Intersil HFA9P0002-5 Low noise wideband operational amplifier Datasheet

HFA-0002
®
T
DUC
105
PRO 0, HFA1 enter at
E
T
112
rt C
OLE
c
OBS 100, HFAal Suppo l.com/ts
i
c
1
i
s
r
chn
HFA
nte
See t our Te r www.i
c
o
a
t
L
n
SI
or co 8-INTER
1-88
September 1998
Low Noise Wideband
Operational Amplifier
Features
Description
• Wide Gain Bandwidth Product . . . . . . . . . . . . . . . 1GHz
The HFA-0002 is a very wideband, high slew rate, op amp,
featuring precision DC characteristics. Stable in gains of 10
or greater this all bipolar op amp offers a combination of AC
and DC performance never seen before in monolithic form.
• High Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 250V/µs
• High Open Loop Gain . . . . . . . . . . . . . . . . . . . .105V/mV
• Low Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . 0.6mV
• Low Power Consumption . . . . . . . . . . . . . . . . . . 143mW
• Low Input Voltage Noise at 1kHz . . . . . . . . . .2.7nV/√Hz
• Monolithic Construction
The high gain bandwidth product (1GHz) and high slew rate
(250V/µs) make this op amp ideal for use in video and RF
circuits. The low offset voltage (0.6mV), low bias current
(0.23µA), and low voltage noise (2.7nV/√Hz) specifications
combined with the excellent AC characteristics make this op
amp ideal for high speed data acquisition systems with high
accuracy.
Applications
Part Number Information
• RF/IF Processors
• Video Amplifiers
PART
NUMBER
• Radar Systems
• High Speed Communications
• Fast Data Acquisition Systems
PACKAGE
o
o
8 Pin CAN
HFA2-0002-9
-40oC
+85oC
8 Pin CAN
HFA3-0002-5
0oC
HFA2-0002-5
• Pulse Amplifiers
TEMPERATURE RANGE
HFA3-0002-9
0 C to +75 C
to
to
+75oC
o
8 Lead Plastic DIP
o
-40 C to +85 C
HFA7-0002-5
HFA7-0002-9
-40oC
HFA9P0002-5
o
o
8 Lead SOIC
-40oC
+85oC
8 Lead SOIC
HFA9P0002-9
to
+75oC
8 Lead Plastic DIP
0oC
to
8 Lead Ceramic Sidebraze DIP
+85oC
0 C to +75 C
to
8 Lead Ceramic Sidebraze DIP
Pinouts
HFA-0002
(PDIP, CDIP, SOIC)
TOP VIEW
HFA-0002
(TO-99 METAL CAN)
TOP VIEW
NC
8
BAL 1
8 NC
- IN 2
+IN
3
V-
4
7 V+
+
BAL 1
- IN 2
6 OUT
5 BAL
+IN 3
7 V+
+
6 OUT
5 BAL
4
DB500
V-
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2002. All Rights Reserved
2-608
File Number
2917.3
Specifications HFA-0002
Absolute Maximum Ratings (Note 1)
Operating Conditions
Supply Voltage Between V+ and V-Terminals . . . . . . . . . . . . . . 12V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±5V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA
Junction Temperature (Note 10). . . . . . . . . . . . . . . . . . . . . . +175oC
Junction Temperature (Plastic Package) . . . . . . . . . . . . . . . +150oC
Lead Temperature (Soldering 10 Sec.) . . . . . . . . . . . . . . . . +300oC
Operating Temperature Range :
HFA-0002-9 . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC ≤ TA ≤ +85oC
HFA-0002-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC ≤ TA ≤ +75oC
Storage Temperature Range . . . . . . . . . . . . . . -65oC ≤ TA ≤ 150oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Electrical Specifications
