CIRRUS CS47048C-CQZ

CS470xx Data Sheet
FEATURES
The CS470xx family is a new generation of audio system-ona-chip (ASOC) processors targeted at high fidelity, cost
sensitive designs. Derived from the highly successful
CS48500 32-bit fixed point audio enhancement processor
family, the CS470xx further simplifies system design and
reduces total system cost by integrating the S/PDIF Rx,
S/PDIF Tx, analog inputs, analog outputs, and SRCs. For
example, a hardware SRC can down-sample a 192 kHz
S/PDIF stream to a lower Fs to reduce memory and MIPS
requirements for processing. This integration effectively
reduces the chip count from 3 to 1 which allows smaller, less
expensive board designs.
Target applications are:
— Automotive Head Units & Outboard Amplifiers
— Automotive Processors & Automotive Integration Hubs
— Digital TV
— MP3 Docking Stations
— AVR and DVD RX
— DSP Controlled Speakers (e.g. Subwoofers, Sound
Bars)
‰ Cost-effective, High-performance 32-bit DSP
—
—
—
—
300,000,000 MAC/S (multiply accumulates per second)
Dual MAC cycles per clock
72-bit accumulators are the highest precision in the industry
32K x 32-bit SRAM with three 2K blocks assignable to either
Y data or program memory
‰ Integrated DAC & ADC Functionality
— 8† Channels of DAC output: 108dB DR, -98dB THD+N
— 4† Channels of ADC input: 105dB DR, -98dB THD+N
— Integrated 5:1 analog mux feeds one stereo ADC
Integrated 192 kHz S/PDIF Rx†
Integrated 192 kHz S/PDIF Tx
Supports 32-bit Serial Data @ 192 kHz
Supports 32-bit audio sample I/O between DSP chips
EN
D TIA
EL L
PH D
R
I
A
—
—
—
—
FT
‰ Configurable Serial Audio Inputs/Outputs
— TDM I/O† modes (Up to 10/8 channels per line)
‰ Supports Different Fs Sample Rates
The CS470xx is programmed using the simple yet powerful
Cirrus proprietary DSP Composer™ GUI development and
pre-production tuning tool. Processing chains may be
designed using a drag-and-drop interface to place/utilize
functional macro audio DSP primitives and custom audio
filtering blocks. The end result is a software image that is
downloaded to the DSP via serial control port.
— Three† integrated hardware SRC blocks
— Output can be master or slave
— Supports dual-domain Fs on S/PDIF vs. I2S inputs
‰ DSP Tool Set w/ Private Keys Protect Customer IP
‰ Integrated Clock Manager/PLL
The Cirrus Framework™ programming environment offers
Assembly and C language compilers and other software
development tools for porting existing code to the CS470xx
family platform.
The CS470xx is available in a 100-pin LQFP package with
exposed pad for better thermal characteristics. Both
Commercial (0°C to +70°C) and Automotive (-40°C to
+85°C) temperature grades.
— Flexibility to operate from internal PLL, external crystal,
external oscillator
‰
‰
‰
‰
‰
Input Fs Auto Detection w/ µC Acknowledgement
Host Control & Boot via I2C™ or SPI™ Serial Interface
Configurable GPIOs and External Interrupt Input
1.8V Core and a 3.3V I/O that is tolerant to 5V input
Low-power Mode
Ordering Information:
See p. 33 for ordering information.
D
“†” Feature may differ on CS47024 or CS47028, see p. 8.
FI
ADC’s & DAC’s operate
in Single ended or
Differential mode
DBC
Clock
Manager
PLL
(I2C Slave)
Timers
GPIO
I2S /
TDM /
SPDIF
8ch
DMA
4ch
PIC
ROM
RAM
SPI / I2C
Control
ROM
RAM
ROM
Peripheral Bus
x8
S
R
C
1
Memory Bus
MUX
O
C
ADC2/3
Preliminary Product Information
http://www.cirrus.com
in the CS47048 DSP
ADC0/1
Stereo Inputs
On Analog in
S
R
C
2
Crystal® 32-bit
Core
text
I2S /
TDM
X
N
x4
DAC0
DAC1
DAC2
DAC3
DAC4
DAC5
DAC6
DAC7
8ch
S
R
C
3
SRC3 has 8
independent Channels
for In or Out
x2
I2S / TDM
Y
P
RAM
x2
32K x 32-bit SRAM with three 2K blocks
Assignable to Program or Y Data memory
I2S / TDM /
SPDIF
This document contains information for a new product.
Cirrus Logic reserves the right to modify this product without notice.
Copyright 2009 Cirrus Logic
CONFIDENTIAL
AUG ’09
DS787PP1
EN
D TI
EL A
L
PH D
I RA
FT
CS470xx Data Sheet
Audio SOC Processor Family
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find the one nearest to you go to www.cirrus.com.
IMPORTANT NOTICE
FI
D
“Preliminary” product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and
is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing
orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property
of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or
other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as
copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
O
N
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN
PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL
APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS
DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S
CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS'
FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
C
Cirrus Logic, Cirrus, the Cirrus Logic logo designs, Crystal, DSP Composer, and Cirrus Framework are trademarks of Cirrus Logic, Inc. All other brand and product
names in this document may be trademarks or service marks of their respective owners.
SPI is a trademark of Motorola, Inc.
I2C is a trademark of Philips Semiconductor.
DTS and DTS NEO6 are registered trademarks of the Digital Theater Systems, Inc. It is hereby notified that a third-party license from DTS is necessary to distribute
software of DTS in any finished end-user or ready-to-use final product.
Dolby, Pro Logic, Dolby Headphone, Virtual Speaker and the double-D symbol are registered trademarks of Dolby Laboratories, Inc. Supply of an implementation of
Dolby Technology does not convey a license nor imply a right under any patent, or any other industrial or Intellectual Property Right of Dolby Laboratories, to use the
Implementation in any finished end-user or ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories.
Adobe Reader is a trademark of Adobe Systems, Inc.
2
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
Table of Contents
FEATURES ......................................................................................................................... 1
1. Documentation Strategy .........................................................................................................6
2. Overview ..................................................................................................................................6
2.1 Licensing ............................................................................................................................................... 6
3. Code Overlays .........................................................................................................................7
4. Hardware Functional Description .......................................................................................10
EN
D TI
EL A
L
PH D
I RA
FT
4.1 Crystal 32-bit DSP Core ...................................................................................................................... 12
4.2 DSP Memory ....................................................................................................................................... 12
4.2.1 DMA Controller ....................................................................................................................... 12
4.3 On-chip DSP Peripherals .................................................................................................................... 13
4.3.1 Analog to Digital Converter Port (ADC) .................................................................................. 13
4.3.2 Digital to Analog Converter Port (DAC) .................................................................................. 13
4.3.3 Digital Audio Input Port (DAI) .................................................................................................. 13
4.3.4 S/PDIF RX Input Port (DAI) .................................................................................................... 13
4.3.5 Digital Audio Output Port (DAO) ............................................................................................. 13
4.3.6 S/PDIF TX Output Port (DAO) ................................................................................................ 14
4.3.7 Sample Rate Converters (SRC) ............................................................................................. 14
4.3.8 Serial Control Port (I2C or SPI) ............................................................................................... 14
4.3.9 GPIO ....................................................................................................................................... 14
4.3.10 PLL-based Clock Generator ................................................................................................. 14
4.3.11 Hardware Watchdog Timer ................................................................................................... 14
4.4 DSP I/O Description ............................................................................................................................ 15
4.4.1 Multiplexed Pins ..................................................................................................................... 15
4.4.2 Termination Requirements ...................................................................................................... 15
4.4.3 Pads ....................................................................................................................................... 15
4.5 Application Code Security ................................................................................................................... 15
5. Characteristics and Specifications .....................................................................................16
C
O
N
FI
D
5.1 Absolute Maximum Ratings ................................................................................................................. 16
5.2 Recommended Operating Conditions ................................................................................................. 16
5.3 Digital DC Characteristics ................................................................................................................... 16
5.4 Power Supply Characteristics ............................................................................................................. 17
5.5 Thermal Data (100-Pin LQFP with Exposed Pad) ............................................................................... 17
5.6 Digital Switching Characteristics— RESET ......................................................................................... 18
5.7 Digital Switching Characteristics — XTI ............................................................................................. 19
5.8 Digital Switching Characteristics — Internal Clock .............................................................................. 19
5.9 Digital Switching Characteristics — Serial Control Port - SPI Slave Mode ......................................... 20
5.10 Digital Switching Characteristics — Serial Control Port - SPI Master Mode ..................................... 21
5.11 Digital Switching Characteristics — Serial Control Port - I2C Slave Mode ........................................ 22
5.12 Digital Switching Characteristics — Serial Control Port - I2C Master Mode ...................................... 23
5.13 Digital Switching Characteristics — Digital Audio Slave Input Port ................................................... 24
5.14 Digital Switching Characteristics — Digital Audio Output Port .......................................................... 25
5.15 Digital Switching Characteristics — S/PDIF RX Port (Not available on CS47024) ........................... 26
5.16 ADC Characteristics .......................................................................................................................... 27
5.16.1 Analog Input Characteristics (Commercial) .......................................................................... 27
5.16.2 Analog Input Characteristics (Automotive) ........................................................................... 28
5.16.3 ADC Digital Filter Characteristics ......................................................................................... 30
5.17 DAC Characteristics .......................................................................................................................... 30
5.17.1 Analog Output Characteristics (Commercial) ....................................................................... 30
DS787PP1
Copyright 2009 Cirrus Logic
3
CS470xx Data Sheet
Audio SOC Processor Family
5.17.2 Analog Output Characteristics (Automotive) ........................................................................ 31
5.17.3 Combined DAC Interpolation & On-chip Analog Filter Response ........................................ 32
