N EW IL211AT/IL212AT/IL213AT FEATURES PHOTOTRANSISTOR SMALL OUTLINE SURFACE MOUNT OPTOCOUPLER Package Dimensions in Inches (mm) • High Current Transfer Ratio • • • • • • • IL211AT—20% Minimum IL212AT—50% Minimum IL213AT—100% Minimum Isolation Voltage, 2500 VACRMS Electrical Specifications Similar to Standard 6 Pin Coupler Industry Standard SOIC-8 Surface Mountable Package Standard Lead Spacing, .05" Available in Tape and Reel (suffix T) (Conforms to EIA Standard RS481A) Compatible with Dual Wave, Vapor Phase and IR Reflow Soldering Underwriters Lab File #E52744 (Code Letter P) .120±.005 (3.05±.13) .240 (6.10) Anode .154±.005 Cathode CL (3.91±.13) NC NC .016 (.41) Pin One ID .192±.005 (4.88±.13) .015±.002 (.38±.05) .004 (.10) .008 (.20) .008 (.20) .050 (1.27) typ. .021 (.53) 8 7 6 5 1 2 3 4 40° 7° .058±.005 (1.49±.13) 5° max. R.010 (.25) max. .020±.004 (.15±.10) 2 plcs. NC Base Collector Emitter .125±.005 (3.18±.13) Lead Coplanarity ±.0015 (.04) max. TOLERANCE: ±.005 (unless otherwise noted) Characteristics (TA=25°C) DESCRIPTION The IL211AT/212AT/213AT are optically coupled pairs with a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL211AT//212AT/ 213AT comes in a standard SOIC-8 small outline package for surface mounting which makes it ideally suited for high density applications with limited space. In addition to eliminating through-holes requirements, this package conforms to standards for surface mounted devices. A choice of 20, 50, and 100% minimum CTR at IF=10 mA makes these optocouplers suitable for a variety of different applications. Maximum Ratings Emitter Peak Reverse Voltage ....................................... 6.0 V Continuous Forward Current .......................... 60 mA Power Dissipation at 25°C ............................. 90 mW Derate Linearly from 25°C ....................... 1.2 mW/°C Detector Collector-Emitter Breakdown Voltage ................ 30 V Emitter-Collector Breakdown Voltage .................. 7 V Collector-Base Breakdown Voltage ................... 70 V Power Dissipation ........................................ 150 mW Derate Linearly from 25°C ....................... 2.0 mW/°C Package Total Package Dissipation at 25°C Ambient (LED + Detector) ...................................... 280 mW Derate Linearly from 25°C ....................... 3.3 mW/°C Storage Temperature ..................... –55°C to +150°C Operating Temperature ................. –55°C to +100°C Soldering Time at 260°C ............................... 10 sec. Semiconductor Group Symbol Min. Typ. Emitter Forward Voltage Reverse Current Capacitance Detector Breakdown Voltage VF IR CO 1.3 0.1 25 BVCEO BVECO 30 7 Collector-Emitter Dark Current I CEOdark Collector-Emitter Capacitance CCE Package DC Current Transfer CTRDC 5 V IO Condition 1.5 100 V µA pF IF=10 mA VR=6.0 V VR=0 V V nA IC=10 µA IE=10 µA VCE=10 V, I F =0 pF VCE=0 % IF=10 mA VCE=5 V 50 10 IL211AT 20 50 IL212AT 50 80 IL213AT 100 130 Collector-Emitter Saturation Voltage VCE sat Isolation Test Voltage Capacitance, Input to Output Resistance, Input to Output Switching Time Max. Unit 2500 0.4 IF=10 mA, IC=2.0 mA VACRMS C IO 0.5 pF R IO tON, tOFF 100 3.0 GΩ µs IC=2 mA, RE=100 Ω, VCE=10 V Specifications subject to change. 4–4 10.95 Figure 1. Forward voltage versus forward current 1.3 Ta = -55°C 1.2 Ta = 25°C 1.1 1.0 0.9 Ta = 85°C 0.8 0.7 .1 1 10 IF - Forward Current - mA 100 NCTRce - Normalized CTRce VF - Forward Voltage - V 1.4 Vce = 0.4 V 0.0 .1 Vce = 10 V 100 50 Vce = 0.4 V .1 1 10 IF - LED Current - mA 1 .1 1 Normalized to: Vcb = 9.3 V IF = 10 mA Ta = 25 °C .1 .01 .1 100 Vcb = 9.3 V 100 10 1 .1 1 10 IF - LED Current - mA 100 .1 5 10 4 10 3 10 10 2 TYPICAL 10 0 10 -1 0 20 40 60 80 100 Ta - Ambient Temperature - °C Semiconductor Group NHFE(sat) - Normalized Saturated HFE Vce = 10V 10 100 Figure 8. Normalized saturated HFE versus base current and temperature 2.0 1 1 IF - LED Current - mA Figure 7. Collector-emitter leakage current versus temperature 10 -2 -20 1 10 IF - LED Current - mA Figure 6. Collector-base photocurrent versus LED current 1000 Ta = 25°C Icb - Collector-base Current - µA 10 NIcb - Normalized Icb Normalized to: Vcb = 9.3 V IF = 1 mA Ta = 25 °C 10 100 Figure 5. Normalized collector-base photocurrent versus LED current Iceo - Collector-Emitter - nA 100 .1 0 10 1 10 IF - LED Current - mA 100 Ta = 25°C NIcb - Normalized Icb Ice - Collector-emitter Current - mA 0.5 Figure 4. Normalized collector-base photocurrent versus LED current Figure 3. Collector-emitter current versus LED current 150 Figure 2. Normalized non-saturated and saturated CTRce versus LED current 1.5 Normalized to: Vce = 10 V Vce = 5 V IF = 10 mA 1.0 Ta = 25°C 70°C 25°C 1.5 50°C Normalized to: Ib = 20µA Vce = 10 V Ta = 25 °C 1.0 Vce = 0.4 V 0.5 0.0 1 4–5 10 100 Ib - Base Current - µA 1000 Figure 9. Typical switching characteristics versus base resistance (saturated operation) Figure 10. Typical switching times versus load resistance 1000 Input: IF =10mA 50 Pulse width=100 mS Duty cycle=50% Switching time (µS) Switching time (µs) 100 F T OF 10 5 TON Input: 500 IF=10 mA Pulse width=100 mS Duty cycle=50% 100 50 10 10K 50K 100K 500K 1M 0.1 0.5 1 5 10 50 100 Load resistance RL (KΩ) Base-emitter resistance, RBE (Ω) Semiconductor Group TON 5 1 1.0 FF TO 4–6