V+ = +5V, V- = -5V, Unless Otherwise Specified
HFA-0002-5/-9
PARAMETER
TEMP
MIN
TYP
MAX
UNITS
INPUT CHARACTERISTICS
Offset Voltage
Average Offset Voltage Drift
Bias Current
+25oC
-
0.6
1
mV
Full
-
1.2
2
mV
Full
-
2.0
-
µV/oC
-
0.23
1.0
µA
+25
oC
High
-
0.1
1.0
µA
Low
-
0.32
2.0
µA
-
0.12
1.0
µA
Full
-
0.16
1.0
µA
Full
±2.5
-
-
V
Differential Input Resistance
+25
oC
-
1
-
MΩ
Input Capacitance
+25oC
-
2
-
pF
0.1Hz to 10Hz
+25oC
-
5.1
-
nV RMS
10Hz to 1MHz
+25oC
-
2.02
-
µVRMS
fO = 10Hz
+25oC
-
8.9
-
nV/√Hz
fO = 100Hz
+25oC
-
3.7
-
nV/√Hz
fO = 1000Hz
+25oC
-
2.7
-
nV/√Hz
fO = 10Hz
+25oC
-
25
-
pA/√Hz
fO = 100Hz
+25oC
-
8.4
-
pA/√Hz
fO = 1000Hz
+25oC
-
4.5
-
pA/√Hz
Offset Current
Common Mode Range
+25
oC
Input Noise Voltage
Input Noise Voltage
Input Noise Current
TRANSFER CHARACTERISTICS
Large Signal Voltage Gain (Note 2, 4)
Common Mode Rejection Ratio (Note 3)
Full
80
105
-
V/mV
+25oC
100
110
-
dB
Full
90
108
-
dB
+25oC
-
1
-
GHz
Full
10
-
-
V/V
Gain Bandwidth Product
fO = 1MHz
Minimum Stable Gain
OUTPUT CHARACTERISTICS
Output Voltage Swing (Note 4)
Full
±3.5
±3.9
-
V
Full Power Bandwidth (Note 5)
+25oC
10.6
13.3
-
MHz
Output Resistance, Open Loop
+25oC
-
5
-
Ω
Full
±10
±12
-
mA
Output Current
TRANSIENT RESPONSE
2-609
Specifications HFA-0002
Electrical Specifications
V+ = +5V, V- = -5V, Unless Otherwise Specified (Continued)
HFA-0002-5/-9
TEMP
MIN
TYP
MAX
Rise Time (Note 4, 6)
PARAMETER
+25oC
-
3.2
-
UNITS
ns
Slew Rate (Note 4, 7, 9)
+25oC
200
250
-
V/µs
Settling Time (Note 4, 7)
+25oC
-
50
-
ns
Overshoot (Note 4, 6)
+25oC
-
30
-
%
Supply Current
Full
-
14
20
mA
Power Supply Rejection Ratio (Note 8)
Full
90
99
-
dB
POWER SUPPLY CHARACTERISTICS
NOTES:
1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. VOUT = ±3V.
3. ∆VCM = ±2V.
4. RL = 5K, C L = 20pF.
Slew Rate
= 3.0V .
5. Full Power Bandwidth is guaranteed by equation: FPBW = ------------------------ , V
2π V peak peak
= ±100mV, A = +10.
6. V
OUT
V
7. VOUT = ±3V, AV = +10.
8. ∆VS = ±4V to ±6V.
9. This parameter is not tested. This limit is guaranteed based on characterization and reflects lot to lot variation.
10. See Thermal Constants in "Applications Information" section. Maximum power dissipation, including output load, must be designed to
maintain the junction temperature below +175oC for hermetic packages, and below +150oC for plastic packages.
Simplified Schematic Diagram
+BAL
BAL
+V
OUT
+IN
IN
V
Die Characteristics
Thermal Constants (oC/W)
CAN . . . . . . . . . . . . . . . . . . . . . . . . .
PDIP . . . . . . . . . . . . . . . . . . . . . . . .
CDIP . . . . . . . . . . . . . . . . . . . . . . . .
SOIC . . . . . . . . . . . . . . . . . . . . . . . .
θJA
117
96
75
158
θJC
36
34
13
43
2-610
HFA-0002
Test Circuits
VIN
+
50Ω
VOUT
4.5kΩ
20pF
500Ω
FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT
0.3V
10mV
IN
IN
0V
0V
-10mV
-0.3V
3V
100mV
OUT
0V
0V
OUT
-100mV
-3V
LARGE SIGNAL RESPONSE
Input: 0.2V/Div. Output: 2V/Div.
Horizontal Scale: 20ns/Div.
SMALL SIGNAL RESPONSE
Input: 10mV/Div. Output: 100mV/Div.
