IRF IRFP4229PBF Advanced process technology Datasheet

PD - 97079B
IRFP4229PbF
PDP SWITCH
Features
l Advanced Process Technology
l Key Parameters Optimized for PDP Sustain,
Energy Recovery and Pass Switch Applications
l Low E PULSE Rating to Reduce Power
Dissipation in PDP Sustain, Energy Recovery
and Pass Switch Applications
l Low Q G for Fast Response
l High Repetitive Peak Current Capability for
Reliable Operation
l Short Fall & Rise Times for Fast Switching
l175°C Operating Junction Temperature for
Improved Ruggedness
l Repetitive Avalanche Capability for Robustness
and Reliability
Key Parameters
VDS min
VDS (Avalanche) typ.
RDS(ON) typ. @ 10V
IRP max @ TC= 100°C
TJ max
250
300
38
87
175
V
V
m:
A
°C
D
D
G
G
S
D
S
TO-247AC
G
D
S
Gate
Drain
Source
Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings
Max.
Units
Gate-to-Source Voltage
±30
V
A
Parameter
VGS
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
44
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
31
180
c
IDM
Pulsed Drain Current
IRP @ TC = 100°C
Repetitive Peak Current
PD @TC = 25°C
Power Dissipation
310
PD @TC = 100°C
Power Dissipation
150
Linear Derating Factor
2.0
W/°C
TJ
Operating Junction and
-40 to + 175
°C
TSTG
Storage Temperature Range
g
87
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
300
W
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Notes  through
www.irf.com
Junction-to-Case
f
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
f
Typ.
–––
0.24
–––
Max.
0.49
–––
40
Units
°C/W
are on page 8
1
09/14/07
IRFP4229PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
250
–––
–––
210
–––
–––
VGS(th)
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
–––
3.0
38
–––
46
5.0
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-14
–––
–––
20
Gate-to-Source Forward Leakage
–––
–––
–––
–––
1.0
100
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
83
–––
–––
-100
–––
Total Gate Charge
Gate-to-Drain Charge
–––
–––
72
26
110
–––
Turn-On Delay Time
Rise Time
–––
–––
25
27
–––
–––
Turn-Off Delay Time
Fall Time
–––
–––
44
19
–––
–––
Shoot Through Blocking Time
100
–––
–––
–––
790
–––
–––
1390
–––
Input Capacitance
–––
4560
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
390
100
–––
–––
Effective Output Capacitance
Internal Drain Inductance
–––
–––
290
5.0
–––
–––
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
IGSS
gfs
Qg
Qgd
td(on)
tr
td(off)
tf
tst
EPULSE
Ciss
Coss
Crss
Coss eff.
LD
Energy per Pulse
VGS = 0V, ID = 250µA
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 26A
e
V
Internal Source Inductance
–––
13
VDS = VGS, ID = 250µA
mV/°C
µA VDS = 250V, VGS = 0V
mA VDS = 250V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 25V, ID = 26A
VDD = 125V, ID = 26A, VGS = 10V
nC
e
e
VDD = 125V, VGS = 10V
ns
ID = 26A
RG = 5.0Ω
ns
µJ
pF
See Fig. 22
VDD = 200V, VGS = 15V, RG= 4.7Ω
L = 220nH, C= 0.3µF, VGS = 15V
VDS = 200V, RG= 4.7Ω, TJ = 25°C
L = 220nH, C= 0.3µF, VGS = 15V
VDS = 200V, RG= 4.7Ω, TJ = 100°C
VGS = 0V
VDS = 25V
ƒ = 1.0MHz,
VGS = 0V, VDS = 0V to 200V
Between lead,
nH
LS
Conditions
–––
D
6mm (0.25in.)
from package
and center of die contact
G
S
Avalanche Characteristics
Typ.
Max.
Units
Single Pulse Avalanche Energy
–––
300
mJ
Repetitive Avalanche Energy
Repetitive Avalanche Voltage
–––
300
31
–––
mJ
–––
26
A
Parameter
EAS
EAR
VDS(Avalanche)
IAS
Avalanche Current
d
d
c
c
V
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
ISM
VSD
trr
Qrr
2
(Body Diode)
Pulsed Source Current
c
Min.