6. Ordering Information ............................................................................................................33
7. Environmental, Manufacturing, & Handling Information ..................................................33
8. Device Pinout Diagram .........................................................................................................34
8.1 CS47048, 100-Pin LQFP Pinout Diagram ........................................................................................... 34
8.2 CS47028, 100-Pin LQFP Pinout Diagram ........................................................................................... 35
8.3 CS47024, 100-Pin LQFP Pinout Diagram ........................................................................................... 36
9. 100-pin LQFP with Exposed Pad Package Drawing .........................................................36
10. Parameter Definitions .........................................................................................................38
EN
D TI
EL A
L
PH D
I RA
FT
10.1 Dynamic Range ................................................................................................................................. 38
10.2 Total Harmonic Distortion + Noise ..................................................................................................... 38
10.3 Frequency Response ........................................................................................................................ 38
10.4 Interchannel Isolation ........................................................................................................................ 38
10.5 Interchannel Gain Mismatch .............................................................................................................. 38
10.6 Gain Error .......................................................................................................................................... 38
10.7 Gain Drift ........................................................................................................................................... 38
11. Revision History ..................................................................................................................38
Figures
Figure 1. CS47048 Top-Level Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. CS47028 Top-Level Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3. CS47024 Top-Level Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. RESET Timing at Power-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. RESET Timing after Power is Stable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
D
Figure 6. XTI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
FI
Figure 7. Serial Control Port - SPI Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8. Serial Control Port - SPI Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 21
N
Figure 9. Serial Control Port - I2C Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 10. Serial Control Port - I2C Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 23
O
Figure 11. Digital Audio Input (DAI) Port Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 24
C
Figure 12. Digital Audio Output Port Timing, Master Mode . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 13. Digital Audio Output Port Timing, Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 14. ADC Single-Ended Input Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 15. ADC Differential Input Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 16. DAC Single-Ended Output Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 17. DAC Differential Output Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
Figure 18. Maximum Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 19. CS47048 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 20. CS47028 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 21. CS47024 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 22. 100-Pin LQFP Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Tables
FT
Table 1. CS470xx Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. CS470xx Device Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. CS470xx Channel Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
EN
D TI
EL A
L
PH D
I RA
Table 4. Memory Configurations for CS470xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
C
O
N
FI
D
Table 6. Environmental, Manufacturing, & Handling Information . . . . . . . . . . . . . . . . . . . . 33
DS787PP1
Copyright 2009 Cirrus Logic
5
CS470xx Data Sheet
Audio SOC Processor Family
1. Documentation Strategy
The CS470xx Data Sheet describes the CS47048, CS47028, and CS47024 audio processors. This
document should be used in conjunction with the following documents when evaluating or
designing a system around the CS470xx processors
Table 1. CS470xx Related Documentation
Document Name
Description
CS470xx Data Sheet
This document
Includes a list of firmware modules available on
the CS470xx family platform and detailed
firmware design information including signal
processing flow diagrams and control API
information
EN
D TI
EL A
L
PH D
I RA
AN333 - CS470xx Firmware User’s Manual
Includes detailed system design information
such as typical connection diagrams, bootprocedures, and pin descriptions
FT
CS470xx Hardware User’s Manual Guide
DSP Composer User’s Manual
CDB470xx User’s Manual
Includes detailed configuration and usage
information for the GUI development tool
Includes detailed instructions on the use of the
CDB470xx development board
The scope of the CS470xx Data Sheet is primarily the hardware specifications of the CS470xx
family of devices. This includes hardware functionality, characteristic data, pinout, and packaging
information.
The intended audience for the CS470xx Data Sheet is the system PCB designer, MCU
programmer, and the quality control engineer.
2. Overview
O
N
FI
D
The CS470xx DSP is designed to provide high-performance post-processing and mixing of analog
and digital audio. Dual clock domains are supported when the DAI and SPDIF RX inputs are used
together. Integrated sample rate converters (SRCs) allow audio streams with different sample rates
to be mixed. The low-power standby preserves battery life for applications which are always on, but
not necessarily processing audio, such as automotive audio systems.
The CS470xx utilizes voltage-out DACs and is capable of supporting dual input clock domains
through the use of the internal SRCs. The CS470xx is available in a 100-pin LQFP package. Refer
to Table 2 and Table 3 for the input, output, and firmware configurations for the CS470xx DSP.
2.1 Licensing
C
Licenses are required for any 3rd party audio processing algorithms provided for the CS470xx.
Please contact your local Cirrus Logic Sales representative for more information.
6
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
3. Code Overlays
The suite of software available for the CS470xx family consists of an operating system (OS) and a
library of overlays. The software components for the CS470xx family include:
1. OS/Kernel - Encompasses all non-audio processing tasks, including loading data from external
serial memory, processing host messages, calling audio-processing subroutines, error
concealment, etc.
FT
2. Matrix-processor- Any Module that performs a matrix decode on PCM data to produce more
output channels than input channels (2→n channels). Examples are Dolby® Pro Logic® IIx and
DTS Neo:6®. Generally speaking, these modules increase the number of valid channels in the
audio I/O buffer.
EN
D TI
EL A
L
PH D
I RA
3. Virtualizer-processor - Any module that encodes PCM data into fewer output channels than
input channels (n→2 channels) with the effect of providing “phantom” speakers to represent the
physical audio channels that were eliminated. Examples are Dolby Headphone® 2 and Dolby®
Virtual Speaker® 2. Generally speaking, these modules reduce the number of valid channels in
the audio I/O buffer.
4. Post-processors - Any module that processes audio I/O buffer PCM data. Examples are bass
management, audio manager, tone control, EQ, delay, customer-specific effects, and any postprocessing algorithms available for the CS485xx DSP.
C
O
N
FI
D
The bulk of standard overlays are stored in ROM within the CS470xx, but a small image is required
to configure the overlays and boot the DSP. This small image can either be stored in an external
serial FLASH/EEPROM, or downloaded via a host controller through the SPI™/I2C™ serial port.
The overlay structure reduces the time required to reconfigure the DSP when a processing change
is requested. Each overlay can be reloaded independently without disturbing the other overlays.
For example, when a different post-processor is selected, the OS, does not need to be reloaded —
only the new post-processor.
Table 2 lists the different configuration options available. Please refer to the CS470xx Firmware
User’s Manual for the latest listing of application codes and Cirrus Framework™ modules available.
See Table 3 which provides a summary of the available channels for each type of input and output
communication mode for members of the CS470xx family of DSPs.
DS787PP1
Copyright 2009 Cirrus Logic
7
CS470xx Data Sheet
Audio SOC Processor Family
Table 2. CS470xx Device Selection Guide
CS47048-CQZ
CS47048-DQZ
Features
CS47028-CQZ
CS47028-DQZ
CS47024-CQZ
CS47024-DQZ
• 2-In/4-Out Car Audio
Primary
Applications
• 4-In/8-Out Car Audio
• 2-In/8-Out Car Audio
• Digital TV
• High-end Digital TV
• Sound Bar
• Portable Audio Docking Station
• Dual Source/Dual Zone
• DVD Receiver
• Portable DVD
• DVD Mini / Receiver
• Multimedia PC Speakers
100-pin LQFP with Exposed Pad
DSP Core
Crystal 32-bit Core
SRAM
32K x 32-bit SRAM with three 2K blocks x 32-bit SRAM, assignable to either Y data or program memory
• 2 channels of ADC input:
with integrated 5:1 analog
mux
• 2 channels of ADC input: with
integrated 5:1 analog mux
EN
D TI
EL A
L
PH D
I RA
Integrated
DAC and ADC
• 2 Channels of ADC input:
with integrated 5:1 analog
mux
FT
Package
• 2 additional channels of
ADC input: without mux
• 4 channels of DAC output
• 8 channels of DAC output
• 8 channels of DAC output
Configurable
Serial Audio
Inputs/Outputs
Supports
Different Fs
Sample Rates
• Integrated 192 kHz S/PDIF Rx, 2 Integrated 192 kHz S/PDIF
Tx
• 2 Integrated 192 kHz S/PDIF
Tx
• I2S support for 32-bit Samples @ 192 kHz
• I2S support for 32-bit Samples
@ 192 kHz
• TDM Input modes (Up to 10 channels)
• TDM Output modes (Up to 8 channels)
• TDM Input modes (Up to 10
channels)
• Integrated hardware SRC blocks for all ADC and DAC
channels
• Integrated hardware SRC
blocks for all ADC and DAC
channels
• Additional 8 channel hardware SRC block
• Dual-domain Fs on inputs (I2S and S/PDIF Rx)
• Output can be master or slave
D
• Output can be master or slave
Other Features
FI
• Integrated Clock Manager/PLL with flexibility to operate from internal PLL, external crystal, external
oscillator
• Host Control & Boot via SPI / I2C Serial Interface
• DSP Tool Set w/ Private Keys Protect Customer IP
N
• Configurable GPIOs and External Interrupts
C
O
• Hardware Watchdog Timer
8
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
Table 3. CS470xx Channel Count
ADC
with 5:1
Input
Mux
ADC
without
Mux
DAC
Out
S/PDIF In
(Stereo
Pairs)
S/PDIF Out
(Stereo
Pairs)
CS47048
Up to 10
PCM / TDM
Up to 8
8
2
2
8
1
2
CS47028
Up to 10
PCM / TDM
Up to 8
8
2
0
8
1
2
CS47024
Up to 10
PCM / TDM
0
8
2
0
4
0
2
C
O
N
FI
D
EN
D TI
EL A
L
PH D
I RA
FT
Product
PCM/TDM
TDM Out PCM Out
In
DS787PP1
Copyright 2009 Cirrus Logic
9
CS470xx Data Sheet
Audio SOC Processor Family
4. Hardware Functional Description
ADC’s & DAC’s operate
in Single ended or
Differential mode
DBC
Crystal® 32-bit
Core
text
I2S /
TDM
PIC
Memory Bus
4ch
ROM
RAM
ROM
X
MUX
DMA
RAM
ROM
Peripheral Bus
x8
S
R
C
1
8ch
S
R
C
3
SRC3 has 8
independent Channels
for In or Out
x2
Y
P
DAC0
DAC1
DAC2
DAC3
DAC4
DAC5
DAC6
DAC7
I2S / TDM
RAM
D
x2
32K x 32-bit SRAM with three 2K blocks
Assignable to Program or Y Data memory
I2S / TDM /
SPDIF
Figure 1. CS47048 Top-Level Block Diagram
C
O
N
FI
SPI / I2C
Control
S
R
C
2
in the CS47048 DSP
ADC0/1
ADC2/3
GPIO
8ch
x4
Stereo Inputs
On Analog in
Timers
EN
D TI
EL A
L
PH D
I RA
I2 S /
TDM /
SPDIF
Clock
Manager
PLL
(I2C Slave)
FT
The CS470xx family, which includes the CS47048, CS47028, and CS47024 DSPs, is a true
system-on-a-chip that combines a powerful 32-bit DSP engine with analog/digital audio inputs and
analog/digital audio outputs. It can be integrated into a complex multi-DSP processing system, or
stand alone in an audio product that requires analog-in and analog-out. A top level block diagram
for the CS47048, CS47028, and CS47024 products are shown in Figure 1, Figure 2, and Figure 3
respectively.