VSETTLE
1K
10K
• AV = -10
5K
• Feedback and summing resistors must be
matched (0.1%)
500
VIN
• HP5082-2810 clipping diodes recommended
+
VOUT
• Tektronix P6201 FET probe used at settling point
FIGURE 3. SETTLING TIME SCHEMATIC
2-611
HFA-0002
Typical Performance Curves
VS = ±5V, TA = +25oC, Unless Otherwise Specified
AV = +10, RL = 5K, CL = 20pF
120
80
60
40
20
0
180
135
90
45
0
PHASE
1K
10K
100K
1M
10M
FREQUENCY (Hz)
100M
60
40
0
PHASE
0
45
90
135
180
-20
1M
500M
FIGURE 4. OPEN LOOP GAIN AND PHASE vs FREQUENCY
10M
FREQUENCY (Hz)
100M
200M
FIGURE 5. CLOSED LOOP GAIN vs FREQUENCY
80
AV = +100, RL = 5K, CL = 20pF
60
GAIN (dB)
100
+PSRR
60
-PSRR
40
20
40
0
20
-20
0
45
0
90
135
180
100
1K
10K
100K
1M
10M
1K
100M
10K
100K
1M
10M
100M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 6. PSRR vs FREQUENCY
FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY
VOUT = 3V, RL = 5K, C L = 20pF
120
300
100
SLEW RATE (V/µs)
CMRR (dB)
80
60
40
20
0
250
200
150
100
50
100
1K
10K
100K
1M
FREQUENCY (Hz)
10M
100M
0
-60
-40
-20
0
20
40
60
80
100
TEMPERATURE (oC)
FIGURE 8. CMRR vs FREQUENCY
FIGURE 9. SLEW RATE vs TEMPERATURE
2-612
120
PHASE SHIFT (DEGREES)
80
PSRR (dB)
GAIN
20
PHASE SHIFT (DEGREES)
GAIN
GAIN (dB)
80
PHASE MARGIN (DEGREES)
GAIN (dB)
100
HFA-0002
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
-1.0
-60
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
900
800
700
BIAS CURRENT (nA)
OFFSET VOLTAGE (mV)
Typical Performance Curves
400
300
100
-40
-20
0
20
40
60
TEMPERATURE (oC)
80
100
0
-60
120
-40
-20
0
20
40
TEMPERATURE
60
-40
-20
0
20
40
60
80
100
120
o
TEMPERATURE ( C)
FIGURE 11. BIAS CURRENT vs TEMPERATURE
GAIN (V/mV)
OFFSET CURRENT (nA)
500
200
FIGURE 10. OFFSET VOLTAGE vs TEMPERATURE
4 Representative Units
800
700
600
500
400
300
200
100
0
-100
-200
-300
-400
-500
-600
-700
-800
-60
600
80
100
120
(oC)
200
190 RL = 5K, VOUT = 0 to ±3V
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
-60
-40 -20
0
20
40
60
80
100
TEMPERATURE (oC)
FIGURE 12. OFFSET CURRENT vs TEMPERATURE
4 Representative Units
FIGURE 13. OPEN LOOP GAIN vs TEMPERATURE
2-613
120
HFA-0002
Typical Performance Curves
5.0
4.8
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
15
RL = 5K
VOUT = ±3V
OUTPUT CURRENT (±mA)
PEAK OUTPUT VOLTAGE (±V)
4.6
4.4
4.2
4.0
3.8
3.6
3.4
3.2
3.0
14
13
12
11
2.8
2.6
2.4
-60
-40
-20
0
20
40
60
80
100
10
-60
120
-40
-20
0
FIGURE 14. OUTPUT VOLTAGE SWING vs TEMPERATURE
140
40
60
80
100
120
FIGURE 15. OUTPUT CURRENT vs TEMPERATURE
140
VCM = 0 to ±3V
∆VS = ±4V to ±6V
130
130
120
CMRR (dB)
20
TEMPERATURE (oC)
TEMPERATURE (oC)
PSRR (dB)
120
110
+PSRR
110
-PSRR
100
100
90
-60
90
-40
-20
0
20
40
60
80
100
80
-60
120
-40
-20
TEMPERATURE (oC)
40
60
80
100
120
100
120
FIGURE 17. PSRR vs TEMPERATURE
16
15
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
20
TEMPERATURE (oC)
FIGURE 16. CMRR vs TEMPERATURE
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
2.0
0
14
13
12
11
2.4
2.8
3.2
3.6
4.0
4.4
10
-60
4.8
-40
-20
0
20
40
60
80
TEMPERATURE (oC)
SUPPLY VOLTAGE (±V)
FIGURE 18. SUPPLY CURRENT vs SUPPLY VOLTAGE
FIGURE 19. SUPPLY CURRENT vs TEMPERATURE
2-614
HFA-0002
Typical Performance Curves
200
AV = +10, RL = 5K
4
3
2
1
160
140
120
100
80
60
40
20
0
1M
10M
100M
FREQUENCY (Hz)
0
10
1G
FIGURE 20. OUTPUT VOLTAGE SWING vs FREQUENCY
5
5
4
4
3
2
2
1
100
1K
0
-60
10K
-40
-20
0
