HFA-0002 ® T DUC 105 PRO 0, HFA1 enter at E T 112 rt C OLE c OBS 100, HFAal Suppo l.com/ts i c 1 i s r chn HFA nte See t our Te r www.i c o a t L n SI or co 8-INTER 1-88 September 1998 Low Noise Wideband Operational Amplifier Features Description • Wide Gain Bandwidth Product . . . . . . . . . . . . . . . 1GHz The HFA-0002 is a very wideband, high slew rate, op amp, featuring precision DC characteristics. Stable in gains of 10 or greater this all bipolar op amp offers a combination of AC and DC performance never seen before in monolithic form. • High Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 250V/µs • High Open Loop Gain . . . . . . . . . . . . . . . . . . . .105V/mV • Low Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . 0.6mV • Low Power Consumption . . . . . . . . . . . . . . . . . . 143mW • Low Input Voltage Noise at 1kHz . . . . . . . . . .2.7nV/√Hz • Monolithic Construction The high gain bandwidth product (1GHz) and high slew rate (250V/µs) make this op amp ideal for use in video and RF circuits. The low offset voltage (0.6mV), low bias current (0.23µA), and low voltage noise (2.7nV/√Hz) specifications combined with the excellent AC characteristics make this op amp ideal for high speed data acquisition systems with high accuracy. Applications Part Number Information • RF/IF Processors • Video Amplifiers PART NUMBER • Radar Systems • High Speed Communications • Fast Data Acquisition Systems PACKAGE o o 8 Pin CAN HFA2-0002-9 -40oC +85oC 8 Pin CAN HFA3-0002-5 0oC HFA2-0002-5 • Pulse Amplifiers TEMPERATURE RANGE HFA3-0002-9 0 C to +75 C to to +75oC o 8 Lead Plastic DIP o -40 C to +85 C HFA7-0002-5 HFA7-0002-9 -40oC HFA9P0002-5 o o 8 Lead SOIC -40oC +85oC 8 Lead SOIC HFA9P0002-9 to +75oC 8 Lead Plastic DIP 0oC to 8 Lead Ceramic Sidebraze DIP +85oC 0 C to +75 C to 8 Lead Ceramic Sidebraze DIP Pinouts HFA-0002 (PDIP, CDIP, SOIC) TOP VIEW HFA-0002 (TO-99 METAL CAN) TOP VIEW NC 8 BAL 1 8 NC - IN 2 +IN 3 V- 4 7 V+ + BAL 1 - IN 2 6 OUT 5 BAL +IN 3 7 V+ + 6 OUT 5 BAL 4 DB500 V- CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002. All Rights Reserved 2-608 File Number 2917.3 Specifications HFA-0002 Absolute Maximum Ratings (Note 1) Operating Conditions Supply Voltage Between V+ and V-Terminals . . . . . . . . . . . . . . 12V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5V Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA Junction Temperature (Note 10). . . . . . . . . . . . . . . . . . . . . . +175oC Junction Temperature (Plastic Package) . . . . . . . . . . . . . . . +150oC Lead Temperature (Soldering 10 Sec.) . . . . . . . . . . . . . . . . +300oC Operating Temperature Range : HFA-0002-9 . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC ≤ TA ≤ +85oC HFA-0002-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC ≤ TA ≤ +75oC Storage Temperature Range . . . . . . . . . . . . . . -65oC ≤ TA ≤ 150oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Electrical Specifications V+ = +5V, V- = -5V, Unless Otherwise Specified HFA-0002-5/-9 PARAMETER TEMP MIN TYP MAX UNITS INPUT CHARACTERISTICS Offset Voltage Average Offset Voltage Drift Bias Current +25oC - 0.6 1 mV Full - 1.2 2 