10
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
ADC’s & DAC’s operate
in Single ended or
Differential mode
DBC
Clock
Manager
PLL
(I2C Slave)
Timers
GPIO
I2 S /
TDM /
SPDIF
8ch
x4
I2S /
TDM
S
R
C
2
Crystal® 32-bit
Core
text
RAM
Peripheral Bus
Memory Bus
PIC
ROM
8ch
S
R
C
3
SRC3 has 8
independent Channels
for In or Out
EN
D TI
EL A
L
PH D
I RA
ADC2/3
4ch
X
S
R
C
1
Stereo Inputs
On Analog in
DMA
FT
in the CS47028 DSP
x8
MUX
DAC0
DAC1
DAC2
DAC3
DAC4
DAC5
DAC6
DAC7
ROM
ROM
x2
I2S / TDM
Y
P
RAM
RAM
x2
SPI / I2C
Control
I2S / TDM /
SPDIF
32K x 32-bit SRAM with three 2K blocks
Assignable to Program or Y Data memory
Figure 2. CS47028 Top-Level Block Diagram
ADC’s & DAC’s operate
in Single ended or
Differential mode
I2S /
TDM
DBC
Clock
Manager
PLL
(I2C Slave)
Timers
GPIO
8ch
In CS47024 DSP
4ch
PIC
ROM
RAM
ROM
RAM
ROM
Peripheral Bus
MUX
O
C
ADC2/3
x8
DMA
Memory Bus
N
S
R
C
1
Stereo Inputs
On Analog in
S
R
C
2
Crystal® 32-bit
Core
text
FI
D
I2S /
TDM
X
x4
Y
P
RAM
2
SPI / I C
Control
DAC0
DAC1
DAC2
DAC3
x2
32K x 32-bit SRAM with three 2K blocks
Assignable to Program or Y Data memory
I2S / SPDIF
Figure 3. CS47024 Top-Level Block Diagram
DS787PP1
Copyright 2009 Cirrus Logic
11
CS470xx Data Sheet
Audio SOC Processor Family
4.1 Crystal 32-bit DSP Core
4.2 DSP Memory
EN
D TI
EL A
L
PH D
I RA
FT
The CS470xx comes with a Crystal® 32-bit core with separate X and Y data and P code memory
spaces. The DSP core is a high-performance, 32-bit, user-programmable, fixed-point DSP that is
capable of performing two multiply-and-accumulate (MAC) operations per clock cycle. The DSP
core has eight 72-bit accumulators, four X-data and four Y-data registers, and 12 index registers.
The DSP core is coupled to a flexible 8-channel DMA engine. The DMA engine can move data
between peripherals such as the serial control port (SCP), digital audio input (DAI) and digital audio
output (DAO), sample rate converters (SRC), analog-to-digital converters (ADC), digital-to-analog
converters (DAC), or any DSP core memory, all without the intervention of the DSP. The DMA
engine off-loads data move instructions from the DSP core, leaving more MIPS available for signal
processing instructions.
CS470xx functionality is controlled by application codes that are stored in on-chip ROM or
downloaded to the CS470xx from a host controller or external serial FLASH/EEPROM.
Users can develop their applications using DSP ComposerTM to create the processing chain and
then compile the image into a series of commands that are sent to the CS470xx through the SCP.
The processing application can either load modules (post-processors) from the DSP’s on-chip
ROM, or custom firmware can be downloaded through the SCP.
The CS470xx is suitable for a variety of audio post-processing applications where sound quality via
sound enhancement and speaker/cabinet tuning is required to achieve the sound quality
consumers expect. Examples of such applications include automotive head-ends, automotive
amplifiers, docking stations, sound bars, subwoofers, and boom boxes.
The DSP core has its own on-chip data and program RAM and ROM and does not require external
memory for post-processing applications.
The Y-RAM and P-RAM share a single block of memory that includes three 2K word blocks (32
bits/word) that are assignable to either Y-RAM or P-RAM as shown in Table 4.
Table 4. Memory Configurations for CS470xx
P-RAM
X-RAM
Y-RAM
10K words
8K words
12K words
10K words
10K words
10K words
10K words
12K words
8K words
10K words
14K words
N
FI
D
14K words
O
4.2.1 DMA Controller
C
The powerful 8-channel DMA controller can move data between 8 on-chip resources. Each
resource has its own arbiter: X, Y, and P RAMs/ROMs and the peripheral bus. Modulo and linear
addressing modes are supported, with flexible start address and increment controls. The service
intervals for each DMA channel, as well as up to 6 interrupt events, are programmable.
12
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
4.3 On-chip DSP Peripherals
4.3.1 Analog to Digital Converter Port (ADC)
4.3.2 Digital to Analog Converter Port (DAC)
FT
The ADCs in the CS470xx devices feature dynamic range performance in excess of 100 dB.
Please see Section 5.16 “ADC Characteristics” on page 27 for more details on CS470xx ADC
performance. The CS47024 and CS47028 devices support up to 2 simultaneous channels of
analog-to-digital conversion with the input source selectable using an integrated 5:1 stereo analog
mux (analog inputs AIN_2A/B through AIN_6A/B). The CS47048 device adds a second pair of
ADCs that are directly connected to input pins AIN_1A/B providing a total of 4 simultaneous
channels of analog-to-digital conversion. This feature gives the CS47048 the ability to select from a
total of six stereo pairs of analog input. A single programmable bit selects single-ended or
differential mode signals for all inputs. The conversions are performed with either Fs=96 kHz or
Fs=192 kHz.
EN
D TI
EL A
L
PH D
I RA
The DACs in the CS470xx devices feature dynamic range performance in excess of 100 dB.
Please see Section 5.17 “DAC Characteristics” on page 30 for more details on CS470xx DAC
performance. The CS47024 device supports four simultaneous channels of digital-to-analog
conversion. The CS47028 and CS47048 devices provide eight simultaneous channels of digital-toanalog conversion. The DACs have voltage mode outputs that can be connected either as singleended or differential signals. The conversions are performed with Fs=96 kHz.
4.3.3 Digital Audio Input Port (DAI)
FI
D
The input capabilities for each version of the CS470xx are summarized in Table 2 and Table 3.
Up to five DAI ports are available. Two of the DAI ports can be programmed to implement other
functions. If the SPI mode is used, the DAI_DATA4 pin becomes the SCP_CS input. The CS47028
and CS47048 devices have an integrated S/PDIF receiver which, if used, takes over the
DAI_DATA3 pin.
The DAI port PCM inputs have a single slave-only clock domain. The S/PDIF receiver, if used, is a
separate clock domain. The output of the S/PDIF Rx can then be converted through one of the
internal SRC blocks to synchronize with the PCM input. The sample rate of the input clock domains
can be determined automatically by the DSP, off-loading the task of monitoring the S/PDIF Rx from
the host. A time-stamping feature provides the ability to also sample-rate convert the input data via
software.The DAI port supports PCM format with word lengths up to 32 bits and sample rates as
high as 192 kHz.
The DAI also supports a time division multiplexed (TDM) mode that packs up to 10 PCM audio
channels on a single data line.
4.3.4 S/PDIF RX Input Port (DAI)
O
N
On the CS47048 and CS47028, one of the PCM pins of the DAI can also be used as a DC-coupled,
TTL-level S/PDIF Rx input capable of receiving and demodulating bi-phase encoded S/PDIF
signals with Fs ≤ 192 kHz.
C
4.3.5 Digital Audio Output Port (DAO)
DAO port supports PCM resolutions of up to 32-bits. The port supports sample rates (Fs) as high
as 192 kHz. The port can be configured as an independent clock domain mastered by the DSP, or
as a clock slave if an external MCLK or SCLK/LRCLK source is available.
On the CS47028 and CS47048 devices the DAO also supports a time division multiplexed (TDM)
mode, that packs up to 8 channels of PCM audio on a single data line.
DS787PP1
Copyright 2009 Cirrus Logic
13
CS470xx Data Sheet
Audio SOC Processor Family
4.3.6 S/PDIF TX Output Port (DAO)
Two of the serial audio pins can be re-configured as S/PDIF TX pins that drive a bi-phase encoded
S/PDIF signal (data with embedded clock on a single line).
4.3.7 Sample Rate Converters (SRC)
EN
D TI
EL A
L
PH D
I RA
FT
All CS470xx devices have at least two internal hardware SRC modules. One is directly associated
with the ADCs and normally serves to convert data from the 96/192 kHz sampling rate of the ADCs
to another Fs appropriate for mixing with other audio in the system. If the ADCs are not being used,
this SRC can convert up to 4 channels of audio data from one input sample rate (Fsi) to another
output sample rate (Fso).
