Siemens IL211 Phototransistor small outline surface mount optocoupler Datasheet

N
EW
IL211AT/IL212AT/IL213AT
FEATURES
PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
• High Current Transfer Ratio
•
•
•
•
•
•
•
IL211AT—20% Minimum
IL212AT—50% Minimum
IL213AT—100% Minimum
Isolation Voltage, 2500 VACRMS
Electrical Specifications Similar to
Standard 6 Pin Coupler
Industry Standard SOIC-8 Surface
Mountable Package
Standard Lead Spacing, .05"
Available in Tape and Reel (suffix T)
(Conforms to EIA Standard RS481A)
Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering
Underwriters Lab File #E52744
(Code Letter P)
.120±.005
(3.05±.13)
.240
(6.10)
Anode
.154±.005 Cathode
CL
(3.91±.13)
NC
NC
.016 (.41)
Pin One ID
.192±.005
(4.88±.13)
.015±.002
(.38±.05)
.004 (.10)
.008 (.20)
.008 (.20)
.050 (1.27)
typ.
.021 (.53)
8
7
6
5
1
2
3
4
40°
7°
.058±.005
(1.49±.13)
5° max.
R.010
(.25) max.
.020±.004
(.15±.10)
2 plcs.
NC
Base
Collector
Emitter
.125±.005
(3.18±.13)
Lead
Coplanarity
±.0015 (.04)
max.
TOLERANCE: ±.005 (unless otherwise noted)
Characteristics (TA=25°C)
DESCRIPTION
The IL211AT/212AT/213AT are optically coupled
pairs with a Gallium Arsenide infrared LED and a
silicon NPN phototransistor. Signal information,
including a DC level, can be transmitted by the device
while maintaining a high degree of electrical isolation
between input and output. The IL211AT//212AT/
213AT comes in a standard SOIC-8 small outline
package for surface mounting which makes it ideally
suited for high density applications with limited space.
In addition to eliminating through-holes requirements,
this package conforms to standards for surface
mounted devices.
A choice of 20, 50, and 100% minimum CTR at
IF=10 mA makes these optocouplers suitable for a
variety of different applications.
Maximum Ratings
Emitter
Peak Reverse Voltage ....................................... 6.0 V
Continuous Forward Current .......................... 60 mA
Power Dissipation at 25°C ............................. 90 mW
Derate Linearly from 25°C ....................... 1.2 mW/°C
Detector
Collector-Emitter Breakdown Voltage ................ 30 V
Emitter-Collector Breakdown Voltage .................. 7 V
Collector-Base Breakdown Voltage ................... 70 V
Power Dissipation ........................................ 150 mW
Derate Linearly from 25°C ....................... 2.0 mW/°C
Package
Total Package Dissipation at 25°C Ambient
(LED + Detector) ...................................... 280 mW
Derate Linearly from 25°C ....................... 3.3 mW/°C
Storage Temperature ..................... –55°C to +150°C
Operating Temperature ................. –55°C to +100°C
Soldering Time at 260°C ............................... 10 sec.
Semiconductor Group
Symbol Min. Typ.
Emitter
Forward Voltage
Reverse Current
Capacitance
Detector
Breakdown Voltage
VF
IR
CO
1.3
0.1
25
BVCEO
BVECO
30
7
Collector-Emitter
Dark Current
I CEOdark
Collector-Emitter
Capacitance
CCE
Package
DC Current Transfer CTRDC
5
V IO
Condition
1.5
100
V
µA
pF
IF=10 mA
VR=6.0 V
VR=0
V
V
nA
IC=10 µA
IE=10 µA
VCE=10 V,
I F =0
pF
VCE=0
%
IF=10 mA
VCE=5 V
50
10
IL211AT
20 50
IL212AT
50 80
IL213AT
100 130
Collector-Emitter
Saturation Voltage VCE sat
Isolation Test
Voltage
Capacitance,
Input to Output
Resistance,
Input to Output
Switching Time
Max. Unit
2500
0.4
IF=10 mA,
IC=2.0 mA
VACRMS
C IO
0.5
pF
R IO
tON, tOFF
100
3.0
GΩ
µs
IC=2 mA,
RE=100 Ω,
VCE=10 V
Specifications subject to change.
4–4
10.95
Figure 1. Forward voltage versus forward current
1.3
Ta = -55°C
1.2
Ta = 25°C
1.1
1.0
0.9
Ta = 85°C
0.8
0.7
.1
1
10
IF - Forward Current - mA
100
NCTRce - Normalized CTRce
VF - Forward Voltage - V
1.4
Vce = 0.4 V
0.0
.1
Vce = 10 V
100
50
Vce = 0.4 V
.1
1
10
IF - LED Current - mA
1
.1
1
Normalized to:
Vcb = 9.3 V
IF = 10 mA
Ta = 25 °C
.1
.01
.1
100
Vcb = 9.3 V
100
10
1
.1
1
10
IF - LED Current - mA
100
.1
5
10
4
10
3
10
10 2
TYPICAL
10 0
10 -1
0
20
40
60
80
100
Ta - Ambient Temperature - °C
Semiconductor Group
NHFE(sat) - Normalized
Saturated HFE
Vce = 10V
10
100
Figure 8. Normalized saturated HFE versus
base current and temperature
2.0
1
1
IF - LED Current - mA
Figure 7. Collector-emitter leakage current
versus temperature
10 -2
-20
1
10
IF - LED Current - mA
Figure 6. Collector-base photocurrent versus
LED current
1000
Ta = 25°C
Icb - Collector-base
Current - µA
10
NIcb - Normalized Icb
Normalized to:
Vcb = 9.3 V
IF = 1 mA
Ta = 25 °C
10
100
Figure 5. Normalized collector-base
photocurrent versus LED current
Iceo - Collector-Emitter - nA
100
.1
0
10
1
10
IF - LED Current - mA
100
Ta = 25°C
NIcb - Normalized Icb
Ice - Collector-emitter
Current - mA
0.5
Figure 4. Normalized collector-base
photocurrent versus LED current
Figure 3. Collector-emitter current versus LED
current
150
Figure 2. Normalized non-saturated and
saturated CTRce versus LED current
1.5
Normalized to:
Vce = 10 V
Vce = 5 V
IF = 10 mA
1.0
Ta = 25°C
70°C
25°C
1.5
50°C
Normalized to:
Ib = 20µA
Vce = 10 V
Ta = 25 °C
1.0
Vce = 0.4 V
0.5
0.0
1
4–5
10
100
Ib - Base Current - µA
1000
Figure 9. Typical switching characteristics
versus base resistance (saturated operation)
Figure 10. Typical switching times
versus load resistance
1000
Input:
IF =10mA
50 Pulse
width=100 mS
Duty cycle=50%
Switching time (µS)
Switching time (µs)
100
F
T OF
10
5
TON
Input:
500 IF=10 mA
Pulse width=100 mS
Duty cycle=50%
100
50
10
10K
50K 100K
500K 1M
0.1
0.5 1
5
10
50 100
Load resistance RL (KΩ)
Base-emitter resistance, RBE (Ω)
Semiconductor Group
TON
5
1
1.0
FF
TO
4–6
Similar pages