IRF740AS, IRF740AL, SiHF740AS, SiHF740AL Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current • Effective Coss specified (AN 1001) • Lead (Pb)-free Available 400 RDS(on) (Ω) VGS = 10 V 0.55 Qg (Max.) (nC) 36 Qgs (nC) 9.9 Qgd (nC) 16 Configuration Single Available RoHS* COMPLIANT D I2PAK (TO-262) APPLICATIONS D2PAK (TO-263) G • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply • High speed Power Switching G D TYPICAL SMPS TOPOLOGIES S • Single Transistor Flyback Xfmr. Reset • Single Transistor Forward Xfmr. Reset (Both for US Line Input Only) S N-Channel MOSFET ORDERING INFORMATION Package Lead (Pb)-free SnPb D2PAK (TO-263) D2PAK (TO-263) D2PAK (TO-263) I2PAK (TO-262) IRF740ASPbF IRF740ASTRLPbFa IRF740ASTRRPbFa IRF740ALPbF SiHF740AS-E3 SiHF740ASTL-E3a SiHF740ASTR-E3a SiHF740AL-E3 IRF740AS IRF740ASTRLa IRF740ASTRRa IRF740AL SiHF740AS SiHF740ASTLa SiHF740ASTRa SiHF740AL Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT VDS VGS 400 ± 30 10 6.3 40 1.0 630 10 12.5 3.1 125 5.9 - 55 to + 150 300d Drain-Source Voltage Gate-Source Voltage Continuous Drain Currente VGS at 10 V TC = 25 °C TC = 100 °C ID Pulsed Drain Currenta, e Linear Derating Factor Single Pulse Avalanche Energyb, e Avalanche Currenta Repetiitive Avalanche Energya IDM EAS IAR EAR TA = 25 °C TC = 25 °C Maximum Power Dissipation Peak Diode Recovery dV/dtc, e Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) PD dV/dt TJ, Tstg for 10 s UNIT V A W/°C mJ A mJ W V/ns °C Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 12.6 mH, RG = 25 Ω, IAS = 10 A (see fig. 12). c. ISD ≤ 10 A, dI/dt ≤ 330 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. e. Uses IRF740A/SiHF740A data and test conditions. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91052 S-Pending-Rev. A, 19-Jun-08 WORK-IN-PROGRESS www.vishay.com 1 IRF740AS, IRF740AL, SiHF740AS, SiHF740AL Vishay Siliconix THERMAL RESISTANCE RATINGS SYMBOL TYP. MAX. Maximum Junction-to-Ambient (PCB Mounted, steady-state)a PARAMETER RthJA - 40 Maximum Junction-to-Case (Drain) RthJC - 1.0 UNIT °C/W Note a. When mounted on 1" square PCB (FR-4 or G-10 material). SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 400 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mAd - 0.48 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 30 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 400 V, VGS = 0 V - - 25 VDS = 320 V, VGS = 0 V, TJ = 125 °C - - 250 - - 0.55 Ω 4.9 - - S - 1030 - - 170 - Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 6.0 Ab VGS = 10 V VDS = 50 V, ID = 6.0 Ad µA Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5d VGS = 0 V Coss eff. - 7.7 - VDS = 1.0 V, f = 1.0 MHz - 1490 - VDS = 320 V, f = 1.0 MHz - 52 - VDS = 0 V to 400 Vc, d - 61 - - - 36 ID = 10 A, VDS = 320 V, see fig. 6 and 13b, d - - 9.9 Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd - - 16 Turn-On Delay Time td(on) - 10 - tr - 35 - - 24 - - 22 - - - 10 - - 40 Rise Time Turn-Off Delay Time Fall Time td(off) VGS = 10 V VDD = 200 V, ID = 10 A, RG = 10 Ω, RD = 19.5 Ω, see fig. 10b, d tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 10 A, VGS = 0 S Vb TJ = 25 °C, IF = 10 A, dI/dt = 100 A/µsb, d - - 2.0 V - 240 360 ns - 1.9 2.9 µC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. d. Uses IRF740A/SiHF740A data and test conditions. www.vishay.com 2 Document Number: 91052 S-Pending-Rev. A, 19-Jun-08 IRF740AS, IRF740AL, SiHF740AS, SiHF740AL Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 1 0.1 4.5V 20μs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 100 10 1 TJ = 25 ° C 0.1 4.0 Fig. 1 - Typical Output Characteristics I D , Drain-to-Source Current (A) 10 1 4.5V 20μs PULSE WIDTH TJ = 150 ° C 10 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1 5.0 6.0 7.0 8.0 9.0 10.0 Fig. 3 - Typical Transfer Characteristics TOP 0.1 0.1 V DS = 50V 20μs PULSE WIDTH VGS , Gate-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 100 TJ = 150 ° C ID = 10A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 VDS , Drain-to-Source Voltage (V) TJ , Junction Temperature ( °C) Fig. 2 - Typical Output Characteristics Fig. 4 - Normalized On-Resistance vs. Temperature Document Number: 91052 S-Pending-Rev. A, 19-Jun-08 www.vishay.com 3 IRF740AS, IRF740AL, SiHF740AS, SiHF740AL Vishay Siliconix VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd C, Capacitance(pF) 10000 Coss = Cds + Cgd Ciss 1000 Coss 100 10 Crss 100 ISD , Reverse Drain Current (A) 100000 1 1 10 100 10 TJ = 150 ° C TJ = 25 ° C 1 0.1 0.2 1000 0.8 1.0 1.2 1.4 Fig. 7 - Typical Source-Drain Diode Forward Voltage 100 ID = 10A OPERATION IN THIS AREA LIMITED BY RDS(on) VDS = 320V VDS = 200V VDS = 80V 16 10us ID , Drain Current (A) VGS , Gate-to-Source Voltage (V) 20 0.6 VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage V GS = 0 V 0.4 12 8 100us 10 1ms 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 10 20 30 40 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 10ms 100 1000 VDS , Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91052 S-Pending-Rev. A, 19-Jun-08 IRF740AS, IRF740AL, SiHF740AS, SiHF740AL Vishay Siliconix RD VDS 10.0 VGS ID , Drain Current (A) D.U.T. RG 8.0 + - VDD 10 V 6.0 Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit 4.0 VDS 90 % 2.0 0.0 25 50 75 100 125 10 % VGS 150 TC , Case Temperature ( ° C) td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 PDM 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) 0.01 t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91052 S-Pending-Rev. A, 19-Jun-08 Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRF740AS, IRF740AL, SiHF740AS, SiHF740AL Vishay Siliconix TOP 1200 BOTTOM ID 4.5A 6.3A 10A 1000 800 600 400 200 580 V DSav , Avalanche Voltage ( V ) EAS , Single Pulse Avalanche Energy (mJ) 1400 560 540 520 500 480 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 IAV , Avalanche Current ( A) Fig. 12d - Typlical Drain-to-Source Voltage vs. Avalanche Current Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.vishay.com 6 Fig. 13b - Gate Charge Test Circuit Document Number: 91052 S-Pending-Rev. A, 19-Jun-08 IRF740AS, IRF740AL, SiHF740AS, SiHF740AL Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91052. Document Number: 91052 S-Pending-Rev. A, 19-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1