The other SRC module is directly associated with the DACs and normally serves to convert data
from the DSP into the 96kHz sample rate needed by the DACs. If the DACs are not being used,
this SRC can convert up to 8 channels of audio data from the one input sample rate (Fsi) to another
output sample rate (Fso).
The CS47028 and CS47048 devices have an additional stand-alone 8-channel SRC module.This
SRC module can be used to make independent input clock domains synchronous (different Fs on
PCM input and S/PDIF Rx).
4.3.8 Serial Control Port (I2C™ or SPI™)
The on-chip serial control port is capable of operating as master or slave in either SPI™ or I2C™
modes. Master/Slave operation is chosen by mode select pins when the CS470xx comes out of
reset. The serial clock pin can support frequencies as high as 25 MHz in SPI mode (SPI clock
speed must always be ≤ (DSP Core Frequency/2)). The CS470xx serial control port also includes a
pin for flow control of the communications interface (SCP_BSY) and a pin to indicate when the
DSP has a message for the host (SCP_IRQ).
4.3.9 GPIO
Many of the CS470xx peripheral pins are multiplexed with GPIO. Each GPIO can be configured as
an output, an input, or an input with interrupt. Each input-pin interrupt can be configured as rising
edge, falling edge, active-low, or active-high.
4.3.10 PLL-based Clock Generator
N
FI
D
The low-jitter PLL generates integer or fractional multiples of a reference frequency which are used
to clock the DSP core and peripherals. Through a second PLL divider chain, a dependent clock
domain can be output on the DAO port for driving audio converters. The CS470xx defaults to
running from the external reference frequency and is switched to use the PLL output after overlays
have been loaded and configured, either through master boot from an external FLASH or through
host control. A built-in crystal oscillator circuit with a buffered output is provided. The buffered
output frequency ratio is selectable between 1:1 (default) or 2:1.
O
4.3.11 Hardware Watchdog Timer
C
The CS470xx has an integrated watchdog timer that acts as a “health” monitor for the DSP. The
watchdog timer must be reset by the DSP before the counter expires, or the entire chip is reset.
This peripheral ensures that the CS470xx will reset itself in the event of a temporary system failure.
In stand-alone mode (i.e. no host MCU), the DSP will reboot from external FLASH. In slave mode
(i.e. host MCU present) a GPIO will be used to signal the host that the watchdog has expired and
the DSP should be rebooted and re-configured.
14
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
4.4 DSP I/O Description
4.4.1 Multiplexed Pins
Many of the CS470xx pins are multi-functional. For details on pin functionality please refer to the
CS470xx Hardware User’s Manual.
4.4.2 Termination Requirements
FT
Open-drain pins on the CS470xx must be pulled high for proper operation. Please refer to the
CS470xx Hardware User’s Manual to identify which pins are open-drain and what value of pull-up
resistor is required for proper operation.
Mode select pins on CS470xx are used to select the boot mode upon the rising edge from reset. A
detailed explanation of termination requirements for each communication mode select pin can be
found in the CS470xx Hardware User’s Manual.
4.4.3 Pads
EN
D TI
EL A
L
PH D
I RA
The CS470xx Digital I/Os operate from the 3.3 V supply and are 5 V tolerant.
4.5 Application Code Security
C
O
N
FI
D
The external program code may be encrypted by the programmer to protect any intellectual
property it may contain. A secret, customer-specific key is used to encrypt the program code that is
to be stored external to the device. Please contact your local Cirrus representative for details.
DS787PP1
Copyright 2009 Cirrus Logic
15
CS470xx Data Sheet
Audio SOC Processor Family
5. Characteristics and Specifications
Note:
All data sheet minimum and maximum timing parameters are guaranteed over the rated voltage and
temperature. All data sheet typical parameters are measured under the following conditions: T = 25 °C,
VDD = 1.8 V, VDDIO = VDDA =3.3 V, GND = GNDIO = GNDA = 0 V.
5.1 Absolute Maximum Ratings
(GND = GNDIO = GNDA = 0 V; all voltages with respect to 0 V)
DC power supplies:
Core supply
Analog supply
I/O supply
|VDDA – VDDIO|
Symbol
Min
Max
Unit
VDD
VDDA
VDDIO
–0.3
–0.3
–0.3
-
2.0
3.6
3.6
0.3
V
V
V
V
+/- 10
mA
3.6
V
Iin
-
Vfilt
-0.3
Input voltage on digital I/O pins
Analog Input Voltage
Storage temperature
EN
D TI
EL A
L
PH D
I RA
Input pin current, any pin except supplies
Input voltage on PLL_REF_RES
FT
Parameter
Vinio
-0.3
5.0
V
Vin
AGND - 0.7
VA + 0.7
V
Tstg
–65
150
°C
Caution: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is
not guaranteed at these extremes.
5.2 Recommended Operating Conditions
(GND = GNDIO = GNDA = 0 V; all voltages with respect to 0 V)
Parameter
DC power supplies:
Core supply
Analog supply
I/O supply
|VDDA – VDDIO|
Ambient operating temperature
Symbol
Min
Typ
Max
Unit
VDD
VDDA
VDDIO
1.71
3.13
3.13
1.8
3.3
3.3
0
1.89
3.46
3.46
V
V
V
V
TA
-
Commercial - CQZ
Automotive - DQZ
°C
+ 70
+ 85
D
0
- 40
Note: It is recommended that the 3.3 V IO supply come up ahead of or simultaneously with the 1.8 V core supply.
FI
5.3 Digital DC Characteristics
N
(Measurements performed under static conditions.)
Parameter
O
High-level input voltage
Low-level input voltage, except XTI
C
Low-level input voltage, XTI
Symbol
Min
Typ
Max
Unit
VIH
2.0
-
-
V
VIL
-
-
0.8
V
VILXTI
-
-
0.6
V
Input Hysteresis
Vhys
High-level output voltage (IO = -2mA), except XTO
VOH
VDDIO * 0.9
Low-level output voltage (IO = 2mA), except XTO
VOL
Input leakage XTI
ILXTI
Input leakage current (all digital pins with internal
pull-up resistors enabled)
ILEAK
16
0.4
Copyright 2009 Cirrus Logic
V
-
-
V
-
-
VDDIO * 0.1
V
-
-
5
μA
-
-
70
μA
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
5.4 Power Supply Characteristics
Note: Measurements performed under operating conditions)
Parameter
Min
Typ
Max
Unit
-
325
16
56
34
27
-
mA
mA
mA
mA
mA
Operational Power Supply Current:
VDD: Core and I/O operating1
VDDA: PLL operating current
VDDA: DAC operating current (all 8 channels enabled)
VDDA: ADC operating current (all 4 channels enabled)
VDDIO: With most ports operating
Standby Power Supply Current:
VDD: Core and I/O not clocked
VDDA: PLLs halted
VDDA: DAC disabled
VDDA: ADC disabled
VDDIO: All connected I/O pins 3-stated by other ICs in system
-
410
26
40
24
215
EN
D TI
EL A
L
PH D
I RA
Total Standby Power Dissipation:
-
FT
1025
Total Operational Power Dissipation:
mW
μA
μA
μA
μA
μA
μW
1745
1. Dependent on application firmware and DSP clock speed.
5.5 Thermal Data (100-Pin LQFP with Exposed Pad)
Parameter
Symbol
θja
Thermal Resistance (Junction to Top of Package)
Two-layer Board1
Four-layer Board2
ψjt
Typ
Max
-
34
18
-
-
0.54
.28
-
Unit
°C / Watt
°C / Watt
D
Thermal Resistance (Junction to Ambient)
Two-layer Board1
Four-layer Board2
Min
1. To calculate the die temperature for a given power dissipation:
FI
Τj = Ambient temperature + [ (Power Dissipation in Watts) * θja ]
2. To calculate the case temperature for a given power dissipation:
N
Τc = Τj - [ (Power Dissipation in Watts) * ψ jt ]
Note: Two-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1-oz. copper covering 20%
O
of the top & bottom layers.
C
Note: Four-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1-oz. copper covering 20%
of the top & bottom layers and 0.5-oz. copper covering 90% of the internal power plane & ground plane layers.
DS787PP1
Copyright 2009 Cirrus Logic
17
CS470xx Data Sheet
Audio SOC Processor Family
5.6 Digital Switching Characteristics— RESET
Parameter
Symbol
Min
Max
Unit
Trstl
1
-
μs
All bidirectional pins high-Z after RESET low
Trst2z
-
200
ns
Configuration pins setup before RESET high
Trstsu
50
-
ns
Configuration pins hold after RESET high
Trsthld
20
-
ns
RESET minimum pulse width low1
EN
D TI
EL A
L
PH D
I RA
All supplies at
recommended
operating values.
FT
1.The rising edge of RESET must not occur before the power supplies are stable at their recommended operating values
as described in Section 5.2. In addition, for the configuration pins to be read correctly, the RESET Trstl requirement
must be met.
VDD2
Trstl
RESET
HS[3:0]
Trstsu Trsthld
2
Refers to all power supplies.
