j =150 °C - 1.95 - - - 5.0 VCE=10 V, G-E short-circuited - - 1.0 - - 0.08 VCC=600 V, IC=50 A, VGE=15 V - 117 - Publication Date : September 2012 3 V V nF nC < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE ELECTRICAL CHARACTERISTICS (cont.; T j =25 °C, unless otherwise specified) BRAKE PART IGBT/CLAMPDi Symbol Item td(on) Turn-on delay time tr Rise time td(off) Turn-off delay time tf Fall time VCC=600 V, IC=50 A, VGE=±15 V, RG=13 Ω, Inductive load Forward voltage Min. Typ. Max. - - 300 - - 200 - - 600 - - 300 T j =25 °C - 1.80 2.25 G-E short-circuited, T j =125 °C - 1.80 - (Terminal) T j =150 °C - 1.80 - IF=50 A VF Limits Conditions IF=50 A (Note6) (Note6) , T j =25 °C - 1.70 2.15 G-E short-circuited, , T j =125 °C - 1.70 - (Chip) T j =150 °C Unit ns V V - 1.70 - trr Reverse recovery time VCC=600 V, IF=50 A, VGE=±15 V, - - 300 ns Qrr Reverse recovery charge RG=13 Ω, Inductive load - 2.7 - μC Eon Turn-on switching energy per pulse VCC=600 V, IC=IF=50 A, - 5.5 - Eoff Turn-off switching energy per pulse VGE=±15 V, RG=13 Ω, T j =150 °C, - 5.3 - Err Reverse recovery energy per pulse Inductive load - 4.5 - mJ rg Internal gate resistance - - 0 - Ω mJ CONVERTER PART CONVDi Symbol IRRM VF (Terminal) Item Conditions Repetitive peak reverse current VR=VRRM, T j =150 °C IF=100 A Forward voltage (Note6) Limits Unit Min. Typ. Max. - - 20 mA - 1.28 1.8 V NTC THERMISTOR PART Symbol Item Conditions (Note4) R25 Zero-power resistance TC=25 °C ∆R/R Deviation of resistance R100=493 Ω, TC=100 °C B(25/50) B-constant Approximate by equation P25 Power dissipation TC=25 °C (Note4) (Note7) (Note4) Limits Max. Unit Min. Typ. 4.85 5.00 5.15 kΩ -7.3 - +7.8 % - 3375 - K - - 10 mW THERMAL RESISTANCE CHARACTERISTICS Symbol Item Conditions Limits Min. Typ. Max. Rth(j-c)Q Junction to case, per Inverter IGBT - - 0.20 Rth(j-c)D Junction to case, per Inverter FWDi - - 0.29 Rth(j-c)Q Thermal resistance (Note4) Unit K/W Junction to case, per Brake IGBT - - 0.35 Rth(j-c)D Junction to case, per Brake ClampDi - - 0.63 Rth(j-c)D Junction to case, per Converter ConvDi - - 0.24 K/W - 15 - K/kW Rth(c-s) Contact thermal resistance (Note4) Case to heat sink, per 1 module, Thermal grease applied Publication Date : September 2012 4 (Note8) K/W < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE -:Concave +:Convex Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi). 2. Junction temperature (T j ) should not increase beyond T j m a x rating. 3. Pulse width and repetition rate should be such that the device junction temperature (T j ) dose not exceed T j m a x rating. 4. Case temperature (TC) and heat sink temperature (T s ) are defined on the each surface (mounting side) of base plate and heat sink just under the chips. Refer to the figure of chip location. 5. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure. Y X mounting side mounting side -:Concave mounting side +:Convex 6. Pulse width and repetition rate should be such as to cause negligible temperature rise. Refer to the figure of test circuit. R 1 1 7. B ( 25 / 50) ln( 25 ) /( ), R 50 T25 T50 R25: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K] R50: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K] 8. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K). 9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs. "ST2.6×10 or ST2.6×12 self tapping screw" The length of the screw depends on the thickness of the PCB. RECOMMENDED OPERATING CONDITIONS Symbol Item VCC (DC) Supply voltage VGEon Gate (-emitter drive) voltage RG External gate resistance Conditions Applied across P-N/P1-N1 terminals Applied across GB-Es1/ G*P-*/G*N-Es(*=U, V, W) terminals Inverter IGBT Per switch Brake IGBT Publication Date : September 2012 5 Limits Unit Min. Typ. Max. - 600 850 V 13.5 15.0 16.5 V 6.2 - 62 13 - 130 Ω < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE CHIP LOCATION (Top view) Dimension in mm, tolerance: ±1 