HUFA76609D3, HUFA76609D3S Data Sheet January 2002 10A, 100V, 0.165 Ohm, N-Channel, Logic Level UltraFET® Power MOSFET Packaging JEDEC TO-251AA DRAIN (FLANGE) JEDEC TO-252AA DRAIN (FLANGE) SOURCE DRAIN GATE GATE SOURCE HUFA76609D3S HUFA76609D3 Features • Ultra Low On-Resistance - rDS(ON) = 0.160Ω, VGS = 10V - rDS(ON) = 0.165Ω, VGS = 5V • Simulation Models - Temperature Compensated PSPICE® and SABER™ Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchildsemi.com • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol • Switching Time vs RGS Curves D Ordering Information PART NUMBER G S PACKAGE BRAND HUFA76609D3 TO-251AA 76609D HUFA76609D3S TO-252AA 76609D NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUFA76609D3ST. Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified HUFA76609D3, HUFA76609D3S UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 100 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 100 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±16 V Drain Current Continuous (TC = 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 10 10 7 7 Figure 4 A A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 0.327 W W/oC Operating and StorageTemperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC NOTE: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2002 Fairchild Semiconductor Corporation HUFA76609D3, HUFA76609D3S Rev. B HUFA76609D3, HUFA76609D3S Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ID = 250µA, VGS = 0V (Figure 12) 100 - - V ID = 250µA, VGS = 0V, TC = -40oC (Figure 12) 90 - - V OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS VDS = 95V, VGS = 0V - - 1 µA VDS = 90V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 10A, VGS = 10V (Figures 9, 10) - 0.130 0.160 Ω ID = 7A, VGS = 5V (Figure 9) - 0.135 0.165 Ω ID = 7A, VGS = 4.5V (Figure 9) - 0.140 0.168 Ω TO-251 and TO-252 - - 3.06 oC/W - - 100 oC/W - - 77 ns - 10 - ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time tON td(ON) tr - 41 - ns td(OFF) - 30 - ns tf - 28 - ns tOFF - - 87 ns - - 36 ns - 6 - ns - 18 - ns Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 50V, ID = 7A VGS = 4.5V, RGS = 20Ω (Figures 15, 21, 22) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time tON td(ON) tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 50V, ID = 10A VGS = 10V, RGS = 24Ω (Figures 16, 21, 22) td(OFF) - 55 - ns tf - 39 - ns tOFF - - 141 ns GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V VDD = 50V, ID = 7A, Ig(REF) = 1.0mA - 13 16 nC - 7.3 8.8 nC - 0.5 0.6 nC Gate to Source Gate Charge Qgs - 1.4 - nC Gate to Drain “Miller” Charge Qgd - 3.4 - nC Threshold Gate Charge (Figures 14, 19, 20) CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) - 425 - pF - 75 - pF - 22 - pF MIN TYP MAX UNITS Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2002 Fairchild Semiconductor Corporation SYMBOL TEST CONDITIONS ISD = 7A - - 1.25 V ISD = 4A - - 1.0 V trr ISD = 7A, dISD/dt = 100A/µs - - 92 ns QRR ISD = 7A, dISD/dt = 100A/µs - - 273 nC VSD HUFA76609D3, HUFA76609D3S Rev. B HUFA76609D3, HUFA76609D3S Typical Performance Curves POWER DISSIPATION MULTIPLIER 1.2 12 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 9 VGS = 10V VGS = 4.5V 6 3 0.2 0 0 0 25 50 75 100 125 150 175 25 50 TC , CASE TEMPERATURE (oC) 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 200 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 I = I25 175 - TC 150 VGS = 5V 10 5 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2002 Fairchild Semiconductor Corporation HUFA76609D3, HUFA76609D3S Rev. B