D
Figure 4. RESET Timing at Power-On
C
O
N
FI
RESET
HS[3:0]
All Bidirectional
Pins
Trst2z
Trstsu Trsthld
Trstl
Figure 5. RESET Timing after Power is Stable
18
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
5.7 Digital Switching Characteristics — XTI
Parameter
1
External Crystal operating frequency
XTI period
XTI high time
XTI low time
External Crystal Load Capacitance (parallel resonant)2
External Crystal Equivalent Series Resistance
Symbol
Min
Max
Unit
Fxtal
Tclki
Tclkih
Tclkil
CL
ESR
12.288
41
13.3
13.3
10
24.576
81
18
50
MHz
ns
ns
ns
pF
Ω
XTI
EN
D TI
EL A
L
PH D
I RA
FT
1. Part characterized with the following crystal frequency values: 12.288 and 24.576 MHz
2. CL refers to the total load capacitance as specified by the crystal manufacturer. Crystals which require a CL outside
this range should be avoided. The crystal oscillator circuit design should follow the crystal manufacturer’s
recommendation for load capacitor selection.
t clkih
t clkil
Tclki
Figure 6. XTI Timing
5.8 Digital Switching Characteristics — Internal Clock
Parameter
O
N
FI
Internal DSP_CLK period1
D
Internal DSP_CLK frequency1
Symbol
Fdclk
CS47048-CQZ
CS47048-DQZ
CS47028-CQZ
CS47028-DQZ
CS47024-CQZ
CS47024-DQZ
Min
Max
Fxtal2
Fxtal
Fxtal
Fxtal
Fxtal
Fxtal
150
150
150
150
150
150
6.7
6.7
6.7
6.7
6.7
6.7
1/Fxtal
1/Fxtal
1/Fxtal
1/Fxtal
1/Fxtal
1/Fxtal
MHz
DCLKP
CS47048-CQZ
CS47048-DQZ
CS47028-CQZ
CS47028-DQZ
CS47024-CQZ
CS47024-DQZ
Unit
ns
C
1. After initial power-on reset, Fdclk = Fxtal. After initial kickstart commands, the PLL is locked to max Fdclk and remains
locked until the next power-on reset.
2.See Section 5.7. for all references to Fxtal.
DS787PP1
Copyright 2009 Cirrus Logic
19
CS470xx Data Sheet
Audio SOC Processor Family
5.9 Digital Switching Characteristics — Serial Control Port - SPI Slave Mode
Min
SCP_CLK frequency1
fspisck
SCP_CS falling to SCP_CLK rising
Max
Units
-
25
MHz
tspicss
24
-
ns
SCP_CLK low time
tspickl
20
-
ns
SCP_CLK high time
tspickh
20
-
ns
Setup time SCP_MOSI input
tspidsu
5
-
ns
Hold time SCP_MOSI input
tspidh
5
-
ns
SCP_CLK low to SCP_MISO output valid
tspidov
-
SCP_CLK falling to SCP_IRQ rising
tspiirqh
-
SCP_CS rising to SCP_IRQ falling
tspiirql
0
tspicsh
24
SCP_CS rising to SCP_MISO output high-Z
tspicsdz
-
20
ns
SCP_CLK rising to SCP_BSY falling
tspicbsyl
-
3*DCLKP+20
ns
SCP_CLK low to SCP_CS rising
Typical
FT
Symbol
EN
D TI
EL A
L
PH D
I RA
Parameter
11
ns
27
ns
-
ns
ns
1. fspisck indicates the maximum speed of the hardware. The system designer should be aware that the actual
maximum speed of the communication port may be limited by the firmware application. Flow control using the
SCP_BSY pin should be implemented to prevent overflow of the input data buffer. At boot the maximum speed is
Fxtal/3.
tspicss
SCP_CS
tspickl
1
0
D
SCP_CLK
FI
1/ fspisck
A6
SCP_MOSI
A5
2
6
7
0
A0
R/W
MSB
5
7
6
tspicsh
tspickh
LSB
tspidh
tspidov
tspicsdz
MSB
LSB
tspiirqh
tspiirql
C
O
SCP_MISO
N
tspidsu
SCP_IRQ
tspibsyl
SCP_BSY
Figure 7. Serial Control Port - SPI Slave Mode Timing
20
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
5.10 Digital Switching Characteristics — Serial Control Port - SPI Master Mode
Symbol
Min
SCP_CLK frequency1,2
fspisck
-
EE_CS falling to SCP_CLK rising 3
tspicss
-
SCP_CLK low time
tspickl
SCP_CLK high time
Max
Units
Fxtal/2
MHz
-
ns
18
-
ns
tspickh
18
-
ns
Setup time SCP_MISO input
tspidsu
9
-
ns
Hold time SCP_MISO input
tspidh
5
SCP_CLK low to SCP_MOSI output valid
tspidov
-
tspicsl
7
tspicsh
-
SCP_CLK low to EE_CS falling
SCP_CLK low to EE_CS rising
Typical
FT
11*DCLKP +
(SCP_CLK PERIOD)/2
-
ns
8
ns
-
ns
11*DCLKP +
(SCP_CLK PERIOD)/2
-
ns
3*DCLKP
-
ns
20
ns
EN
D TI
EL A
L
PH D
I RA
Parameter
Bus free time between active EE_CS
tspicsx
SCP_CLK falling to SCP_MOSI output high-Z
tspidz
-
1. fspisck indicates the maximum speed of the hardware. The system designer should be aware that the actual
maximum speed of the communication port may be limited by the firmware application.
2. See Section 5.7.
3. SCP_CLK PERIOD refers to the period of SCP_CLK as being used in a given application. It does not refer to a
tested parameter
tspicss
1
N
SCP_CLK
0
FI
tspicsl
D
EE_CS
O
1/ fspisck
C
SCP_MISO
SCP_MOSI
tspickl
2
6
7
0
A0
R/W
MSB
5
6
7
tspicsx
tspicsh
tspickh
A6
A5
LSB
tspidsu
tspidh
tspidov
tspidz
MSB
LSB
Figure 8. Serial Control Port - SPI Master Mode Timing
DS787PP1
Copyright 2009 Cirrus Logic
21
CS470xx Data Sheet
Audio SOC Processor Family
5.11 Digital Switching Characteristics — Serial Control Port - I2C Slave Mode?
Symbol
Min
SCP_CLK frequency1
fiicck
-
SCP_CLK rise time
Max
Units
400
kHz
tiicr
150
ns
SCP_CLK fall time
tiicf
150
ns
SCP_CLK low time
tiicckl
1.25
-
µs
SCP_CLK high time
tiicckh
1.25
-
µs
tiicckcmd
1.25
tiicstscl
1.25
SCP_CLK rising to SCP_SDA rising or falling for
START or STOP condition
EN
D TI
EL A
L
PH D
I RA
START condition to SCP_CLK falling
Typical
FT
Parameter
µs
-
µs
tiicstp
2.5
-
µs
Bus free time between STOP and START conditions
tiicbft
3
-
µs
Setup time SCP_SDA input valid to SCP_CLK rising
tiicsu
110
Hold time SCP_SDA input after SCP_CLK falling
tiich
100
-
ns
SCP_CLK low to SCP_SDA out valid
tiicdov
-
18
ns
SCP_CLK falling to SCP_IRQ rising
tiicirqh
-
3*DCLKP + 40
ns
NAK condition to SCP_IRQ low
tiicirql
SCP_CLK falling to STOP condition
SCP_CLK rising to SCB_BSY low
tiicbsyl
-
ns
3*DCLKP + 20
ns
3*DCLKP + 20
ns
1. fiicck indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum
speed of the communication port may be limited by the firmware application. Flow control using the SCP_BSY pin
should be implemented to prevent overflow of the input data buffer.
tiicckcmd
D
I2C Slave Address = 0x82
tiicckl
tiicr
tiicf
tiicckcmd
FI
Start Condition
0
N
SCP_CLK
1
tiicstscl
C
O
SCP_SDA
Stop Condition
6
tiicckh
A6
7
8
0
tiicdov
A0
R/W
1
6
7
8
tiicstp
1/ fiicck
ACK
MSB
LSB
ACK
tiicirqh
tiicsu
tiicbft
tiicirql
tiich
SCP_IRQ
tiiccbsyl
SCP_BSY
Figure 9. Serial Control Port - I2C Slave Mode Timing
22
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
Parameter
Symbol
Min
Max
Units
fiicck
tiicr
tiicf
tiicckl
tiicckh
400
150
150
-
tiicckcmd
1.25
1.25
1.25
kHz
ns
ns
µs
µs
µs
tiicstscl
tiicstp
tiicbft
tiicsu
tiich
tiicdov
1.25
2.5
3
110
100
-
FT
5.12 Digital Switching Characteristics — Serial Control Port - I2C Master Mode
µs
µs
µs
ns
ns
ns
frequency1
-
EN
D TI
EL A
L
PH D
I RA
SCP_CLK
SCP_CLK rise time
SCP_CLK fall time
SCP_CLK low time
SCP_CLK high time
SCP_CLK rising to SCP_SDA rising or falling for START or
STOP condition
START condition to SCP_CLK falling
SCP_CLK falling to STOP condition
Bus free time between STOP and START conditions
Setup time SCP_SDA input valid to SCP_CLK rising
Hold time SCP_SDA input after SCP_CLK falling
SCP_CLK low to SCP_SDA out valid
36
1.fiicck indicates the maximum speed of the hardware. The system designer should be aware that the actual
maximum speed of the communication port may be limited by the firmware application.
tiicckcmd
tiicckl
0
1
SCP_CLK
tiicstscl
tiicr
6
tiicckh
8
0
R/W
6
7
8
1/ fiicck
tiicdov
A0
1
ACK
MSB
LSB
tiicstp
tiicbft
ACK
tiich
FI
tiicsu
7
tiicckcmd
D
A6
SCP_SDA
tiicf
C
O
N
Figure 10. Serial Control Port - I2C Master Mode Timing
DS787PP1
Copyright 2009 Cirrus Logic
23
CS470xx Data Sheet
Audio SOC Processor Family
5.13 Digital Switching Characteristics — Digital Audio Slave Input Port
DAI_SCLK period
DAI_SCLK duty cycle
Setup time DAI_DATAn
Hold time DAI_DATAn
Symbol
Min
Max
Unit
Tdaiclkp
tdaidsu
tdaidh
20
45
8
5
55
-
ns
%
ns
ns
DAI_SCLK
tdaidh
EN
D TI
EL A
L
PH D
I RA
tdaidsu
FT
Parameter
DAI_DATAn
C
O
N
FI
D
Figure 11. Digital Audio Input (DAI) Port Timing Diagram
24
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
5.14 Digital Switching Characteristics — Digital Audio Output Port
Parameter
DAO_MCLK period
DAO_MCLK duty cycle
DAO_SCLK period for Master or Slave mode1
DAO_SCLK duty cycle for Master or Slave mode1
Symbol
Min
Max
Unit
Tdaomclk
Tdaosclk
-
20
45
20
40
55
60
ns
%
ns
%
tdaomsck
-
19
ns
tdaomlrts
tdaomstlr
tdaomdv
-
8
8
8
ns
ns
ns
DAO_SCLK delay from DAO_MCLK rising edge,
DAO_MCLK as an input
DAO_LRCLK to DAO_SCLK non-active edge3, See Figure 12A.