mm Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: FWDi (*=U/V/W), DiBr: ClampDi, CR*P/CR*N: ConvDi (*=R/S/T), Th: NTC thermistor TEST CIRCUIT AND WAVEFORMS ~ vGE iE *:U, V, W P1 90 % 0V + VC C +V GE G*N iC 0A N1 tr t d( o n) tf t d ( of f ) t Switching characteristics test circuit and waveforms t r r , Q r r test waveform iE vCE 0 iC iC ICM VCC 0.1×ICM 0.1×VCC ICM VCC t 0.5×I r r 10% -V GE Es t Irr vC E vGE trr 0A 90 % RG Q r r =0.5×I r r ×t r r IE iC * 0V iE t ~ ~ G*P -V GE 0 Load 0 0.1×VCC IEM vEC vCE 0.02×ICM ti ti IGBT Turn-on switching energy IGBT Turn-off switching energy t VCC 0A t 0V t ti FWDi Reverse recovery energy Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing) Publication Date : September 2012 6 < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE TEST CIRCUIT 48/49 VGE=15 V 48/49 IC 13 VGE=15 V 14/15 VGE=15 V IC 18 Shortcircuited 40 P1 44/45 GWP V Es G-E short-circuited IF V V V VGE=15 V Es GVP-V, GVN-Es, GWP-W, GWN-Es, GB-Es G-E short-circuited UP / UN IGBT 52/53 W VGE=15 V IC GVN N1 48/49 Shortcircuited U IC V P1 GVP GUN N1 Es 44/45 32 Shortcircuited GUP IC GB 31 P1 Shortcircuited VGE=15 V VGE=15 V Shortcircuited 32 B V 33 44/45 V 24/25 V Shortcircuited 32 IC 23 19/20 V P1 48/49 IC GWN N1 41 N1 Es G-E short-circuited GUP-U, GUN-Es, GWP-W, GWN-Es, GB-Es VP / VN IGBT Shortcircuited 44/45 32 GUP-U, GUN-Es, GVP-V, GVN-Es, GB-Es WP / WN IGBT G-E short-circuited GUP-U, GUN-Es, GVP-V, GVN-Es, GWP-W, GWN-Es Brake IGBT / ClampDi V CE s a t / ClampDi VF test circuit V 48/49 Shortcircuited 48/49 IE 13 Shortcircuited 14/15 Shortcircuited IE 18 Shortcircuited V Shortcircuited Shortcircuited 33 44/45 32 P1 31 44/45 32 P1 Shortcircuited GWP V V U GUN Es G-E short-circuited V V IE Shortcircuited GVP-V, GVN-Es, GWP-W, GWN-Es, GB-Es Es G-E short-circuited UP / UN FWDi W Shortcircuited IE GVN N1 P Shortcircuited GVP Shortcircuited 59/60/61 44/45 P1 Shortcircuited GUP IF 1/2 24/25 V 40 32 IE 23 19/20 V 54/55/56 48/49 IE GWN N1 Es GUP-U, GUN-Es, GWP-W, GWN-Es, GB-Es G-E short-circuited VP / VN FWDi V R N1 IF N GUP-U, GUN-Es, GVP-V, GVN-Es, GB-Es WP / WN FWDi ConvDi (ex. phase-R) VEC / ConvDi VF test circuit * In the above test circuit, should use all three main pin terminals (P1/N1/P/N/U/V/W) for connection with the terminals and the current source. Publication Date : September 2012 7 < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART OUTPUT CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) T j =25 °C VGE=15 V (Chip) 200 VGE=20 V 13.5 V 12 V 3 150 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (V) IC (A) 15 V COLLECTOR CURRENT (Chip) 3.5 11 V 100 10 V 50 9V T j =150 °C T j =125 °C 2.5 2 1.5 T j =25 °C 1 0.5 0 0 0 2 4 6 8 COLLECTOR-EMITTER VOLTAGE 10 0 50 VCE (V) 200 IC (A) FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL) G-E short-circuited (Chip) (Chip) 1000 10 T j =125 °C IC=200 A 8 IE (A) IC=100 A 6 EMITTER CURRENT COLLECTOR-EMITTER SATURATION VOLTAGE VCE (V) 150 COLLECTOR CURRENT COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) T j =25 °C 100 IC=40 A 4 2 0 6 8 10 12 14 GATE-EMITTER VOLTAGE 16 18 100 T j =150 °C 10 T j =25 °C 1 20 0 VGE (V) 0.5 1 1.5 2 EMITTER-COLLECTOR VOLTAGE Publication Date : September 2012 8 2.5 VEC (V) 3 < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=6.2 Ω, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C VCC=600 V, VGE=±15 V, IC=100 A, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C 1000 1000 td(off) tf 100 SWITCHING TIME (ns) SWITCHING TIME (ns) tf td(on) 10 tr td(off) 100 td(on) tr 1 10 1 10 COLLECTOR CURRENT 1 100 IC (A) 10 EXTERNAL GATE RESISTANCE HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=6.2 Ω, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C 100 RG (Ω) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, IC=100 A, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C 100 100 SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) Eon 10 Err