HA17901A Series Quadruple Comparators REJ03D0806-0100 Rev.1.00 Mar 10, 2006 Description The HA17901A series products are comparators designed for general purpose, especially for power control systems. These ICs operate from a single power-supply voltage over a wide range of voltages, and feature a reduced powersupply current since the supply current is independent of the supply voltage. These comparators have the merit which ground is included in the common-mode input voltage range at a singlevoltage power supply operation. These products have a wide range of applications, including limit comparators, simple A/D converters, pulse/square-wave/time delay generators, wide range VCO circuits, MOS clock timers, multivibrators, and high-voltage logic gates. Features • • • • • • • Wide power-supply voltage range : 2 to 36 V Very low supply current : 0.8 mA Typ. Low input bias current : 25 nA Typ. Low input offset current : 5 nA Typ. Low input offset voltage : 2 mV Typ. The common-mode input voltage range includes ground Output voltages compatible with CMOS logic systems Rev.1.00 Mar 10, 2006 page 1 of 15 HA17901A Series • Low electro-magnetic susceptibility Measurement Condition Vcc 1k 1k Vin 1V − 5.0 5.1 kΩ + 4.0 Vout 0.01 µF Vout (V) Vcc = 5 V HA17901A Vout vs. Vin 6.0 −10 dBm RF signal source (for quasi-RF noise) 3.0 2.0 1.0 HA17901A (0 Hz) HA17901A (10 MHz) HA17901A (100 MHz) 0.0 −1.0 0.85 0.90 0.95 1.00 Vin (V) 1.05 1.10 1.15 HA17901 Vout vs. Vin 6.0 5.0 Vout (V) 4.0 3.0 2.0 1.0 HA17901 (0 Hz) HA17901 (10 MHz) HA17901 (100 MHz) 0.0 −1.0 0.85 0.90 0.95 1.00 Vin (V) 1.05 1.10 1.15 Ordering Information Type No. HA17901AP HA17901AFP HA17901ARP HA17901AT Application Industry use Rev.1.00 Mar 10, 2006 page 2 of 15 Package Name DIP-14 pin SOP-14 pin (JEITA) SOP-14 pin (JEDEC) TSSOP-14 pin Package Code PRDP0014AB-B PRSP0014DF-B PRSP0014DE-A PTSP0014JA-B HA17901A Series Pin Arrangement Vout2 1 14 Vout3 Vout1 2 13 Vout4 VCC 3 Vin(−)1 4 11 Vin(+)4 Vin(+)1 5 10 Vin(−)4 Vin(−)2 6 Vin(+)2 1 7 − + 12 GND 4 − + − + + 2 3− 9 Vin(+)3 8 Vin(−)3 (Top view) Circuit Structure (1/4) VCC Q3 Q2 Vin(+) Q4 Q1 Vout Q8 Vin(−) Q7 Q5 Q6 Note: If Input/Output terminals voltage over the absolute maximum ratings, there is possibility of mis-operation, characteristics deterioration and destruction, because of the current’s flowing to parasitic diode in IC. The Input/Output terminals are recommended to be protected with the clamp circuit which using the diode with low forward voltage (like schottky barrier diode) when there is a possibility for the Input/Output terminals voltage exceeds the absolute maximum ratings. Rev.1.00 Mar 10, 2006 page 3 of 15 HA17901A Series Absolute Maximum Ratings (Ta = 25°C) Item Power supply voltage Differential input voltage Input voltage Output pin voltage Output current Allowable power dissipation Symbol DIP SOP TSSOP Operating temperature Storage temperature Ratings 36 ±VCC −0.3 to +VCC −0.3 to +36 20 625 *2 625 *3 400 *4 −40 to +85 −55 to +125 VCC Vin(diff) Vin Vout Iout *1 PT Topr Tstg Unit V V V V mA mW °C °C Notes: 1. These products can be destroyed if the output and VCC are shorted together. The maximum output current is the allowable value for continuous operation. 