HUFA76609D3, HUFA76609D3S Typical Performance Curves (Continued) 100 10 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 100 100µs 1ms OPERATION IN THIS AREA MAY BE LIMITED BY r DS(ON) 1 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC 0.1 1 10 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BV DSS - VDD) +1] STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 100 300 0.001 0.01 VDS, DRAIN TO SOURCE VOLTAGE (V) 0.1 1 10 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 20 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 15 10 TJ = 175oC 5 TJ = 25oC TJ = -55oC 0 1.5 2.0 VGS = 10V VGS = 5V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 20 2.5 3.0 10 VGS = 3V 5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 0 3.5 0 4.0 1 VGS, GATE TO SOURCE VOLTAGE (V) 2 3 5 4 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS 200 3.0 180 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 10A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 3.5V VGS = 4V 15 160 ID = 7A ID = 4A 140 120 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2.5 VGS = 10V, ID = 10A 2.0 1.5 1.0 0.5 100 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT ©2002 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE HUFA76609D3, HUFA76609D3S Rev. B HUFA76609D3, HUFA76609D3S Typical Performance Curves (Continued) 1.2 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 ID = 250µA 1.1 1.0 0.9 0.4 -80 -40 0 40 80 120 160 -80 200 -40 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE C, CAPACITANCE (pF) CISS = CGS + CGD COSS ≅ CDS + CGD 100 CRSS = CGD 10 VGS = 0V, f = 1MHz 80 1 120 160 200 10 VDD = 50V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 10A ID = 7A ID = 4A 2 0 5 0.1 40 FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VGS , GATE TO SOURCE VOLTAGE (V) 2000 1000 0 TJ , JUNCTION TEMPERATURE (oC) 10 0 100 3 6 9 12 15 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 120 80 VGS = 4.5V, VDD = 50V, ID = 7A VGS = 10V, V DD = 50V, ID = 10A td(OFF) SWITCHING TIME (ns) SWITCHING TIME (ns) tr 60 td(OFF) tf 40 20 90 60 tf tr 30 td(ON) td(ON) 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE ©2002 Fairchild Semiconductor Corporation 50 0 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 16. SWITCHING TIME vs GATE RESISTANCE HUFA76609D3, HUFA76609D3S Rev. B HUFA76609D3, HUFA76609D3S Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT ©2002 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUFA76609D3, HUFA76609D3S Rev. B HUFA76609D3, HUFA76609D3S PSPICE Electrical Model .SUBCKT HUFA76609D3 2 1 3 ; rev 23 August 1999 CA 12 8 7.5e-10 CB 15 14 7.6e-10 CIN 6 8 4.03e-10 LDRAIN DPLCAP DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD 10 RLDRAIN RSLC1 51 DBREAK + RSLC2 5 51 EBREAK 11 7 17 18 116.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 ESLC 11 - IT 8 17 1 DRAIN 2 5 - RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 3.7e-9 LSOURCE 3 7 3.4e-9 + 50 EVTEMP RGATE + 18 22 9 20 21 EBREAK DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RSOURCE RLSOURCE S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9.4e-2 RGATE 9 20 3.3 RLDRAIN 2 5 10 RLGATE 1 9 37 RLSOURCE 3 7 34 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 1.3e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 17 18 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*17.3),3.5))} .MODEL DBODYMOD D (IS = 1.2e-12 RS = 1.2e-2 TRS1 = 1.2e-3 TRS2 = 1.03e-6 CJO = 6.7e-10 TT = 6.9e-8 M = 0.77) .MODEL DBREAKMOD D (RS = 9.9e- 1TRS1 = 1e- 3TRS2 = -2e-5) .MODEL DPLCAPMOD