DAO_SCLK non-active edge3 to DAO_LRCLK, See Figure 12B.
DAO_DATA[3..0] delay from DAO_SCLK non-active edge3
FT
Master Mode (Output A1 Mode)1,2
EN
D TI
EL A
L
PH D
I RA
Slave Mode (Output A0 Mode)4
DAO_LRCLK to DAO_SCLK non-active edge3,5 See Figure
13A.
DAO_SCLK non-active edge3, 5 to DAO_LRCLK, See Figure
13B..
DAO1_DATA[3..0] delay from DAO_SCLK non-active edge3
tdaoslrts
-
15
ns
tdaosstlr
-
30
ns
tdaosdv
-
8
ns
1. Master mode timing specifications are characterized, not production tested.
2. Master mode is defined as the CS47048 driving both DAO_SCLK, DAO_LRCLK. When MCLK is an input, it
is divided to produce DAO_SCLK, DAO_LRCLK.
3. The DAO_LRCLK transition may occur on either side of the non-active edge of DAO_LRCLK. The active edge
of DAO_SCLK is the point at which the data is valid.
4. Slave mode is defined as DAO_SCLK, DAO_LRCLK driven by an external source.
5. These Max values for tdaoslrts and tdaosstlr apply to applications where a 1/2 period of DAO_SCLK exceeds one
of the maximum delays.
tdaomclk
D
tdaomclk
DAO_MCLK
FI
DAO_MCLK
tdaomsck
O
N
DAO_SCLK
tdaomsck
DAO_SCLK
DAO_LRCLK
DAO_LRCLK
C
tdaomstlr
tdaomlrts
tdaomdv
tdaomdv
DAO_DATAn
DAO_DATAn
A. DAO_LRCLK transition before DAO_SCLK non-active
edge. See Footnote 3 on page 25.
B. DAO_LRCLK transition after DAO_SCLK non-active
edge. See Footnote 3 on page 25.
Figure 12. Digital Audio Output Port Timing, Master Mode
DS787PP1
Copyright 2009 Cirrus Logic
25
CS470xx Data Sheet
Audio SOC Processor Family
tdaosclk
t dao sclk
D AO _SCLK
DAO_SCLK
t daosstlr
tdaoslrts
FT
DAO _LRC LK
DAO_LRCLK
t d aosdv
tdaosdv
DAO _D ATAn
DAOn_DATAn
B. DAO_LRCLK transition after DAO_SCLK nonactive edge. See Footnote 3 on page 25.
EN
D TI
EL A
L
PH D
I RA
A. DAO_LRCLK transition before DAO_SCLK
non-active edge. See Footnote 3 on page 25.
Figure 13. Digital Audio Output Port Timing, Slave Mode
5.15 Digital Switching Characteristics — S/PDIF RX Port (Not available on CS47024)
(Inputs: Logic 0 = VIL, Logic 1 = VIH; CL = 20 pF)
Parameter
Symbol
Typ
Max
Units
30
-
200
kHz
C
O
N
FI
D
PLL Clock Recovery Sample Rate Range
Min
26
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
5.16 ADC Characteristics
5.16.1 Analog Input Characteristics (Commercial)
Test Conditions (unless otherwise specified): TA = 0 to +70°C; VDD = 1.8V±5%, VDDA (VA)= 3.3V±5%; 1 kHz sine
wave driven through the passive input filter (Ri=10 kΩ) in Figure 14 on page 29 or Figure 15 on page 29; DSP running test application; Measurement Bandwidth is 10 Hz to 20 kHz.
Differential
Typ
Max
Min
Typ
Max
Unit
99
96
-
105
102
99
-98
-82
-42
-90
95
95
-92
-
96
93
-
102
99
96
-95
-79
-39
-90
95
95
-89
-
dB
dB
dB
dB
dB
dB
dB
dB
dB
-
0.1
±120
-
-
0.1
±120
-
dB
ppm/°C
3.3
-
3.7•VA
400
60
-
3.9
20
1.65
-
1.85•VA
200
-
1.95
20
VPP
Ω
Ω
dB
pF
EN
D TI
EL A
L
PH D
I RA
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise6,7 -1 dB
-20 dB
-60 dB
40 kHz bandwidth
-1 dB
10
AIN_1A/B Interchannel Isolation
AIN_[2..6]A/B MUX Interchannel Isolation
DC Accuracy
Interchannel Gain Mismatch
Gain Drift
Analog Input
Full-Scale Input Voltage2,3
Differential Input Impedance4
Single-Ended Input Impedance5
Common Mode Rejection Ratio (CMRR)8
Parasitic Load Capacitance (CL)9
Min
FT
Parameter
Fs= 96 kHz
Dynamic Range1,6,7
Single-Ended
1. dB units referred to the typical full-scale voltage.
2. These full-scale values were measured with Ri=10k for both the single-ended and differential mode input circuits.
FI
D
3. The full-scale voltage can be changed be scaling Ri.
Differential Full-Scale (Vpp) =3.7*VDDA*(Ri+200)/(10k+200)
Single-Ended Full-Scale (Vpp) = 1.85*VDDA*(Ri+200)/(10k+200)
N
4. Measured between AIN_xx+ and AN_xx-.
5. Measured between AIN_xx+ and AGND.
6. Decreasing Full-Scale voltage by reducing Ri will cause the noise floor to increase.
O
7. Common mode input current should be kept to less than +/- 160uA to avoid performance degradation: |(Iip+Iin)/2| <
160uA. This corresponds to +/- 1.6V for Ri=10 kΩ in the differential case.
8. This number was measured using perfectly matched external resistors (Ri). Mismatch in the external resistors will
C
typically reduce CMRR by 20 log (|ΔRi|/Ri + 0.001).
9. CL represents the parasitic load capacitance between Ri on the input circuit and the input pin of the CS47048
package.
10. This measurement is not applicable to the CS47028 and CS47024 devices.
DS787PP1
Copyright 2009 Cirrus Logic
27
CS470xx Data Sheet
Audio SOC Processor Family
5.16.2 Analog Input Characteristics (Automotive)
Test Conditions (unless otherwise specified): TA = -40 to +85°C; VDD = 1.8V±5%, VDDA (VA)= 3.3V±5%; 1 kHz
sine wave driven through the passive input filter (Ri=10 kΩ) in Figure 14 on page 29 or Figure 15 on page 29; DSP
running test application; Measurement Bandwidth is 10 Hz to 20 kHz.
Differential
Fs=96 kHz
Dynamic Range1,6,7
Typ
Max
Min
Typ
Max
Unit
97
94
-
105
102
99
-98
-82
-42
-90
95
95
-90
-
94
91
-
102
99
96
-95
-79
-39
-90
95
95
-87
-
dB
dB
dB
dB
dB
dB
dB
dB
dB
-
0.1
±120
-
-
0.1
±120
-
dB
ppm/°C
3.3
-
3.7•VA
400
60
-
3.9
20
1.65
-
1.85•VA
200
-
1.95
20
VPP
Ω
Ω
dB
pF
EN
D TI
EL A
L
PH D
I RA
A-weighted
unweighted
40 kHz bandwidth unweighted
Total Harmonic Distortion + Noise6,7 -1 dB
-20 dB
-60 dB
40 kHz bandwidth
-1 dB
AIN_1A/B Interchannel Isolation10
AIN_[2..6]A/B MUX Interchannel Isolation
DC Accuracy
Interchannel Gain Mismatch
Gain Drift
Analog Input
Full-Scale Input Voltage2,3
Differential Input Impedance4
Single-Ended Input Impedance5
Common Mode Rejection Ratio (CMRR)8
Parasitic Load Capacitance (CL)9
Single-Ended
Min
FT
Parameter
Notes:
1. dB units referred to the typical full-scale voltage.
2. These full-scale values were measured with Ri=10k for both the single-ended and differential mode input circuits.
D
3. The full-scale voltage can be changed be scaling Ri.
Differential Full-Scale (Vpp) = 3.7*VDDA*(Ri+200)/(10k+200)
Single-Ended Full-Scale (Vpp) = 1.85*VDDA*(Ri+200)/(10k+200)
N
FI
4. Measured between AIN_xx+ and AN_xx-.
5. Measured between AIN_xx+ and AGND.
6. Decreasing Full-Scale voltage by reducing Ri will cause the noise floor to increase.
O
7. Common mode input current should be kept to less than +/- 160uA to avoid performance degradation: |(Iip+Iin)/2| <
160uA. This corresponds to +/- 1.6V for Ri=1 0kΩ in the differential case.
8. This number was measured using perfectly matched external resistors (Ri). Mismatch in the external resistors will
C
typically reduce CMRR by 20 log (|ΔRi|/Ri + 0.001).
9. CL represents the parasitic load capacitance between Ri on the input circuit and the input pin of the CS47048
package.
