Fairchild FDC653N N-channel enhancement mode field effect transistor Datasheet

November 1997
FDC653N
N-Channel Enhancement Mode Field Effect Transistor
General Description
Features
This N-Channel enhancement mode power field effect
transistors is produced using Fairchild's proprietary, high cell
density, DMOS technology. This very high density process is
tailored to minimize on-state resistance. These devices are
particularly suited for low voltage applications in notebook
computers, portable phones, PCMICA cards, and other
battery powered circuits where fast switching, and low in-line
power loss are needed in a very small outline surface mount
package.
SuperSOTTM-6
SOT-23
SuperSOTTM-8
S
D
D
3
.65
5 A, 30 V. RDS(ON) = 0.035 Ω @ VGS = 10 V
RDS(ON) = 0.055 Ω @ VGS = 4.5 V.
Proprietary SuperSOTTM-6 package design using copper
lead frame for superior thermal and electrical capabilities.
High density cell design for extremely low RDS(ON).
Exceptional on-resistance and maximum DC current
capability.
SOIC-16
SOT-223
SO-8
1
6
2
5
3
4
G
SuperSOT
TM
pin 1
-6
Absolute Maximum Ratings
D
D
T A = 25°C unless otherwise note
Symbol Parameter
FDC653N
Units
VDSS
Drain-Source Voltage
30
V
VGSS
Gate-Source Voltage - Continuous
±20
V
ID
Drain Current - Continuous
(Note 1a)
5
A
PD
Maximum Power Dissipation
(Note 1a)
1.6
- Pulsed
15
(Note 1b)
TJ,TSTG
Operating and Storage Temperature Range
W
0.8
-55 to 150
°C
THERMAL CHARACTERISTICS
RθJA
Thermal Resistance, Junction-to-Ambient
(Note 1a)
78
°C/W
RθJC
Thermal Resistance, Junction-to-Case
(Note 1)
30
°C/W
© 1997 Fairchild Semiconductor Corporation
FDC653N Rev.C
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
Typ
Max
Units
OFF CHARACTERISTICS
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = 250 µA
∆BVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
ID = 250 µA, Referenced to 25 o C
30
IDSS
Zero Gate Voltage Drain Current
VDS = 24 V, VGS = 0 V
V
mV /oC
31
o
1
µA
10
µA
IGSSF
Gate - Body Leakage, Forward
VGS = 20 V, VDS = 0 V
100
nA
IGSSR
Gate - Body Leakage, Reverse
VGS = -20 V, VDS= 0 V
-100
nA
TJ = 55 C
ON CHARACTERISTICS (Note 2)
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250 µA
∆VGS(th)/∆TJ
Gate Threshold VoltageTemp.Coefficient
ID = 250 µA, Referenced to 25 o C
1
RDS(ON)
Static Drain-Source On-Resistance
VGS = 10 V, ID = 5 A
1.7
2
V
mV /oC
-4.2
o
TJ = 125 C
VGS = 4.5 V, ID = 4.2 A
0.027
0.035
0.042
0.056
0.046
0.055
8
Ω
ID(on)
On-State Drain Current
VGS = 10 V, VDS = 5 V
gFS
Forward Transconductance
VDS = 10 V, ID= 5 A
6.2
A
S
DYNAMIC CHARACTERISTICS
Ciss
Input Capacitance
VDS = 15 V, VGS = 0 V,
350
pF
Coss
Output Capacitance
f = 1.0 MHz
220
pF
Crss
Reverse Transfer Capacitance
80
pF
SWITCHING CHARACTERISTICS (Note 2)
tD(on)
Turn - On Delay Time
VDD = 10 V, ID = 1 A,
7.5
15
ns
tr
Turn - On Rise Time
VGS = 4.5 V, RGEN = 6 Ω
12
25
ns
tD(off)
Turn - Off Delay Time
13
25
ns
tf
Turn - Off Fall Time
6
15
ns
17
nC
Qg
Total Gate Charge
VDS = 15 V, ID = 5 A,
12
Qgs
Gate-Source Charge
VGS = 10 V
2.1
nC
Qgd
Gate-Drain Charge
2.6
nC
DRAIN-SOURCE DIODE CHARACTERISTICS
IS
Continuous Source Diode Current
VSD
Drain-Source Diode Forward Voltage
VGS = 0 V, IS = 1.3 A
(Note 2)
TJ = 125oC
1.3
A
0.75
1.2
V
0.6
1
Notes:
1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by
design while RθCA is determined by the user's board design.
a. 78oC/W when mounted on a minimum on a 1 in2 pad of 2oz Cu in FR-4 board.
b. 156oC/W when mounted on a minimum pad of 2oz Cu in FR-4 board.