20
40
60
80
100
120
TEMPERATURE (oC)
FIGURE 22. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE
FIGURE 23. RISE TIME vs TEMPERATURE
80
80
9
9
70
70
8
8
60
60
7
7
6
6
50
50
40
40
5
NOISE CURRENT
5
4
4
3
3
2
NOISE VOLTAGE
1
0
100
2
INPUT NOISE VOLTAGE (nV/√Hz)
10
INPUT NOISE CURRENT (pA/√Hz)
10
1
1K
10K
FREQUENCY (Hz)
NOISE CURRENT
30
30
20
20
NOISE
10
VOLTAGE
10
0
0
100K
1
10
100
1K
10K
FREQUENCY (Hz)
FIGURE 24. INPUT NOISE vs FREQUENCY
FIGURE 25. INPUT NOISE vs FREQUENCY
2-615
0
100K
INPUT NOISE CURRENT (pA/√Hz)
10
LOAD RESISTANCE (Ω)
INPUT NOISE VOLTAGE (nV/√Hz)
10K
3
1
0
100
1K
LOAD RESISTANCE (Ω)
FIGURE 21. OPEN LOOP GAIN vs LOAD RESISTANCE
RISE TIME (ns)
PEAK OUTPUT VOLTAGE SWING (V)
VOUT = ±3V
180
OPEN LOOP GAIN (V/mV)
PEAK OUTPUT VOLTAGE SWING (V)
5
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
Typical Performance Curves
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
FIGURE 27. INPUT NOISE VOLTAGE
10Hz to 1MHz
AV = 500, Noise Voltage = 2.02µVRMS (RTI)
FIGURE 26. INPUT NOISE VOLTAGE
0.1Hz to 10Hz
AV = 25,000, Noise Voltage = 3.31nVRMS (RTI)
2-616
HFA-0002
Applications Information
Offset Voltage Adjustment
The HFA-0002, due to its low offset voltage, will typically not
require any external offset adjustment. If certain applications
do require lower offset, the following diagram shows one
possible configuration.
and sometime take a long time to recover. By clamping the
input to safe levels, output saturation can be avoided. If
output saturation cannot be avoided, the recovery time for
an input sine wave at 25% overdrive is 100ns.
+5V
20K
7
1
2
5
6
+
3
4
- 5V
FIGURE 29.
The power supply lines must be well decoupled to filter any
power supply noise. A 20K trim pot will allow an offset
adjustment of about 3mV, referred to input.
PC Board Layout Guidelines
When designing with the HFA-0002, good high frequency
(RF) techniques should be used when doing pc board
layouts. A massive ground plane should be used to maintain
a low impedance ground. PC board traces should be kept as
short as possible and kept wide to minimize trace inductance
and impedance. Stray capacitance at the op amps output
and at the high impedance inputs should be kept to a
minimum, to prevent any unwanted phase shift and bandwidth limiting.
When breadboarding remember to keep feedback resistor
values low (≤5kΩ) for optimum performance. The use of
metal film resistors for values over 200Ω and carbon film
resistors under 200Ω typically gives the best performance.
Remember to keep all lead lengths as short as possible to
minimize lead inductance.
Sockets will add parasitic capacitance and inductance and
therefore can limit AC performance as well as reduce
stability. If sockets must be used, a low profile socket with
minimum pin to pin capacitance will minimize any performance degradation.
Power supply decoupling is essential for high frequency op
amps. A 0.01µF high quality ceramic capacitor at each
supply pin in parallel with a 1µF tantalum capacitor will provide excellent decoupling. Chip capacitors produce the best
results due to the ease of placement next to the op amp and
they have negligible lead inductance. If leaded capacitors
are used, again the lead lengths should be kept to a
minimum.
Saturation Recovery
When an op amp is over driven output devices can saturate
2-617
Similar pages