Typ. Max. Units
–––
–––
44
–––
–––
180
Conditions
MOSFET symbol
A
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
190
840
290
1260
ns
nC
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 26A, VGS = 0V
TJ = 25°C, IF = 26A, VDD = 50V
e
di/dt = 100A/µs
e
www.irf.com
IRFP4229PbF
1000
1000
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
100
BOTTOM
10
5.5V
1
0.1
100
5.5V
10
≤ 60µs PULSE WIDTH
Tj = 25°C
1
10
BOTTOM
≤ 60µs PULSE WIDTH
Tj = 175°C
1
100
0.1
1
VDS, Drain-to-Source Voltage (V)
100
Fig 2. Typical Output Characteristics
3.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current(Α)
10
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
TJ = 175°C
10
1
TJ = 25°C
0.1
VDS = 25V
≤ 60µs PULSE WIDTH
0.01
4.0
5.0
6.0
7.0
ID = 26A
VGS = 10V
3.0
2.5
2.0
1.5
1.0
0.5
0.0
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
1600
1400
L = 220nH
C = 0.3µF
100°C
25°C
1200
L = 220nH
C = Variable
100°C
25°C
1200
Energy per pulse (µJ)
Energy per pulse (µJ)
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
800
400
1000
800
600
400
200
0
0
150
160
170
180
190
200
VDS, Drain-to -Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
100
110
120
130
140
150
160
170
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Drain Current
3
IRFP4229PbF
2000
1000
L = 220nH
Energy per pulse (µJ)
ISD , Reverse Drain Current (A)
C= 0.3µF
C= 0.2µF
C= 0.1µF
1600
1200
800
400
100
TJ = 175°C
10
1
TJ = 25°C
VGS = 0V
0
25
50
75
100
125
0.1
150
0.2
Temperature (°C)
Fig 7. Typical EPULSE vs.Temperature
7000
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
20
Coss = Cds + Cgd
5000
Ciss
4000
3000
Coss
2000
1000
Crss
1
1.0
1.2
ID= 26A
VDS = 160V
VDS = 100V
16
VDS = 40V
12
8
4
10
100
0
1000
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
ID, Drain-to-Source Current (A)
1000
30
20
10
0
40
60
80
100
120
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
50
40
20
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
ID, Drain Current (A)
0.8
0
0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1µsec
100
10µsec
100µsec
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
25
50
75
100
125
150
175
TJ , Junction Temperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
0.6
Fig 8. Typical Source-Drain Diode Forward Voltage
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
6000
0.4
VSD, Source-to-Drain Voltage (V)
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
0.40
EAS, Single Pulse Avalanche Energy (mJ)
()
RDS (on), Drain-to -Source On Resistance Ω
IRFP4229PbF
ID = 26A
0.30
0.20
TJ = 125°C
0.10
TJ = 25°C
1200
I D
5.8A
9.7A
BOTTOM 26A
TOP
1000
800
600
400
200
0.00
0
5
6
7
8
9
10
25
VGS, Gate-to-Source Voltage (V)
100
125
150
175
Fig 14. Maximum Avalanche Energy Vs. Temperature
5.0
140
4.5
120
Repetitive Peak Current (A)
VGS(th) Gate threshold Voltage (V)
75
Starting TJ, Junction Temperature (°C)
Fig 13. On-Resistance Vs. Gate Voltage
4.0
50
ID = 250µA
3.5
3.0
2.5
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
100
80
60
40
20
2.0
0
1.5
-75 -50 -25
0
25
50
75
25
100 125 150 175
50
75
100
125
150
175
Case Temperature (°C)
TJ , Temperature ( °C )
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Fig 15. Threshold Voltage vs. Temperature
Thermal Response ( ZthJC )
1
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ2
τ1
τ2
Ci= τi/Ri
Ci= τi/Ri
τ3
τ3
τ
τι (sec)
0.104678 0.000148
0.222607 0.001836
0.16298 0.01527
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP4229PbF
Driver Gate Drive
D.U.T
ƒ
+
‚
-
-

*
RG
•
•
•
•
„
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
V DD
**
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
tp
A
0.01Ω
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Id
Vds
Vgs
L
DUT
0
1K
VCC
Vgs(th)
Qgs1 Qgs2
Fig 20a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFP4229PbF
A
RG
PULSE A
C
DRIVER
L
PULSE B
VCC
B
Ipulse
RG
tST
DUT
Fig 21b. tst Test Waveforms
Fig 21a. tst and EPULSE Test Circuit
Fig 21c. EPULSE Test Waveforms
VDS
V GS
RG
RD
VDS
90%
D.U.T.
+
-V DD
V GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 22a. Switching Time Test Circuit
www.irf.com
10%
VGS
td(on)
tr
t d(off)
tf
Fig 22b. Switching Time Waveforms
7
IRFP4229PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.85mH, RG = 25Ω, IAS = 26A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
Half sine wave with duty cycle = 0.25, ton=1µsec.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/2007
8
www.irf.com
Similar pages