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
FDC653N Rev.C
Typical Electrical Characteristics
VGS = 10V
3.5
6.0
R DS(ON) , NORMALIZED
5.0
4.5
12
4.0
9
3.5
6
3
0
3.0
DRAIN-SOURCE ON-RESISTANCE
I D , DRAIN-SOURCE CURRENT (A)
15
2.5
4.0
2
0.5
1
1.5
4.5
5.0
1.5
6.0
10
1
0.5
0
VGS =3.5V
3
2
0
3
6
9
I D , DRAIN CURRENT (A)
VDS , DRAIN-SOURCE VOLTAGE (V)
1.8
0.18
1.6
R DS(ON) , ON-RESISTANCE (OHM)
I D = 5.0A
V GS = 10V
1.4
1.2
1
0.8
0.6
-50
I D =2A
0.15
0.12
0.09
TA = 125°C
0.06
TA = 25°C
0.03
0
-25
0
25
50
75
100
T , JUNCTION TEMPERATURE (°C)
125
150
2
4
6
8
VGS , GATE TO SOURCE VOLTAGE (V)
10
J
Figure 3. On-Resistance Variation
with Temperature.
Figure 4. On Resistance Variation with
Gate-To- Source Voltage.
15
V DS = 5V
I S , REVERSE DRAIN CURRENT (A)
15
I D , DRAIN CURRENT (A)
RDS(ON) , NORMALIZED
15
Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage.
Figure 1. On-Region Characteristics.
DRAIN-SOURCE ON-RESISTANCE
12
12
9
TA = -55°C
6
25°C
125°C
3
0
1.5
VGS =0V
1
2.5
3
3.5
VGS , GATE TO SOURCE VOLTAGE (V)
Figure 5. Transfer Characteristics.
4
4.5
25°C
0.1
0.01
-55°C
0.001
0.0001
2
TA= 125°C
0
0.2
0.4
0.6
0.8
1
1.2
V SD , BODY DIODE FORWARD VOLTAGE (V)
Figure 6. Body Diode Forward Voltage
Variation with Source Current and
Temperature.
FDC653N Rev.B
Typical Electrical And Thermal Characteristics
1000
ID = 5.0A
V DS = 5V
8
10V
15V
6
500
CAPACITANCE (pF)
VGS , GATE-SOURCE VOLTAGE (V)
10
4
Ciss
Coss
200
100
2
0
0
2
4
6
8
10
12
50
0.1
14
0.3
Q g , GATE CHARGE (nC)
V
DS
30
S(
IT
100
10
30
us
POWER (W)
1s
DC
0.3
VGS = 10V
SINGLE PULSE
RθJA = See Note 1b
TA = 25°C
0.01
0.1
0.2
0.5
SINGLE PULSE
RθJA =See note 1b
TA = 25°C
4
1m
s
10m
s
100
ms
3
2
1
1
2
5
10
30
0
0.01
50
0.1
1
10
100
300
SINGLE PULSE TIME (SEC)
V DS , DRAIN-SOURCE VOLTAGE (V)
Figure 9. Maximum Safe Operating Area.
Figure 10. Single Pulse Maximum Power
Dissipation.
1
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
I D , DRAIN CURRENT (A)
RD
LIM
1
0.03
3
5
)
ON
3
0.1
1
, DRAIN TO SOURCE VOLTAGE (V)
Figure 8. Capacitance Characteristics.
Figure 7. Gate Charge Characteristics.
10
Crss
f = 1 MHz
V GS = 0V
0.5
D = 0.5
0.2
0.2
0.1
0.05
0.02
0.01
0.0001
RθJA (t) = r(t) * R θJA
R θJA = See Note 1b
0.1
P(pk)
0.05
t1
0.02
0.01
Single Pulse
t2
TJ - T
= P * R JA(t)
θ
Duty Cycle, D = t 1/ t 2
A
0.001
0.01
0.1
1
10
100
300
t 1, TIME (sec)
Figure 11. Transient Thermal Response Curve.
Note: Thermal characterization performed using the conditions described in note 1b.Transient thermal
response will change depending on the circuit board design.
FDC653N Rev.B
Similar pages