Siemens IL211A Phototransistor small outline surface mount optocoupler Datasheet

IL211A/212A/213A
N
EW
PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
FEATURES
• High Current Transfer Ratio
IL211A—20% Minimum
IL212A—50% Minimum
IL213A—100% Minimum
• Isolation Voltage, 2500 VACRMS
• Electrical Specifications Similar to
Standard 6 Pin Coupler
• Industry Standard SOIC-8 Surface
Mountable Package
• Standard Lead Spacing, .05"
• Available in Tape and Reel Option
(Conforms to EIA Standard RS481A)
• Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering
• Underwriters Lab File #E52744
(Code Letter P)
DESCRIPTION
The IL211A/212A/213A are optically coupled pairs
with a Gallium Arsenide infrared LED and a silicon
NPN phototransistor. Signal information, including a
DC level, can be transmitted by the device while
maintaining a high degree of electrical isolation
between input and output. The IL211A//212A/213A
comes in a standard SOIC-8 small outline package
for surface mounting which makes it ideally suited
for high density applications with limited space. In
addition to eliminating through-holes requirements,
this package conforms to standards for surface
mounted devices.
A choice of 20, 50, and 100% minimum CTR at
IF=10 mA makes these optocouplers suitable for a
variety of different applications.
Dimensions in inches (mm)
.120±.005
(3.05±.13)
.240
(6.10)
Anode 1
.154±.005 Cathode 2
CL
(3.91±.13)
NC 3
NC 4
.016 (.41)
Pin One ID
.192±.005
(4.88±.13)
.004 (.10)
.008 (.20)
.050 (1.27)
typ.
.021 (.53)
.020±.004
(.15±.10)
2 plcs.
R.010
(.25) max.
Lead
Coplanarity
±.0015 (.04)
max.
Characteristics (TA=25°C)
Symbol
Min.
Typ.
Max.
Unit
Condition
Emitter
Forward Voltage
VF
1.3
1.5
V
IF=10 mA
Reverse Current
IR
0.1
100
µA
VR=6.0 V
Capacitance
CO
25
pF
VR=0
Breakdown Voltage
BVCEO
BVECO
30
7
V
V
IC=10 µA
IE=10 µA
Dark Current,
Collector-Emitter
ICEOdark
5
nA
VCE=10 V
IF=0
Capacitance,
Collector-Emitter
CCE
10
pF
VCE=0
%
IF=10 mA,
VCE=5 V
Detector
50
Package
Emitter
Peak Reverse Voltage .....................................6.0 V
Continuous Forward Current .........................60 mA
Power Dissipation at 25°C............................90 mW
Derate Linearly from 25°C......................1.2 mW/°C
DC Current Transfer
Ratio
IL211A
IL212A
IL213A
CTRDC
Saturation Voltage,
Collector-Emitter
VCEsat
Isolation Test
Voltage
VIO
Capacitance,
Input toOutput
CIO
0.5
pF
Resistance,
Input to Output
RIO
100
GΩ
Switching Time
ton,toff
3.0
µs
Package
Total Package Dissipation at 25°C Ambient
(LED + Detector) ....................................280 mW
Derate Linearly from 25°C......................3.3 mW/°C
Storage Temperature ...................–55°C to +150°C
Operating Temperature ...............–55°C to +100°C
Soldering Time at 260°C ............................. 10 sec.
.125±.005
(3.18±.13)
5° max.
Maximum Ratings
Detector
Collector-Emitter Breakdown Voltage...............30 V
Emitter-Collector Breakdown Voltage.................7 V
Collector-Base Breakdown Voltage..................70 V
Power Dissipation ......................................150 mW
Derate Linearly from 25°C2.0 mW/°C
NC
Base
Collector
Emitter
7°
.058±.005
(1.49±.13)
40°
.015±.002
(.38±.05)
.008 (.20)
8
7
6
5
5–1
20
50
100
50
80
130
0.4
2500
IF=10 mA,
IC=2.0 mA
VACRMS
IC=2 mA,
RE=100 Ω,
VCE=10 V
Figure 5. Normalized collector-base photocurrent
versus LED current
Figure 1. Forward voltage versus forward current
1.4
Vf-Forward Voltage - V
NIcb - Normalized Icb
10
1.3
Ta = -55°C
1.2
Ta = 25°C
1.1
1.0
0.9
Ta = 100°C
0.8
1
10
If- Forward Current - mA
100
Figure 2. Normalized non-saturated and saturated
CTRce versus LED current
Vce = 5 V
Vce = 0.4 V
10
Vcb = 9.3 V
100
10
1
.1
0.0
1
.1
100
1
Iceo - Collector-Emitter - nA
Ice - Collector-emitter
Current - mA
Ta = 25°C
Vce = 10 V
100
50
Vce = 0.4 V
0
1
10
IF - LED Current - mA
100
Figure 4. Normalized collector-base photocurrent
versus LED current
.1
1
10
IF - LED Current - mA
4
103
102
Vce = 10V
101
100
TYPICAL
10-1
10-2
-20
0
20
40
60
80
100
Ta - Ambient Temperature - °C
2.0
1
.1
10
5
Figure 8. Normalized saturated HFE versus base
current and temperature
Normalized to:
Vcb = 9.3 V
IF = 1 mA
Ta = 25 °C
10
10
NHFE(sat) - Normalized
Saturated HFE
NIcb - Normalized Icb
100
100
Figure 7. Collector-emitter leakage current versus
temperature
g
p
Figure 3. Collector-emitter current versus LED current
.1
10
I F - LED Current - mA
IF - LED Current - mA
150
100
Ta = 25°C
0.5
.1
1
10
IF - LED Current - mA
1000
Normalized to:
Vce = 10 V
IF = 10 mA
Ta = 25 °C
1.0
.1
Figure 6. Collector-base photocurrent versus LED
current
Icb - Collector-base
Current - µA
NCTRce - Normalized CTRce
1.5
1
.01
.1
0.7
.1
Normalized to:
Vcb = 9.3 V
IF = 10 mA
Ta = 25 °C
100
70°C
50°C
25°C
1.5
Normalized to:
Ib = 20µA
Vce = 10 V
Ta = 25 °C
1.0
Vce = 0.4 V
0.5
0.0
1
10
100
Ib - Base Current - µA
1000
IL211A/212A/213A
5–2
Figure 9. Typical switching characteristics versus base
resistance (saturated operation)
Figure 10. Typical switching times
versus load resistance
1000
Input:
IF =10mA
50 Pulse
width=100 mS
Duty cycle=50%
Switching time (µS)
Switching time (µs)
100
F
T OF
10
5
TON
Input:
500 IF=10 mA
Pulse width=100 mS
Duty cycle=50%
100
50
10
10K
50K 100K
500K 1M
TON
5
1
1.0
FF
TO
0.1
0.5 1
5
10
50 100
Load resistance RL (KΩ)
Base-emitter resistance, RBE (Ω)
IL211A/212A/213A
5–3
Similar pages