2. HA17901AP: These are the allowable values up to Ta = 50°C. Derate by 8.3 mW/°C above that temperature. 3. HA17901AFP/ARP: When it is mounted on glass epoxy board of 40 mm × 40 mm × 1.6 mmt with 10% wiring density, value at Ta ≤ 25°C. If Ta > 25°C, derated by 6.25 mW/°C. When it is mounted on glass epoxy board of 40 mm × 40 mm × 1.6 mmt with 30% wiring density. If Ta > 32°C, derated by 6.70 mW/°C. 4. HA17901AT: These are the allowable values up to Ta = 25°C. Derate by 4 mW/°C above that temperature. Electrical Characteristics (VCC = 5 V, Ta = 25°C) Item Input offset voltage Symbol VIO Min Typ 2 Max 7 Unit mV Input offset current Input bias current Common-mode input voltage *1 Supply current Voltage Gain *3 Response time *2,3 Output sink current Output saturation voltage IIO IIB VCM ICC AV tR IO(sink) VO(sat) 0 6 5 25 0.8 (200) (1.3) 16 200 50 250 VCC−1.5 2 400 nA nA V mA V/mV µs mA mV Output leakage current *3 ILO (0.1) nA Test Conditions Output switching point: when VO = 1.4V, RS = 0Ω IIN(+) − IIN(−) IIN(+) or IIN(−) RL = ∞ RL = 15kΩ VRL = 5V, RL = 5.1kΩ VIN(−) = 1V, VIN(+) = 0, VO ≤ 1.5V VIN(−) = 1V, VIN(+) = 0, Iosink = 3mA VIN(+) = 1V, VIN(−) = 0, VO = 5V Notes: 1. Voltages more negative than −0.3 V are not allowed for the common-mode input voltage or for either one of the input signal voltages. 2. The stipulated response time is the value for a 100 mV input step voltage that has a 5 mV overdrive. 3. Design spec. Rev.1.00 Mar 10, 2006 page 4 of 15 HA17901A Series Test Circuits 1. Input offset voltage (VIO), input offset current (IIO), and Input bias current (IIB) test circuit Rf 5k VCC SW1 RS 50 R 20 k RS 50 R 20 k RL 51k VO + + 470µ − V SW2 Rf 5 k VC1 − SW1 On Off On Off SW2 On Off Off On Vout VO1 1 VC1 = V 2 CC VO2 VO3 VC2 = 1.4V VO4 VC2 VIO = | VO1 | 1 + Rf / RS (mV) IIO = | VO2 − VO1 | R(1 + Rf / RS) (nA) IIB = | VO4 − VO3 | 2 ⋅ R(1 + Rf / RS) (nA) 2. Output saturation voltage (VO sat) output sink current (Iosink), and common-mode input voltage (VCM) test circuit VCC 50 SW1 1 2 VC1 5k 4.87k 1.6k SW2 1 2 − + 50 50 SW3 Item VC1 VOsat 2V VC2 0V VC3 SW1 1 Iosink 2V VCM 2V 0V −1 to VCC 1.5V 1 2 VC3 VC2 3. Supply current (ICC) test circuit + 1V Rev.1.00 Mar 10, 2006 page 5 of 15 − A VCC ICC: RL = ∞ SW2 1 SW3 Unit 1 at V VCC = 5V 3 at VCC = 15V 1 2 mA Switched 3 V between 1 and 2 HA17901A Series 4. Voltage gain (AV) test circuit (RL = 15 kΩ) VCC +V 20k Vin 10k 30k 10µ + − AV = 20 log VO1 − VO2 VIN1 − VIN2 VO − 50 20k 50 −V RL 15k + (dB) 5. Response time (tR) test circuit VCC − +V Vin VO 50 24k RL 5.1k + P.G VR 5k 30k −V 50 120k SW 12V tR: RL = 5.1 kΩ, a 100 mV input step voltage that has a 5 mV overdrive With VIN not applied, set the switch SW to the off position and adjust VR so that VO is in the vicinity of 1.4 V. Apply VIN and turn the switch SW on. 90% 10% tR Rev.1.00 Mar 10, 2006 page 6 of 15 HA17901A Series Characteristic