mV Full - 2.0 - µV/oC - 0.23 1.0 µA +25 oC High - 0.1 1.0 µA Low - 0.32 2.0 µA - 0.12 1.0 µA Full - 0.16 1.0 µA Full ±2.5 - - V Differential Input Resistance +25 oC - 1 - MΩ Input Capacitance +25oC - 2 - pF 0.1Hz to 10Hz +25oC - 5.1 - nV RMS 10Hz to 1MHz +25oC - 2.02 - µVRMS fO = 10Hz +25oC - 8.9 - nV/√Hz fO = 100Hz +25oC - 3.7 - nV/√Hz fO = 1000Hz +25oC - 2.7 - nV/√Hz fO = 10Hz +25oC - 25 - pA/√Hz fO = 100Hz +25oC - 8.4 - pA/√Hz fO = 1000Hz +25oC - 4.5 - pA/√Hz Offset Current Common Mode Range +25 oC Input Noise Voltage Input Noise Voltage Input Noise Current TRANSFER CHARACTERISTICS Large Signal Voltage Gain (Note 2, 4) Common Mode Rejection Ratio (Note 3) Full 80 105 - V/mV +25oC 100 110 - dB Full 90 108 - dB +25oC - 1 - GHz Full 10 - - V/V Gain Bandwidth Product fO = 1MHz Minimum Stable Gain OUTPUT CHARACTERISTICS Output Voltage Swing (Note 4) Full ±3.5 ±3.9 - V Full Power Bandwidth (Note 5) +25oC 10.6 13.3 - MHz Output Resistance, Open Loop +25oC - 5 - Ω Full ±10 ±12 - mA Output Current TRANSIENT RESPONSE 2-609 Specifications HFA-0002 Electrical Specifications V+ = +5V, V- = -5V, Unless Otherwise Specified (Continued) HFA-0002-5/-9 TEMP MIN TYP MAX Rise Time (Note 4, 6) PARAMETER +25oC - 3.2 - UNITS ns Slew Rate (Note 4, 7, 9) +25oC 200 250 - V/µs Settling Time (Note 4, 7) +25oC - 50 - ns Overshoot (Note 4, 6) +25oC - 30 - % Supply Current Full - 14 20 mA Power Supply Rejection Ratio (Note 8) Full 90 99 - dB POWER SUPPLY CHARACTERISTICS NOTES: 1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied. 2. VOUT = ±3V. 3. ∆VCM = ±2V. 4. RL = 5K, C L = 20pF. Slew Rate = 3.0V . 5. Full Power Bandwidth is guaranteed by equation: FPBW = ------------------------ , V 2π V peak peak = ±100mV, A = +10. 6. V OUT V 7. VOUT = ±3V, AV = +10. 8. ∆VS = ±4V to ±6V. 9. This parameter is not tested. This limit is guaranteed based on characterization and reflects lot to lot variation. 10. See Thermal Constants in "Applications Information" section. Maximum power dissipation, including output load, must be designed to maintain the junction temperature below +175oC for hermetic packages, and below +150oC for plastic packages. Simplified Schematic Diagram +BAL BAL +V OUT +IN IN V Die Characteristics Thermal Constants (oC/W) CAN . . . . . . . . . . . . . . . . . . . . . . . . . PDIP . . . . . . . . . . . . . . . . . . . . . . . . CDIP . . . . . . . . . . . . . . . . . . . . . . . . SOIC . . . . . . . . . . . . . . . . . . . . . . . . θJA 117 96 75 158 θJC 36 34 13 43 2-610 HFA-0002 Test Circuits VIN + 50Ω VOUT 4.5kΩ 20pF 500Ω FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT 0.3V 10mV IN IN 0V 0V -10mV -0.3V 3V 100mV OUT 0V 0V OUT -100mV -3V LARGE SIGNAL RESPONSE Input: 0.2V/Div. Output: 2V/Div. Horizontal Scale: 20ns/Div. SMALL SIGNAL RESPONSE Input: 10mV/Div. Output: 100mV/Div. VSETTLE 1K 10K • AV = -10 5K • Feedback and summing resistors must be matched (0.1%) 500 VIN • HP5082-2810 clipping diodes recommended + VOUT • Tektronix P6201 FET probe used at settling point FIGURE 3. SETTLING TIME SCHEMATIC 2-611 HFA-0002 Typical Performance Curves VS = ±5V, TA = +25oC, Unless Otherwise Specified AV = +10, RL = 5K, CL = 20pF 