Surface Mount Zener Diode COMCHIP www.comchip.com.tw CZRB2011 Thru CZRB2100 Voltage: 11 - 100 Volts Power: 2.0 Watt Features - For surf ace mounted applications in order to optimize board space - Low profile package - Built-in strain relief - Glass passivated junction - Low inductance - Excellent clamping capability - Typical ID less than 1uA above 11V - High temperature soldering 260°C /10 seconds at terminals - Plastic package has underwriters laboratory flammability classification 94V-O Mechanical data - Case: JEDEC DO-214AA, Molded plastic over passivated junction - Terminals: Solder plated, solderable per MILSTD-750, method 2026 - Polarity: Color band denotes positive end (cathode) except Bidirectional - Standard Packaging: 12mm tape (EIA-481) - Weight: 0.002 ounce, 0.064 gram SMB/DO-214AA 0.083(2.11) 0.075(1.91) 0.155(3.94) 0.130(3.30) 0.185(4.70) 0.160(4.06) 0.012(0.31) 0.006(0.15) 0.096(2.44) 0.083(2.13) 0.050(1.27) 0.030(0.76) 0.220(5.59) 0.200(5.08) 0.008(0.20) 0.203(0.10) Dimensions in inches and (maillimeter) Maximum Ratings and Electrical Characterics Ratings at 25°C ambient temperature unless otherwise specified. Rating Peak Pulse Power Dissipation (Note A) Derate above 75°C Peak forward Surge Current 8.3ms single half s ine-wave superimposed on rated load (JEDEC Method) (Note B) Operating Junction and Storage Temperature Range MDS0302004A Symbol Value 2 24 Units Watts mW/°C IFSM 15 Amps TJ,TSTG -55 to +150 °C PD Page 1 Surface Mount Zener Diode COMCHIP www.comchip.com.tw Rating and Characteristic Curevs (CZRB2011 Thru CZRB2100) ELECTRICAL CHARACTERISTICS (TA=25°C unless otherwise noted) (VF=1.2Volts Max, IF=500mA for all types.) Device (Note 1.) Nominal Zener Voltage VZ @ IZT (Note 2.) Test current IZT (Volts) 11 12 13 14 15 16 17 18 19 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91 100 CZRB2011 CZRB2012 CZRB2013 CZRB2014 CZRB2015 CZRB2016 CZRB2017 CZRB2018 CZRB2019 CZRB2020 CZRB2022 CZRB2024 CZRB2027 CZRB2030 CZRB2033 CZRB2036 CZRB2039 CZRB2043 CZRB2047 CZRB2051 CZRB2056 CZRB2062 CZRB2068 CZRB2075 CZRB2082 CZRB2091 CZRB2100 Maximum Zener Impedance (Note 3.) Leakage Current ZZT @ IZT ZZK @ IZK (mA) (Ohms) (Ohms) (mA) (uA) (Volts) (mA) Ir - mA 45.5 41.5 38.5 35.7 33.4 31.2 29.4 27.8 26.3 25 22.8 20.8 18.5 16.6 15.1 13.9 12.8 11.6 10.6 9.8 9 8.1 7.4 6.7 6.1 5.5 5 4 4.5 5 5.5 7 8 9 10 11 11 12 13 18 20 23 25 30 35 40 48 55 60 75 90 100 125 175 700 700 700 700 700 700 750 750 750 750 750 750 750 1000 1000 1000 1000 1500 1500 1500 2000 2000 2000 2000 3000 3000 3000 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 8.4 9.1 9.9 10.6 11.4 12.2 13 13.7 14.4 15.2 16.7 18.2 20.6 22.5 25.1 27.4 29.7 32.7 35.6 38.8 42.6 47.1 51.7 56 62.2 69.2 76 166 152 138 130 122 114 107 100 95 90 82 76 68 60 55 50 47 43 39 36 32 29 27 24 22 20 18 1.82 1.66 1.54 1.43 1.33 1.25 1.18 1.11 1.05 1.00 0.91 0.83 0.74 0.67 0.61 0.56 0.51 0.45 0.42 0.39 0.36 0.32 0.29 0.27 0.24 0.22 0.20 IZK IR Surge Maximum Current Zener @TA=25°C Current IZM (Note 4.) VR NOTE: 1. TOLERANCES - Suffix indicates 5% tol erance any other tolerance will be considered as a special devic e. 2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when m easured at 40 ms ± 10ms from the diode body, and an ambient temperat ure of 25 °C (+ 8 °C , -2 °C ). 