Curves Input Bias Current vs. Ambient Temperature Characteristics Input Bias Current vs. Power-Supply Voltage Characteristics 90 60 VCC = 5 V Ta = 25°C Input Bias Current IIB (nA) Input Bias Current IIB (nA) 80 70 60 50 40 30 20 50 40 30 20 10 10 0 −55 −35 −15 5 25 45 65 0 85 105 125 20 30 40 Ambient Temperature Ta (°C) Power-Supply Voltage VCC (V) Supply Current vs. Ambient Temperature Characteristics Supply Current vs. Power-Supply Voltage Characteristics 1.8 1.6 VCC = 5 V RL = ∞ Supply Current ICC (mA) 1.6 Supply Current ICC (mA) 10 1.4 1.2 1.0 0.8 0.6 0.4 Ta = 25°C RL = ∞ 1.4 1.2 1.0 0.8 0.6 0.2 0 −55 −35 −15 5 25 45 65 85 105 125 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 7 of 15 0 10 20 30 Power-Supply Voltage VCC (V) 40 HA17901A Series Output Sink Current vs. Ambient Temperature Characteristics Output Sink Current vs. Power-Supply Voltage Characteristics VCC = 5 V Vin(−) = 1 V Vin(+) = 0 Vout = 1.5 V 40 35 30 25 20 15 10 5 0 −55 −35 −15 5 25 45 65 30 Output Sink Current Iosink (mA) Output Sink Current Iosink (mA) 45 20 15 10 5 0 85 105 125 0 10 20 30 40 Ambient Temperature Ta (°C) Power-Supply Voltage VCC (V) Voltage Gain vs. Ambient Temperature Characteristics Voltage Gain vs. Power-Supply Voltage Characteristics 130 130 VCC = 5 V RL = 15 kΩ 125 Ta = 25°C RL = 15 kΩ 120 120 Voltage Gain AV (dB) Voltage Gain AV (dB) 25 115 110 105 100 95 110 100 90 80 90 85 −55 −35 −15 70 5 25 45 65 85 105 125 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 8 of 15 0 10 20 30 Power-Supply Voltage VCC (V) 40 HA17901A Series HA17901A Application Examples The HA17901A houses four independent comparators in a single package, and operates over a wide voltage range at low power from a single-voltage power supply. Since the common-mode input voltage range starts at the ground potential, the HA17901A is particularly suited for single-voltage power supply applications. This section presents several sample HA17901A applications. 1. Square-Wave Oscillator The circuit shown in figure 1 has the same structure as a single-voltage power supply astable multivibrator. Figure 2 shows the waveforms generated by this circuit. 100 k 75 pF C VCC VCC 4.3 k VCC R − HA17901A Vout + 100 k 100 k 100 k Figure 1 Square-Wave Oscillator (1) Horizontal: 2 V/div, Vertical: 5 µs/div, VCC = 5 V (2) Horizontal: 5 V/div, Vertical: 5 µs/div, VCC = 15 V Figure 2 Operating Waveforms Rev.1.00 Mar 10, 2006 page 9 of 15 HA17901A Series 2. Pulse Generator The charge and discharge circuits in the circuit from figure 1 are separated by diodes in this circuit. (See figure 3.) This allows the pulse width and the duty cycle to be set independently. Figure 4 shows the waveforms generated by this circuit. VCC R1 1 M D1 IS2076 R2 100 k D2 IS2076 C 80 pF VCC − VCC HA17901A Vout + 1M 1M 1M Figure 3 Pulse Generator Horizontal: 2 V/div, Vertical: 20 µs/div, VCC = 5 V Horizontal: 5 V/div, Vertical: 20 µs/div, VCC = 15 V Figure 4 Operating Waveforms Rev.1.00 Mar 10, 2006 page 10 of 15 HA17901A Series 3. Voltage Controlled Oscillator In the