D (CJO = 4.3e-1 0IS = 1e-3 0M = 0.9 N = 10) .MODEL MMEDMOD NMOS (VTO = 1.88 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.3) .MODEL MSTROMOD NMOS (VTO = 2.13 KP = 12.4 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.59 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 33 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e- 3TC2 = -5e-7) .MODEL RDRAINMOD RES (TC1 = 8.1e-3 TC2 = 2.4e-5) .MODEL RSLCMOD RES (TC1 = 3e-3 TC2 = 2e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.5e-3 TC2 = -4.3e-6) .MODEL RVTEMPMOD RES (TC1 = -1.6e- 3TC2 = 1.5e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.5 VOFF= -2.5) VON = -2.5 VOFF= -4.5) VON = -0.3 VOFF= 0.2) VON = 0.2 VOFF= -0.3) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation HUFA76609D3, HUFA76609D3S Rev. B HUFA76609D3, HUFA76609D3S SABER Electrical Model REV 23 August 1999 template hufa76609d3 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 1.2e-12, n = 1.05, cjo = 6.7e-10, tt = 6.9e-8, m = 0.77) d..model dbreakmod = () d..model dplcapmod = (cjo = 4.3e-10, is = 1e-30, n = 10, m = 0.9 ) m..model mmedmod = (type=_n, vto = 1.88, kp = 5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.13, kp = 12.4, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.59, kp = 0.12, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -2.5) DPLCAP sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.5, voff = -4.5) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3) c.ca n12 n8 = 7.5e-10 c.cb n15 n14 = 7.6e-10 c.cin n6 n8 = 4.03e-10 DRAIN 2 RSLC1 51 RLDRAIN RDBREAK RSLC2 72 ISCL RDRAIN 6 8 ESG EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5e-7 res.rdbody n71 n5 = 1.2e-2, tc1 = 1.2e-3, tc2 = 1.03e-6 res.rdbreak n72 n5 = 9.9e-1, tc1 = 1e-3, tc2 = -2e-5 res.rdrain n50 n16 = 9.4e-2, tc1 = 8.1e-3, tc2 = 2.4e-5 res.rgate n9 n20 = 3.3 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 37 res.rlsource n3 n7 = 34 res.rslc1 n5 n51 = 1e-6, tc1 = 3e-3, tc2 = 2e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.3e-2, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.6e-3, tc2 = 1.5e-6 res.rvthres n22 n8 = 1, tc1 = -1.5e-3, tc2 = -4.3e-6 21 RDBODY DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 3.7e-9 l.lsource n3 n7 = 3.4e-9 LDRAIN 5 - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 + 6 8 EGS 19 CB + - - IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 116.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/17.3))** 3.5)) } } ©2002 Fairchild Semiconductor Corporation HUFA76609D3, HUFA76609D3S Rev. B HUFA76609D3, HUFA76609D3S SPICE Thermal Model th JUNCTION REV 23 August 1999 T76609d3 CTHERM1 th 6 9.50e-4 CTHERM2 6 5 2.40e-3 CTHERM3 5 4 3.90e-3 CTHERM4 4 3 4.10e-3 CTHERM5 3 2 5.60e-3 CTHERM6 2 tl 4.00e-2 RTHERM1 th 6 2.00e-2 RTHERM2 6 5 1.10e-1 RTHERM3 5 4 2.75e-1 RTHERM4 4 3 5.53e-1 RTHERM5 3 2 7.25e-1 RTHERM6 2 tl 7.56e-1 SABER Thermal Model CTHERM1 RTHERM1 6 CTHERM2 RTHERM2 5 CTHERM3 RTHERM3 SABER thermal model t76609d3 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 9.50e-4 ctherm.ctherm2 6 5 = 2.40e-3 ctherm.ctherm3 5 4 = 3.90e-3 ctherm.ctherm4 4 3 = 4.10e-3 ctherm.ctherm5 3 2 = 5.60e-3 ctherm.ctherm6 2 tl = 4.00e-2 rtherm.rtherm1 th 6 = 2.00e-2 rtherm.rtherm2 6 5 = 1.10e-1 rtherm.rtherm3 5 4 = 2.75e-1 rtherm.rtherm4 4 3 = 5.53e-1 rtherm.rtherm5 3 2 = 7.25e-1 rtherm.rtherm6 2 tl = 7.56e-1 } 4 CTHERM4 RTHERM4 3 CTHERM5 RTHERM5 2 CTHERM6 RTHERM6 tl ©2002 Fairchild Semiconductor Corporation CASE HUFA76609D3, HUFA76609D3S Rev. B TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H4