IRFPC50A, SiHFPC50A Vishay Siliconix Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 600 RDS(on) (Ω) VGS = 10 V 0.58 Qg (Max.) (nC) 70 Qgs (nC) 19 Qgd (nC) 28 Configuration • Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Available RoHS* COMPLIANT • Fully Characterized Capacitance and Avalanche Voltage and Current • Effective Coss Specified Single • Lead (Pb)-free Available D TO-247 APPLICATIONS • Switch Mode Power Supply (SMPS) G • Uninterruptable Power Supply • High Speed Power Switching S D S G TYPICAL SMPS TOPOLOGY N-Channel MOSFET • PFC Boost ORDERING INFORMATION Package TO-247 IRFPC50APbF SiHFPC50A-E3 IRFPC50A SiHFPC50A Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 30 VGS at 10 V Continuous Drain Current TC = 25 °C ID TC = 100 °C Pulsed Drain Currenta UNIT V 11 7.0 A IDM 44 1.4 W/°C EAS 920 mJ Currenta IAR 11 A Repetitive Avalanche Energya EAR 18 mJ Linear Derating Factor Single Pulse Avalanche Energyb Repetitive Avalanche TC = 25 °C Maximum Power Dissipation PD 180 W dV/dt 4.9 V/ns TJ, Tstg - 55 to + 150 Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting TJ = 25 °C, L = 15 mH, RG = 25 Ω, IAS = 11 A (see fig. 12). c. ISD ≤ 11 A, dI/dt ≤ 126 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. * Pb containing terminations are not RoHS compliant, exemptions may apply Document Number: 91241 S-Pending-Rev. A, 26-Jun-08 WORK-IN-PROGRESS www.vishay.com 1 IRFPC50A, SiHFPC50A Vishay Siliconix THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.65 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 600 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.65 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V nA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance VGS = ± 30 V - - ± 100 VDS = 600 V, VGS = 0 V - - 25 VDS = 480 V, VGS = 0 V, TJ = 125 °C - - 250 IGSS IDSS RDS(on) gfs ID = 6.0 Ab VGS = 10 V VDS = 50 V, ID = 6.0 Ab µA - - 0.58 Ω 7.7 - - S - 2100 - Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Effective Output Capacitance Coss Total Gate Charge Qg Qgs Gate-Drain Charge Qgd Turn-On Delay Time td(on) Turn-Off Delay Time Fall Time VGS = 0 V Coss eff. Gate-Source Charge Rise Time VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 tr td(off) VGS = 10 V - 270 - - 9.7 - VDS = 1.0 V, f = 1.0 MHz - 2830 - VDS = 480 V, f = 1.0 MHz - 74 - VDS = 0 V to 480 Vc - 81 - - - 70 ID = 11 A, VDS = 480 V see fig. 6 and 13b - - 19 - - 28 - 15 - - 40 - - 33 - - 29 - - - 11 - - 44 VDD = 300 V, ID = 11 A RG = 6.2 Ω, RD= 30 Ω see fig. 10b tf pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G S TJ = 25 °C, IS = 11 A, VGS = 0 Vb - - 1.4 V TJ = 25 °C, IF = 11 A, dI/dt = 100 A/µsb - 500 740 ns - 4.0 6.0 µC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.vishay.com 2 Document Number: 91241 S-Pending-Rev. A, 26-Jun-08 IRFPC50A, SiHFPC50A Vishay Siliconix TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 10 4.5V 1 TJ = 150 ° C 10 20μs PULSE WIDTH TJ = 25 °C 0.1 0.1 1 10 TJ = 25 ° C 1 4.0 100 Fig. 1 - Typical Output Characteristics I D , Drain-to-Source Current (A) 10 4.5V 20μs PULSE WIDTH TJ = 150 ° C 10 VDS , Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics Document Number: 91241 S-Pending-Rev. A, 26-Jun-08 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1 6.0 7.0 8.0 9.0 Fig. 3 - Typical Transfer Characteristics TOP 1 5.0 VGS , Gate-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 100 V DS =100V 50V 20μs PULSE WIDTH ID = 13A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Normalized On-Resistance vs. Temperature www.vishay.com 3 IRFPC50A, SiHFPC50A Vishay Siliconix 100000 ISD , Reverse Drain Current (A) 10000 C, Capacitance (pF) 100 V GS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + C gd Ciss 1000 Coss 100 Crss 10 10 100 TJ = 150 ° C TJ = 25 ° C 1 0.1 0.2 1 1 10 1000 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage 0.6 0.8 1.0 1.2 1.4 1.6 Fig. 7 - Typical Source-Drain Diode Forward Voltage 1000 ID = 13A OPERATION IN THIS AREA LIMITED BY RDS(on) VDS = 480V VDS = 300V VDS = 120V 16 100 I D , Drain Current (A) VGS , Gate-to-Source Voltage (V) 0.4 VSD ,Source-to-Drain Voltage (V) VDS , Drain-to-Source Voltage (V) 20 V GS = 0 V 12 8 10us 10 100us 1ms 1 10ms 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 20 40 60 80 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.vishay.com 4 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 100 1000 1000 VDS , Drain-to-Source Voltage (V) Fig. 8 - Maximum Safe Operating Area Document Number: 91241 S-Pending-Rev. A, 26-Jun-08 IRFPC50A, SiHFPC50A Vishay Siliconix RD VDS 12 VGS 10 ID , Drain Current (A) D.U.T. RG + - VDD 10 V 8 Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 6 Fig. 10a - Switching Time Test Circuit 4 VDS 90 % 2 0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10 % VGS t d(on) tr t d(off) t f Fig. 10b - Switching Time Waveforms Fig. 9 - Maximum Drain Current vs. Case Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM 0.01 t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case V DS 15 V L VDS D.U.T RG IAS 20 V tp tp Driver + A - VDD 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Document Number: 91241 S-Pending-Rev. A, 26-Jun-08 A I AS Fig. 12b - Unclamped Inductive Waveforms www.vishay.com 5 IRFPC50A, SiHFPC50A Vishay Siliconix EAS , Single Pulse Avalanche Energy (mJ) 2000 TOP 1600 BOTTOM ID 4.9A 7.0A 11A QG 10 V QGS Q GD 1200 VG 800 Charge 400 Fig. 13a - Basic Gate Charge Waveform 0 25 50 75 100 125 Current regulator Same type as D.U.T. 150 Starting TJ , Junction Temperature ( ° C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current 50 kΩ 12 V 0.2 µF 0.3 µF V DSav , Avalanche Voltage (V) 730 D.U.T. + V - DS 720 VGS 710 3 mA 700 IG 690 ID Current sampling resistors Fig. 13b - Gate Charge Test Circuit 680 670 660 650 0 1 2 3 4 5 6 7 8 9 10 11 12 13 I av , Avalanche Current (A) Fig. 12d - Typical Drain-to-Source Voltage vs. Avalanche Current www.vishay.com 6 Document Number: 91241 S-Pending-Rev. A, 26-Jun-08 IRFPC50A, SiHFPC50A Vishay Siliconix Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?91241. Document Number: 91241 S-Pending-Rev. A, 26-Jun-08 www.vishay.com 7 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1