circuit in figure 5, comparator A1 operates as an integrator, A2 operates as a comparator with hysteresis, and A3 operates as the switch that controls the oscillator frequency. If the output Vout1 is at the low level, the A3 output will go to the low level and the A1 inverting input will become a lower level than the A1 noninverting input. The A1 output will integrate this state and its output will increase towards the high level. When the output of the integrator A1 exceeds the level on the comparator A2 inverting input, A2 inverts to the high level and both the output Vout1 and the A3 output go to the high level. This causes the integrator to integrate a negative state, resulting in its output decreasing towards the low level. Then, when the A1 output level becomes lower than the level on the A2 noninverting input, the output Vout1 is once again inverted to the low level. This operation generates a square wave on Vout1 and a triangular wave on Vout2. VCC 100 k − +VC Frequency control voltage input 0.1 µ 20 k 10 100 k VCC 500 p A1 VCC 3k 5.1 k HA17901A 3k + 0.01 µ + VCC HA17901A VCC/2 20 k A2 Output 1 − VCC 50 k A3 − Output 2 VCC/2 HA17901A VCC = 30 V +250 mV < +VC < +50 V 700 Hz < / < 100 kHz + Figure 5 Voltage Controlled Oscillator 4. Basic Comparator The circuit shown in figure 6 is a basic comparator. When the input voltage VIN exceeds the reference voltage VREF, the output goes to the high level. VCC Vin + VREF − 3 kΩ HA17901A Figure 6 Basic Comparator Rev.1.00 Mar 10, 2006 page 11 of 15 HA17901A Series 5. Noninverting Comparator (with Hysteresis) Assuming +VIN is 0 V, when VREF is applied to the inverting input, the output will go to the low level (approximately 0 V). If the voltage applied to +VIN is gradually increased, the output will go high when the value of the noninverting input, +VIN × R2/(R1 + R2), exceeds +VREF. Next, if +VIN is gradually lowered, Vout will be inverted to the low level once again when the value of the noninverting input, (Vout – VIN) × R1/(R1 + R2), becomes lower than VREF. With the circuit constants shown in figure 7, assuming VCC = 15 V and +VREF = 6 V, the following formula can be derived, i.e. +VIN × 10 M/(5.1 M + 10 M) > 6 V, and Vout will invert from low to high when +VIN is > 9.06 V. (Vout − VIN) × R1 + VIN < 6V R1 + R 2 (Assuming Vout = 15V) When +VIN is lowered, the output will invert from high to low when +VIN < 1.41 V. Therefore this circuit has a hysteresis of 7.65 V. Figure 8 shows the input characteristics. VCC − +VREF +Vin VCC 3k Vout HA17901A R1 + 5.1 M 10 M R2 Figure 7 Noninverting Comparator Output Voltage Vout (V) 20 VCC = 15 V, +VREF = 6 V +Vin = 0 to 10 V 16 12 8 4 0 0 5 10 15 Input Voltage VIN (V) Figure 8 Noninverting Comparator I/O Transfer Characteristics Rev.1.00 Mar 10, 2006 page 12 of 15 HA17901A Series 6. Inverting Comparator (with Hysteresis) In this circuit, the output Vout inverts from high to low when +VIN > (VCC + Vout)/3. Similarly, the output Vout inverts from low to high when +VIN < VCC/3. With the circuit constants shown in