3.ZENER IMPEDANCE (Zz) DERIVATION - The zener im pedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms falue equal to 10% of the dc zener current (I ZT or IZK) is superimposed on I ZT or IZK. 4. SURGE CURRENT (Ir) NON-REPETITIVE - The rating li sted in the electrical characteris tics table is maximum peak, non-repetitive, reverse surge c urrent of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the tes t current, I ZT, per JEDEC standards, however, actual device capability is as described in Figure 3. MDS0302004A Page 2 Surface Mount Zener Diode COMCHIP www.comchip.com.tw Rating and Characteristic Curves (CZRB2011 Thru CZRB2100) 30 D = 0.5 TRANSIENT THERMAL RESISTANCE JUNCTION-TO-LEAD(°C/W) 20 10 0.2 7 5 0.1 3 2 0.05 1 0.02 0.7 0.5 0.01 0.3 0.0001 0.0002 NOTE BELOW 0.1 SECOND, THERMAL RESPONSE CURVE IS APPLICABLE TO ANY LEAD LENGTH (L) D=0 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 SINGLE PULSE TJL = JL(t)PPK JL(t,D)PPK REPETITIVE PULSES TJL = 0.1 0.2 0.5 1 2 5 10 Fig. 2-TYPICAL THERMAL RESPONSE L, 300 IR, REVERSE LEADAGE(uAdc) @VR AS SPECIFIED IN ELEC. CHAR. TABLE 500 RECTANGULAR NONREPETITIVE WAVEFORM TJ = 25°C PRIOR TO INITIAL PULSE 200 100 50 30 20 10 .1 .2 .3 5 1 2 3 5 10 20 50 100 0.1 0.05 0.03 0.02 0.01 0.005 0.003 0.002 0.001 0.0005 0.0003 0.0002 0.0001 1 2 5 10 20 50 100 200 500 1K P.W. PULSE WIDTH (ms) NOMINAL VZ (VOLTS) Fig. 3-MAXIMUM SURGE POWER Fig. 4-TYPICAL REVERSE LEAKAGE 8 6 4 2 0 RANGE -2 -4 3 4 6 8 10 12 VZ, ZENER VOLTAGE @IZT (VOLTS) TEMPERATURE COEFFICIENT(mV/°C) @ IZT TEMPERATURE COEFFICIENT(mV/°C ) @ IZT PPK, PEAK SURGE POWER(WATTS) 1K 200 100 RANGE 50 40 30 20 10 0 20 40 60 80 100 VZ, ZENER VOLTAGE @IZT (VOLTS) Fig. 5 - UNITS TO 12 VOLTS MDS0302004A Fig. 6 - UNITS 10 TO 100 VOLTS Page 3 Surface Mount Zener Diode COMCHIP www.comchip.com.tw Rating and Characteristic Curves (CZRB2011 Thru CZRB2100) 100 IZ, ZENER CURRENT (mA) 100 50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 9 10 10 20 30 40 50 60 70 80 90 100 VZ, ZENER VOLTAGE (VOLTS) JUNCTION-LEAD THERMAL RESISTANCE (°C/W) VZ, ZENER VOLTAGE (VOLTS) 80 70 60 PRIMARY PATH OF CONDUCTION IS THROUGH THE CATHODE LEAD 50 40 30 20 10 0 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 L, LEAD LENGTH TO HEAT SINK (INCH) Fig. 9 -TYPICAL THERMAL RESISTANCE MDS0302004A Page 4 Surface Mount Zener Diode COMCHIP www.comchip.com.tw APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, T L, should be determined from: TL = șLAPD + TA șLA is the lead-to-ambient thermal resistance (°C/W) and PD is the power dissipation. The value for șLA will vary and depends on the device mounting method. șLA is generally 30-40 °C/W for the various chips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: TJ = TL + ¨TJL MDS0302004A ¨TJL is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses or from Figure 10 for dc power. ¨TJL = șLAPD For worst-case design, using expected limits of Iz, limits of PD and the extremes of TJ (¨TJL ) may be estimated. Changes in voltage, Vz, can then be found from: ¨V = șVZ ¨TJ șVZ , the zener voltage temperature coefficient, is found from Figures 5 and 6. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly be the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded. Page 5