10. This measurement is not applicable to the CS47028 and CS47024 devices.
28
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
10µF
Ri
100K
CL
AIN_xA+
or
AIN_xB+
EN
D TI
EL A
L
PH D
I RA
Figure 14. ADC Single-Ended Input Test Circuit
FT
+
AIN
10µF
AIN-
+
Ri
100K
CL
AIN_xAor
AIN_xB-
10µF
AIN+
+
100K
Ri
CL
AIN_xA+
or
AIN_xB+
C
O
N
FI
D
Figure 15. ADC Differential Input Test Circuit
DS787PP1
Copyright 2009 Cirrus Logic
29
CS470xx Data Sheet
Audio SOC Processor Family
5.16.3 ADC Digital Filter Characteristics
Parameter1, 2
Notes:
Max
Unit
0
0.5688
70
-
12/Fs
0.4896
0.08
-
Fs
dB
Fs
dB
s
-
1
20
10
5
10 /Fs
0
0
Hz
Hz
Deg
dB
s
-
FT
to -0.1 dB corner
Typ
EN
D TI
EL A
L
PH D
I RA
Fs = 96 kHz
Passband (Frequency Response)
Passband Ripple
Stopband
Stopband Attenuation
Total Group Delay
High-Pass Filter Characteristics
Frequency Response-3.0 dB
-0.13 dB
Phase Deviation
@ 20 Hz
Passband Ripple
Filter Settling Time
Min
1. Filter response is guaranteed by design.
2. Response is clock-dependent and will scale with Fs.
5.17 DAC Characteristics
5.17.1 Analog Output Characteristics (Commercial)
Test Conditions (unless otherwise specified): TA = 0 to +70°C; VDD = 1.8V±5%, VDDA(VA) = 3.3V±5%; 1 kHz sine
wave driven through a filter shown in Figure 16 on page 31 or Figure 17 on page 32; DSP running test application;
Measurement Bandwidth is 20 Hz to 20 kHz.
Parameter
Fs = 96 kHz
Dynamic Range
C
O
N
FI
D
A-weighted
unweighted
Total Harmonic Distortion + Noise
0 dB
-20 dB
-60 dB
Interchannel Isolation
(1 kHz)
Analog Output
Full-Scale Output
Interchannel Gain Mismatch
Gain Drift
Output Impedance
DC Current draw from an AOUT pin1
AC-Load Resistance (RL)2
Load Capacitance (CL)2
30
Min
Differential
Typ
102
99
108
105
-
99
96
105
102
-
dB
dB
-
-98
-88
-48
95
-90
-
-
-95
-85
-45
95
-87
-
dB
dB
dB
dB
1.20
3
-
1.40•VA
0.1
±120
100
-
1.60
10
100
0.60
3
-
0.70•VA
0.1
±120
100
-
0.80
10
100
VPP
dB
ppm/°C
Ω
μA
kΩ
pF
Max
Copyright 2009 Cirrus Logic
Min
Single-Ended
Typ
Max
Unit
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
5.17.2 Analog Output Characteristics (Automotive)
Test Conditions (unless otherwise specified): TA = -40 to +85°C; VDD = 1.8V±5%, VDDA(VA) = 3.3V±5%; 1 kHz
sine wave driven through a filter shown in Figure 16 on page 31 or Figure 17 on page 32; DSP running test application; Measurement Bandwidth is 20 Hz to 20 kHz.
Min
Differential
Typ
100
97
108
105
-
97
94
105
102
-
-98
-88
-48
95
-90
-
-
-95
-85
-45
95
-87
-
dB
dB
dB
dB
1.20
3
-
1.40•VA
0.1
±120
100
-
1.60
10
100
0.60
3
-
0.70•VA
0.1
±120
100
-
0.80
10
100
VPP
dB
ppm/°C
Ω
μA
kΩ
pF
Parameter
Max
Min
Single-Ended
Typ
Max
Unit
Fs = 96 kHz
Dynamic Range
Notes:
-
FT
EN
D TI
EL A
L
PH D
I RA
A-weighted
unweighted
Total Harmonic Distortion + Noise
0 dB
-20 dB
-60 dB
Interchannel Isolation
(1 kHz)
Analog Output
Full-Scale Output
Interchannel Gain Mismatch
Gain Drift
Output Impedance
DC Current draw from an AOUT pin1
AC-Load Resistance (RL)2
Load Capacitance (CL)2
dB
dB
C
O
N
FI
D
1. Guaranteed by design. The DC current draw represents the allowed current draw from the AOUT pin due to typical
leakage through the electrolytic DC-blocking capacitors.
2. Guaranteed by design. RL and CL reflect the recommended minimum resistance and maximum capacitance
required for the internal op-amp's stability and signal integrity. In this circuit topology, CL represents any capacitive
loading that appears before the 560 Ω series resistor (typically parasitic), and will effectively move the dominant
pole of the two-pole amp in the output stage. Increasing this value beyond the recommended 100 pF can cause the
internal op-amp to become unstable.
3.3 µF
AOUT_x+
560
+
AOUT
CL
RL
10 k
2200 pF
Figure 16. DAC Single-Ended Output Test Circuit
DS787PP1
Copyright 2009 Cirrus Logic
31
CS470xx Data Sheet
Audio SOC Processor Family
4.87 k
1800 pF
4.87 k
2.43 k
1.96 k
953
CL
+
CL
AOUT
10 k
+
22 µF
1200 pF
FT
4700 pF
560
22 µF
1.96k
AOUT_x+
-
+
AOUT_x-
470 pF
P output: RL = 1.96k + ( [2πF*4700pF]-1 || (1.96k + [2πF*22µF- ]-1 ) || (953 + [2πF*1200pF ]-1 ))
EN
D TI
EL A
L
PH D
I RA
N output: RL = 4.87k + ( [2πF*1800pF]-1 || ((2.43k + [2πF*470pF]-1 ) || 4.87k ))
Figure 17. DAC Differential Output Test Circuit
Capacitive Load -- C L (pF)
125
100
75
Safe Operating
Region
50
25
5
2.5
3
10
15
20
Figure 18. Maximum Loading
N
FI
D
Resistive Load -- RL (kΩ )
O
5.17.3 Combined DAC Interpolation & On-chip Analog Filter Response
Parameter
C
Passband (Frequency Response)
to 0.22 dB corner
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
StopBand
StopBand Attenuation
Group Delay
32
Copyright 2009 Cirrus Logic
Min
Typ
Max
Unit
0
0
-0.02
0.5465
100
-
10/Fs
0.4125
0.4979
+0.02
-
Fs
Fs
dB
Fs
dB
s
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
6. Ordering Information
The CS470xx DSP part numbers are described as follows:
Example:
CS47048I-XYZR
where
I - ROM ID Letter
X - Product Grade
FT
Y - Package Type
Z - Lead (Pb) Free
EN
D TI
EL A
L
PH D
I RA
R - Tape and Reel Packaging
Table 5. Ordering Information
Part No.
CS47048C-CQZ
CS47048C-DQZ
CS47028C-CQZ
Grade
Temp. Range
Commercial
0 to +70 °C
Automotive
-40 to +85 °C
Commercial
0 to +70 °C
Automotive
-40 to +85 °C
Commercial
0 to +70 °C
Automotive
-40 to +85 °C
Package
100-pin LQFP
CS47028C-DQZ
CS47024C-CQZ
CS47024C-DQZ
NOTE: Please contact the factory for availability of the -D (automotive grade) package.
D
7. Environmental, Manufacturing, & Handling Information
Table 6. Environmental, Manufacturing, & Handling Information
FI
Model Number
Peak Reflow Temp
MSL Rating*
Max Floor Life
260 °C
3
7 days
260 °C
3
7 days
260 °C
3
7 days
CS47048C-CQZ
N
CS47048C-DQZ
O
CS47028C-CQZ
C
CS47028C-DQZ
CS47024C-CQZ
CS47024C-DQZ
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.