figure 9, assuming VCC = 15 V and Vout = 15 V, this circuit will have a 5 V hysteresis. Figure 10 shows the I/O characteristics for the circuit in figure 9. VCC VCC − +Vin 1M VCC 3k Vout HA17901A + 1M 1M Figure 9 Inverting Comparator Output Voltage Vout (V) 20 VCC = 15 V 16 12 8 4 0 0 5 10 15 Input Voltage VIN (V) Figure 10 Inverting Comparator I/O Transfer Characteristics 7. Zero-Cross Detector (Single-Voltage Power Supply) In this circuit, the noninverting input will essentially beheld at the potential determined by dividing VCC with 100 kΩ and 10 kΩ resistors. When VIN is 0 V or higher, the output will be low, and when VIN is negative, Vout will invert to the high level. (See figure 11.) VCC Vin 5.1 k 1S2076 100 k 5.1 k 100 k VCC − HA17339A + 10 k 20 M Figure 11 Zero-Cross Detector Rev.1.00 Mar 10, 2006 page 13 of 15 5.1 k Vout HA17901A Series Package Dimensions JEITA Package Code P-DIP14-6.3x19.2-2.54 RENESAS Code PRDP0014AB-B Previous Code DP-14AV MASS[Typ.] 0.97g D 8 E 14 7 1 b3 A Z A1 Reference Symbol L e1 D E A A1 bp b3 c θ e Z L θ bp e c e1 ( Ni/Pd/Au plating ) JEITA Package Code P-SOP14-5.5x10.06-1.27 RENESAS Code PRSP0014DF-B *1 Previous Code FP-14DAV Dimension in Millimeters Min Nom Max 7.62 19.2 20.32 6.3 7.4 5.06 0.51 0.40 0.48 0.56 1.30 0.19 0.25 0.31 0° 15° 2.29 2.54 2.79 2.39 2.54 MASS[Typ.] 0.23g D F 14 NOTE) 1. DIMENSIONS"*1 (Nom)"AND"*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET. 8 c HE *2 E bp Index mark Terminal cross section ( Ni/Pd/Au plating ) 1 Z 7 e *3 bp x Reference Dimension in Millimeters Symbol M A L1 A1 θ y L Detail F Rev.1.00 Mar 10, 2006 page 14 of 15 D E A2 A1 A bp b1 c c1 θ HE e x y Z L L1 Min Nom Max 10.06 10.5 5.50 0.00 0.10 0.20 2.20 0.34 0.40 0.46 0.15 0.20 0.25 0° 8° 7.50 7.80 8.00 1.27 0.12 0.15 1.42 0.50 0.70 0.90 1.15 HA17901A Series JEITA Package Code P-SOP14-3.95x8.65-1.27 RENESAS Code PRSP0014DE-A *1 Previous Code FP-14DNV MASS[Typ.] 0.13g NOTE) 1. DIMENSIONS"*1 (Nom)"AND"*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET. F D 14 8 c *2 Index mark HE E bp Terminal cross section ( Ni/Pd/Au plating ) Reference Dimension in Millimeters Symbol Min 1 7 *3 e Z bp x M A L1 A1 θ L y Detail F JEITA Package Code P-TSSOP14-4.4x5-0.65 RENESAS Code PTSP0014JA-B *1 Previous Code TTP-14DV D E A2 A1 A bp b1 c c1 θ HE e x y Z L L1 Nom Max 8.65 9.05 3.95 0.10 0.14 0.25 1.75 0.34 0.40 0.46 0.15 0.20 0.25 0° 8° 5.80 6.10 6.20 1.27 0.25 0.15 0.635 0.40 0.60 1.27 1.08 MASS[Typ.] 0.05g D F 14 8 NOTE) 1. DIMENSIONS"*1 (Nom)"AND"*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET. HE c *2 E bp Index mark Terminal cross section ( Ni/Pd/Au plating ) Reference Dimension in Millimeters Symbol 7 1 *3 Z bp x M L1 A e A1 θ L y Detail F Rev.1.00 Mar 10, 2006 page 15 of 15 D E A2 A1 A bp b1 c c1 θ HE e x y Z L L1 Min Nom Max 5.00 5.30 4.40 0.03 0.07 0.10 1.10 0.15 0.20 0.25 0.10 0.15 0.20 0° 8° 6.20 6.40 6.60 0.65 0.13 0.10 0.83 0.4 0.5 0.6 1.0 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510 © 2006. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .6.0