120 80 60 40 20 0 180 135 90 45 0 PHASE 1K 10K 100K 1M 10M FREQUENCY (Hz) 100M 60 40 0 PHASE 0 45 90 135 180 -20 1M 500M FIGURE 4. OPEN LOOP GAIN AND PHASE vs FREQUENCY 10M FREQUENCY (Hz) 100M 200M FIGURE 5. CLOSED LOOP GAIN vs FREQUENCY 80 AV = +100, RL = 5K, CL = 20pF 60 GAIN (dB) 100 +PSRR 60 -PSRR 40 20 40 0 20 -20 0 45 0 90 135 180 100 1K 10K 100K 1M 10M 1K 100M 10K 100K 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 6. PSRR vs FREQUENCY FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY VOUT = 3V, RL = 5K, C L = 20pF 120 300 100 SLEW RATE (V/µs) CMRR (dB) 80 60 40 20 0 250 200 150 100 50 100 1K 10K 100K 1M FREQUENCY (Hz) 10M 100M 0 -60 -40 -20 0 20 40 60 80 100 TEMPERATURE (oC) FIGURE 8. CMRR vs FREQUENCY FIGURE 9. SLEW RATE vs TEMPERATURE 2-612 120 PHASE SHIFT (DEGREES) 80 PSRR (dB) GAIN 20 PHASE SHIFT (DEGREES) GAIN GAIN (dB) 80 PHASE MARGIN (DEGREES) GAIN (dB) 100 HFA-0002 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -60 VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued) 900 800 700 BIAS CURRENT (nA) OFFSET VOLTAGE (mV) Typical Performance Curves 400 300 100 -40 -20 0 20 40 60 TEMPERATURE (oC) 80 100 0 -60 120 -40 -20 0 20 40 TEMPERATURE 60 -40 -20 0 20 40 60 80 100 120 o TEMPERATURE ( C) FIGURE 11. BIAS CURRENT vs TEMPERATURE GAIN (V/mV) OFFSET CURRENT (nA) 500 200 FIGURE 10. OFFSET VOLTAGE vs TEMPERATURE 4 Representative Units 800 700 600 500 400 300 200 100 0 -100 -200 -300 -400 -500 -600 -700 -800 -60 600 80 100 120 (oC) 200 190 RL = 5K, VOUT = 0 to ±3V 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -60 -40 -20 0 20 40 60 80 100 TEMPERATURE (oC) FIGURE 12. OFFSET CURRENT vs TEMPERATURE 4 Representative Units FIGURE 13. OPEN LOOP GAIN vs TEMPERATURE 2-613 120 HFA-0002 Typical Performance Curves 5.0 4.8 VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued) 15 RL = 5K VOUT = ±3V OUTPUT CURRENT (±mA) PEAK OUTPUT VOLTAGE (±V) 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 14 13 12 11 2.8 2.6 2.4 -60 -40 -20 0 20 40 60 80 100 10 -60 120 -40 -20 0 FIGURE 14. OUTPUT VOLTAGE SWING vs TEMPERATURE 140 40 60 80 100 120 FIGURE 15. OUTPUT CURRENT vs TEMPERATURE 140 VCM = 0 to ±3V ∆VS = ±4V to ±6V 130 130 120 CMRR (dB) 20 TEMPERATURE (oC) TEMPERATURE (oC) PSRR (dB) 120 110 +PSRR 110 -PSRR 100 100 90 -60 90 -40 -20 0 20 40 60 80 100 80 -60 120 -40 -20 TEMPERATURE (oC) 40 60 80 100 120 100 120 FIGURE 17. PSRR vs TEMPERATURE 16 15 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 20 TEMPERATURE (oC) FIGURE 16. CMRR vs TEMPERATURE 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2.0 0 14 13 12 11 2.4 2.8 3.2 3.6 4.0 4.4 10 -60 4.8 -40 -20 0 20 40 60 80 TEMPERATURE (oC) SUPPLY VOLTAGE (±V) FIGURE 18. SUPPLY CURRENT vs SUPPLY VOLTAGE FIGURE 19. SUPPLY CURRENT vs TEMPERATURE 2-614 HFA-0002 Typical Performance Curves 200 AV = +10, RL = 5K 4 3 2 1 160 140 120 100 80 60 40 20 0 1M 10M 100M FREQUENCY (Hz) 0 10 1G FIGURE 20. OUTPUT VOLTAGE SWING vs FREQUENCY 5 5 4 4 3 2 2 1 100 1K 0 -60 10K -40 -20 0 20 40 60 80 100 120 TEMPERATURE (oC) FIGURE 22. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE FIGURE 23. RISE TIME vs TEMPERATURE 80 80 9 9 70 70 8 8 60 60 7 7 6 6 50 50 40 40 5 NOISE CURRENT 5 4 4 3 3 2 NOISE VOLTAGE 1 0 100 2 INPUT NOISE VOLTAGE (nV/√Hz) 10 INPUT NOISE CURRENT (pA/√Hz) 10 1 1K 10K FREQUENCY (Hz) NOISE CURRENT 30 30 20 20 NOISE 10 VOLTAGE 10 0 0 100K 1 10 100 1K 10K FREQUENCY (Hz) FIGURE 24. INPUT NOISE vs FREQUENCY FIGURE 25. INPUT NOISE vs FREQUENCY 2-615 0 100K INPUT NOISE CURRENT (pA/√Hz) 10 LOAD RESISTANCE (Ω) INPUT NOISE VOLTAGE (nV/√Hz) 10K 3 1 0 100 1K LOAD RESISTANCE (Ω) FIGURE 21. OPEN LOOP GAIN vs LOAD RESISTANCE RISE TIME (ns) PEAK OUTPUT VOLTAGE SWING (V) VOUT = ±3V 180 OPEN LOOP GAIN (V/mV) PEAK OUTPUT VOLTAGE SWING (V) 5 VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued) Typical Performance Curves VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued) FIGURE 27. INPUT NOISE VOLTAGE 10Hz to 1MHz AV = 500, Noise Voltage = 2.02µVRMS (RTI) FIGURE 26. INPUT NOISE VOLTAGE 0.1Hz to 10Hz AV = 25,000, Noise Voltage = 3.31nVRMS (RTI) 2-616 HFA-0002 Applications Information Offset Voltage Adjustment The HFA-0002, due to its low offset voltage, will typically not require any external offset adjustment. If certain applications do require lower offset, the following diagram shows one possible configuration. and sometime take a long time to recover. By clamping the input to safe levels, output saturation can be avoided. If output saturation cannot be avoided, the recovery time for an input sine wave at 25% overdrive is 100ns. +5V 20K 7 1 2 5 6 + 3 4 - 5V FIGURE 29. The power supply lines must be well decoupled to filter any power supply noise. A 20K trim pot will allow an offset adjustment of about 3mV, referred to input. PC Board Layout Guidelines When designing with the HFA-0002, good high frequency (RF) techniques should be used when doing pc board layouts. A massive ground plane should be used to maintain a low impedance ground. PC board traces should be kept as short as possible and kept wide to minimize trace inductance and impedance. Stray capacitance at the op amps output and at the high impedance inputs should be kept to a minimum, to prevent any unwanted phase shift and bandwidth limiting. When breadboarding remember to keep feedback resistor values low (≤5kΩ) for optimum performance. The use of metal film resistors for values over 200Ω and carbon film resistors under 200Ω typically gives the best performance. Remember to keep all lead lengths as short as possible to minimize lead inductance. Sockets will add parasitic capacitance and inductance and therefore can limit AC performance as well as reduce stability. If sockets must be used, a low profile socket with minimum pin to pin capacitance will minimize any performance degradation. Power supply decoupling is essential for high frequency op amps. A 0.01µF high quality ceramic capacitor at each supply pin in parallel with a 1µF tantalum capacitor will provide excellent decoupling. Chip capacitors produce the best results due to the ease of placement next to the op amp and they have negligible lead inductance. If leaded capacitors are used, again the lead lengths should be kept to a minimum. Saturation Recovery When an op amp is over driven output devices can saturate 2-617