DS787PP1
Copyright 2009 Cirrus Logic
33
CS470xx Data Sheet
Audio SOC Processor Family
8. Device Pinout Diagram
DBCK
AOUT_8-
AOUT_8+
76
GNDA4
VDDA4
AOUT_7-
AOUT_7+
80
AOUT_6-
AOUT_6+
GNDA5
VDDA5
AOUT_5-
85
AOUT_5+
AOUT_4-
AOUT_4+
GNDA6
VDDA6
90
AOUT_3-
AOUT_3+
AOUT_2-
AOUT_2+
GNDA7
95
VDDA7
AOUT_1-
AOUT_1+
100 RESET
8.1 CS47048, 100-Pin LQFP Pinout Diagram
1
75 VDD_DAC
DBDA
GND_DAC
VDD_ADC_MON
GPIO15, DAI_LRCLK
REXT
GPIO17, DAI_SCLK
VDDIO1
5
VQ
70 BIASREF_DAC
GNDIO1
GNDA3
FT
GPIO16, DAI_DATA0, TM0
GPIO0, DAI_DATA1, TM1
AIN_1A+
GPIO1, DAI_DATA2, TM2
AIN_1A-
10
AIN_1B+
65 AIN_1B-
GND1
GPIO7, DAO_LRCLK
GPIO14, DAO_SCLK
15
VDDIO2
GPIO18, DAO_MCLK, HS4
GPIO6, DAO_DATA0, HS0
GPIO3, DAO_DATA1, HS1
20
VDD2
GND2
GPIO9, SCP_MOSI
VDDA3
100-Pin LQFP
(Thermal Pad Package)
VDDA2
BIASREF_ADC
GNDA2
60 AIN_2A+
AIN_2AAIN_3A+
AIN_3AAIN_4A+
AIN_5A+
AIN_5AAIN_6A+
AIN_2B+ 50
AIN_3B+
AIN_3B-
AIN_4B+
AIN_4B- 45
AIN_5B+
AIN_5B-
AIN_6B+
AIN_6B-
VDDA_PLL 40
PLL_REF_RES
GNDA_PLL
XTO
XTI
VDD3 35
GND3
XTAL_OUT
GND_SUB
FI
D
GPIO11, SCP_CLK
GPIO8, SCP_CS, DAI_DATA4
GNDIO3
51 AIN_6A-
VDDIO3 30
25
26
GPIO10, SCP_MISO, SCP_SDA
CS47048
55 AIN_4A-
GPIO5, DAO_DATA3, HS3, S/PDIF TXa
GPIO13, SCP_BSY, EE_CS
GPIO4, DAO_DATA2, HS2, S/PDIF TXb
GPIO12, SCP_IRQ
GNDIO2
EN
D TI
EL A
L
PH D
I RA
VDD1
AIN_2B-
GPIO2, DAI_DATA3, TM3, SPDIF RX
C
O
N
Figure 19. CS47048 Pinout Diagram
34
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
DBCK
AOUT_8-
AOUT_8+
76
GNDA4
VDDA4
AOUT_7-
AOUT_7+
80
AOUT_6-
AOUT_6+
GNDA5
VDDA5
AOUT_5-
85
AOUT_5+
AOUT_4-
AOUT_4+
GNDA6
VDDA6
90
AOUT_3-
AOUT_3+
AOUT_2-
AOUT_2+
GNDA7
95
VDDA7
AOUT_1+
AOUT_1-
100 RESET
8.2 CS47028, 100-Pin LQFP Pinout Diagram
1
75 VDD_DAC
DBDA
GND_DAC
VDD_ADC_MON
GPIO15, DAI_LRCLK
REXT
GPIO17, DAI_SCLK
VDDIO1
5
VQ
70 BIASREF_DAC
GNDIO1
GPIO16, DAI_DATA0, TM0
GNDA3
GPIO0, DAI_DATA1, TM1
NC
NC
10
NC
65 NC
VDD1
CS47028
GND1
GPIO7, DAO_LRCLK
GNDA2
60 AIN_2A+
AIN_2AAIN_3A+
AIN_3AAIN_4A+
55 AIN_4AAIN_5A+
AIN_5AAIN_6A+
51 AIN_6A-
AIN_2B+ 50
AIN_2B-
AIN_3B-
AIN_4B+
AIN_4B- 45
AIN_5B+
AIN_5B-
AIN_6B+
AIN_6B-
VDDA_PLL 40
PLL_REF_RES
GNDA_PLL
XTO
XTI
VDDA2
D
GPIO11, SCP_CLK
GPIO8, SCP_CS, DAI_DATA4
VDD3 35
25
26
GPIO10, SCP_MISO, SCP_SDA
GND3
GPIO9, SCP_MOSI
XTAL_OUT
VDD2
GND2
GND_SUB
GPIO5, DAO_DATA3, HS3, S/PDIF TXa
GNDIO3
20
EN
D TI
EL A
L
PH D
I RA
GPIO3, DAO_DATA1, HS1
VDDIO3 30
GPIO6, DAO_DATA0, HS0
GPIO13, SCP_BSY, EE_CS
GPIO18, DAO_MCLK, HS4
GPIO12, SCP_IRQ
15
VDDIO2
GPIO4, DAO_DATA2, HS2, S/PDIF TXb
BIASREF_ADC
100-Pin LQFP
(Thermal Pad Package)
GPIO14, DAO_SCLK
GNDIO2
VDDA3
AIN_3B+
GPIO2, DAI_DATA3, TM3, SPDIF RX
FT
GPIO1, DAI_DATA2, TM2
C
O
N
FI
Figure 20. CS47028 Pinout Diagram
DS787PP1
Copyright 2009 Cirrus Logic
35
CS470xx Data Sheet
Audio SOC Processor Family
DBCK
NC
NC
76
GNDA4
VDDA4
NC
NC
80
NC
NC
GNDA5
VDDA5
NC
85
NC
AOUT_4-
AOUT_4+
GNDA6
VDDA6
90
AOUT_3-
AOUT_3+
AOUT_2-
AOUT_2+
GNDA7
95
VDDA7
AOUT_1+
AOUT_1-
100 RESET
8.3 CS47024, 100-Pin LQFP Pinout Diagram
1
75 VDD_DAC
DBDA
GND_DAC
VDD_ADC_MON
GPIO15, DAI_LRCLK
REXT
GPIO17, DAI_SCLK
VDDIO1
5
VQ
70 BIASREF_DAC
GNDIO1
GPIO16, DAI_DATA0, TM0
GNDA3
GPIO0, DAI_DATA1, TM1
NC
NC
10
NC
65 NC
VDD1
CS47024
GND1
GPIO7, DAO_LRCLK
GNDA2
60 AIN_2A+
AIN_2AAIN_3A+
AIN_3AAIN_4A+
55 AIN_4AAIN_5A+
AIN_5AAIN_6A+
51 AIN_6A-
AIN_2B+ 50
AIN_2B-
AIN_3B-
AIN_4B+
AIN_4B- 45
AIN_5B+
AIN_5B-
AIN_6B+
AIN_6B-
VDDA_PLL 40
PLL_REF_RES
GNDA_PLL
XTO
XTI
VDDA2
D
GPIO11, SCP_CLK
GPIO8, SCP_CS, DAI_DATA4
VDD3 35
25
26
GPIO10, SCP_MISO, SCP_SDA
GND3
GPIO9, SCP_MOSI
XTAL_OUT
VDD2
GND2
GND_SUB
GPIO5, DAO_DATA3, HS3, S/PDIF TXa
GNDIO3
20
EN
D TI
EL A
L
PH D
I RA
GPIO3, DAO_DATA1, HS1
VDDIO3 30
GPIO6, DAO_DATA0, HS0
GPIO13, SCP_BSY, EE_CS
GPIO18, DAO_MCLK, HS4
GPIO12, SCP_IRQ
15
VDDIO2
GPIO4, DAO_DATA2, HS2, S/PDIF TXb
BIASREF_ADC
100-Pin LQFP
(Thermal Pad Package)
GPIO14, DAO_SCLK
GNDIO2
VDDA3
AIN_3B+
GPIO2, DAI_DATA3, TM3
FT
GPIO1, DAI_DATA2, TM2
FI
Figure 21. CS47024 Pinout Diagram
N
9. 100-pin LQFP with Exposed Pad Package Drawing
C
O
Figure 22 shows the 100-pin LQFP package with exposed pad for the CS47048, CS47028, and
CS47024.
36
Copyright 2009 Cirrus Logic
DS787PP1
DS787PP1
C
O
N
FI
D
AF
T
37
CS470xx Data Sheet
Audio SOC Processor Family
R
D
AL H I
TI P
L
EN E
D
Copyright 2009 Cirrus Logic
Figure 22. 100-Pin LQFP Package Drawing
CS470xx Data Sheet
Audio SOC Processor Family
10. Parameter Definitions
10.1 Dynamic Range
The ratio of the RMS value of the signal to the RMS sum of all other spectral components over the
specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified
bandwidth made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the
measurement to full-scale. This technique ensures that the distortion components are below the
noise level and do not affect the measurement. This measurement technique has been accepted
by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of
Japan, EIAJ CP-307. Expressed in decibels.
FT
10.2 Total Harmonic Distortion + Noise
10.3 Frequency Response
EN
D TI
EL A
L
PH D
I RA
The ratio of the RMS value of the signal to the RMS sum of all other spectral components over the
specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in
decibels. Measured at -1 and -20 dBFS as suggested in AES17-1991 Annex A.
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude
response at 1 kHz. Units in decibels.
10.4 Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the
converter's output with no signal to the input under test and a full-scale signal applied to the other
channel. Units in decibels.
10.5 Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
10.6 Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
10.7 Gain Drift
FI
D
The change in gain value with temperature. Units in ppm/°C.
C
A7
A8
38
Date
O
Revision
N
11. Revision History
October 16, 2008
March 22, 2009
Changes
Initial Release
Added CS47028 and CS47024 products to the data sheet. Changed
name of data sheet to CS470xx Data Sheet. Added note regarding
necessity of power supplies being stable before RESET goes high to
Section 5.6.
Copyright 2009 Cirrus Logic
DS787PP1
CS470xx Data Sheet
Audio SOC Processor Family
Revision
Date
Changes
April 22, 2009
Updated Table 2 and Table 3. Updated timing diagram in Figure 4
and added Figure 5. Updated Figure 14, Figure 15, Figure 16, and
Figure 17. Characterization data for Standby Power Supply Current:
reported as TBD until final measurements are completed. Formula in
Note 3 on p. 27 and Note 3 on p. 28 have been restated for greater
clarity. Min and Max values for Full-Scale input Voltage in Section
5.16.1 and Section 5.16.2 reported as TBD until final measurements
are completed.
A10
April 28, 2009
Updated Section 5.10, replacing references to SCP_CS with EE_CS.
A11
April 29, 2009
Updated ordering numbers in Table 5 and Table 6. Updated
characterization data for Analog Full-Scale Output Voltage, Typical,
for both Differential and Single-ended signals in Section 5.16.1,
Section 5.16.2, Section 5.17.1, and Section 5.17.2.
PP1
August 3, 2009
Updated Characterization data in Section 5.4, Section 5.7, Section
5.9, Section 5.11, Section 5.12, Section 5.16.1, Section 5.16.2,
Section 5.16.3, Section 5.17.1, and Section 5.17.2. Modified
Footnote 3 in both Section 5.16.1 and Section 5.16.2. Added
Footnote 5 to Section 5.14. Updated Section 2.. Modified Section
4.3.6 and Section 4.3.8. Modified references to TDM in various
sections of the data sheet. Use the search function in the Adobe PDF
Reader™ to find all instances where TDM is described in this data
sheet.
C
O
N
FI
D
EN
D TI
EL A
L
PH D
I RA
FT
A9
DS787PP1
Copyright 2009 Cirrus Logic
39
CS470xx Data Sheet
Audio SOC Processor Family
C
O
N
FI
D
EN
D TI
EL A
L
PH D
I RA
FT
§§1
1. The “§§” symbol indicates the end of the content in this document.
40
Copyright 2009 Cirrus Logic
DS787PP1