Eoff 1 Eon 0.1 Eoff 10 Err 1 1 10 100 1 10 EXTERNAL GATE RESISTANCE COLLECTOR CURRENT IC (A) EMITTER CURRENT IE (A) Publication Date : September 2012 9 100 RG (Ω) < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES INVERTER PART CAPACITANCE CHARACTERISTICS (TYPICAL) FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=6.2 Ω, ---------------: T j =150 °C, - - - - -: T j =125 °C G-E short-circuited, T j =25 °C 100 1000 CAPACITANCE (nF) t r r (ns), I r r (A) Cies 10 1 Coes 0.1 trr 10 0.1 1 10 COLLECTOR-EMITTER VOLTAGE 1 100 VCE (V) 10 EMITTER CURRENT 100 IE (A) GATE CHARGE CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) VCC=600 V, IC=100 A, Tj=25 °C Single pulse, TC=25 °C R t h ( j - c ) Q =0.20 K/W, R t h ( j - c ) D =0.29 K/W 20 1 NORMALIZED TRANSIENT THERMAL RESISTANCE Zth(j-c) VGE (V) 100 Cres 0.01 GATE-EMITTER VOLTAGE Irr 15 10 5 0 0 50 100 GATE CHARGE 150 200 250 QG (nC) 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 TIME (S) Publication Date : September 2012 10 0.1 1 10 < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES BRAKE PART COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) CLAMP DIODE FORWARD CHARACTERISTICS (TYPICAL) VGE=15 V G-E short-circuited (Chip) 3 T j =150 °C T j =150 °C VF (V) T j =125 °C 2.5 FORWARD VOLTAGE COLLECTOR-EMITTER SATURATION VOLTAGE VCEsat (V) (Chip) 100 3.5 2 1.5 T j =25 °C 1 10 T j =25 °C T j =125 °C 0.5 0 1 0 20 40 60 COLLECTOR CURRENT 80 0.5 100 1 IC (A) 1.5 FORWARD CURRENT 2 2.5 IF (A) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=13 Ω, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C VCC=600 V, IC=50 A, VGE=±15 V, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C 1000 1000 td(off) tf 100 SWITCHING TIME (ns) SWITCHING TIME (ns) tf td(on) 10 tr td(off) 100 td(on) tr 1 10 1 10 COLLECTOR CURRENT 10 100 IC (A) 100 EXTERNAL GATE RESISTANCE Publication Date : September 2012 11 1000 RG (Ω) < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES BRAKE PART HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, VGE=±15 V, RG=13 Ω, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) VCC=600 V, IC/IF=50 A, VGE=±15 V, INDUCTIVE LOAD, PER PULSE ---------------: T j =150 °C, - - - - -: T j =125 °C 100 Err SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) SWITCHING ENERGY (mJ) REVERSE RECOVERY ENERGY (mJ) 10 Eoff 1 Eon 0.1 Eon 10 Eoff Err 1 1 10 100 10 1000 EXTERNAL GATE RESISTANCE COLLECTOR CURRENT IC (A) FORWARD CURRENT IF (A) RG (Ω) CLAMP DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) VCC=600 V, VGE=±15 V, RG=13 Ω, INDUCTIVE LOAD ---------------: T j =150 °C, - - - - -: T j =125 °C Single pulse, TC=25 °C R t h ( j - c ) Q =0.35 K/W, R t h ( j - c ) D =0.63 K/W 1000 1 100 NORMALIZED TRANSIENT THERMAL RESISTANCE Zth(j-c) t r r (ns), I r r (A) 100 trr Irr 10 1 10 FORWARD CURRENT 100 IF (A) 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 TIME (S) Publication Date : September 2012 12 0.1 1 10 < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE PERFORMANCE CURVES CONVERTER PART CONVERTER DIODE FORWARD CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (MAXIMUM) Single pulse, TC=25 °C R t h ( j - c ) D =0.24 K/W 100 NORMALIZED TRANSIENT THERMAL RESISTANCE Zth(j-c) 1 FORWARD CURRENT IF (A) T j =125 °C T j =25 °C 10 0.4 0.6 0.8 1 1.2 FORWARD VOLTAGE 1.4 1.6 VF (V) TEMPERATURE CHARACTERISTICS (TYPICAL) RESISTANCE R (kΩ) 100 10 1 0.1 -25 0 25 50 TEMPERATURE 75 0.01 0.001 0.00001 0.0001 0.001 0.01 TIME (S) NTC thermistor part -50 0.1 100 125 T (°C) Publication Date : September 2012 13 0.1 1 10 < IGBT MODULES > CM100MXA-24S HIGH POWER SWITCHING USE INSULATED TYPE Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/). •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information containedherein. •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. © 2012 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED. Publication Date : September 2012 14