Vishay IRFPC50APBF Power mosfet Datasheet

IRFPC50A, SiHFPC50A
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Low Gate Charge Qg Results in Simple Drive
Requirement
600
RDS(on) (Ω)
VGS = 10 V
0.58
Qg (Max.) (nC)
70
Qgs (nC)
19
Qgd (nC)
28
Configuration
• Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Available
RoHS*
COMPLIANT
• Fully Characterized Capacitance and Avalanche Voltage
and Current
• Effective Coss Specified
Single
• Lead (Pb)-free Available
D
TO-247
APPLICATIONS
• Switch Mode Power Supply (SMPS)
G
• Uninterruptable Power Supply
• High Speed Power Switching
S
D
S
G
TYPICAL SMPS TOPOLOGY
N-Channel MOSFET
• PFC Boost
ORDERING INFORMATION
Package
TO-247
IRFPC50APbF
SiHFPC50A-E3
IRFPC50A
SiHFPC50A
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
600
Gate-Source Voltage
VGS
± 30
VGS at 10 V
Continuous Drain Current
TC = 25 °C
ID
TC = 100 °C
Pulsed Drain Currenta
UNIT
V
11
7.0
A
IDM
44
1.4
W/°C
EAS
920
mJ
Currenta
IAR
11
A
Repetitive Avalanche Energya
EAR
18
mJ
Linear Derating Factor
Single Pulse Avalanche Energyb
Repetitive Avalanche
TC = 25 °C
Maximum Power Dissipation
PD
180
W
dV/dt
4.9
V/ns
TJ, Tstg
- 55 to + 150
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 15 mH, RG = 25 Ω, IAS = 11 A (see fig. 12).
c. ISD ≤ 11 A, dI/dt ≤ 126 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91241
S-Pending-Rev. A, 26-Jun-08
WORK-IN-PROGRESS
www.vishay.com
1
IRFPC50A, SiHFPC50A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
40
Case-to-Sink, Flat, Greased Surface
RthCS
0.24
-
Maximum Junction-to-Case (Drain)
RthJC
-
0.65
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDS
VGS = 0 V, ID = 250 µA
600
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.65
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.0
V
nA
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
Gate-Source Leakage
Zero Gate Voltage Drain Current
Drain-Source On-State Resistance
Forward Transconductance
VGS = ± 30 V
-
-
± 100
VDS = 600 V, VGS = 0 V
-
-
25
VDS = 480 V, VGS = 0 V, TJ = 125 °C
-
-
250
IGSS
IDSS
RDS(on)
gfs
ID = 6.0 Ab
VGS = 10 V
VDS = 50 V, ID = 6.0 Ab
µA
-
-
0.58
Ω
7.7
-
-
S
-
2100
-
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Output Capacitance
Effective Output Capacitance
Coss
Total Gate Charge
Qg
Qgs
Gate-Drain Charge
Qgd
Turn-On Delay Time
td(on)
Turn-Off Delay Time
Fall Time
VGS = 0 V
Coss eff.
Gate-Source Charge
Rise Time
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
tr
td(off)
VGS = 10 V
-
270
-
-
9.7
-
VDS = 1.0 V, f = 1.0 MHz
-
2830
-
VDS = 480 V, f = 1.0 MHz
-
74
-
VDS = 0 V to 480 Vc
-
81
-
-
-
70
ID = 11 A, VDS = 480 V
see fig. 6 and 13b
-
-
19
-
-
28
-
15
-
-
40
-
-
33
-
-
29
-
-
-
11
-
-
44
VDD = 300 V, ID = 11 A
RG = 6.2 Ω, RD= 30 Ω
see fig. 10b
tf
pF
nC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 11 A, VGS = 0 Vb
-
-
1.4
V
TJ = 25 °C, IF = 11 A,
dI/dt = 100 A/µsb
-
500
740
ns
-
4.0
6.0
µC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91241
S-Pending-Rev. A, 26-Jun-08
IRFPC50A, SiHFPC50A
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
10
4.5V
1
TJ = 150 ° C
10
20μs PULSE WIDTH
TJ = 25 °C
0.1
0.1
1
10
TJ = 25 ° C
1
4.0
100
Fig. 1 - Typical Output Characteristics
I D , Drain-to-Source Current (A)
10
4.5V
20μs PULSE WIDTH
TJ = 150 ° C
10
VDS , Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
Document Number: 91241
S-Pending-Rev. A, 26-Jun-08
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
3.0
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
1
6.0
7.0
8.0
9.0
Fig. 3 - Typical Transfer Characteristics
TOP
1
5.0
VGS , Gate-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
100
V DS =100V
50V
20μs PULSE WIDTH
ID = 13A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
IRFPC50A, SiHFPC50A
Vishay Siliconix
100000
ISD , Reverse Drain Current (A)
10000
C, Capacitance (pF)
100
V GS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + C gd
Ciss
1000
Coss
100
Crss
10
10
100
TJ = 150 ° C
TJ = 25 ° C
1
0.1
0.2
1
1
10
1000
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
0.6
0.8
1.0
1.2
1.4
1.6
Fig. 7 - Typical Source-Drain Diode Forward Voltage
1000
ID = 13A
OPERATION IN THIS AREA LIMITED
BY RDS(on)
VDS = 480V
VDS = 300V
VDS = 120V
16
100
I D , Drain Current (A)
VGS , Gate-to-Source Voltage (V)
0.4
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
20
V GS = 0 V
12
8
10us
10
100us
1ms
1
10ms
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
0
20
40
60
80
QG , Total Gate Charge (nC)
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
0.1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
100
1000
1000
VDS , Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91241
S-Pending-Rev. A, 26-Jun-08
IRFPC50A, SiHFPC50A
Vishay Siliconix
RD
VDS
12
VGS
10
ID , Drain Current (A)
D.U.T.
RG
+
- VDD
10 V
8
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
6
Fig. 10a - Switching Time Test Circuit
4
VDS
90 %
2
0
25
50
75
100
125
150
TC , Case Temperature ( °C)
10 %
VGS
t d(on)
tr
t d(off) t f
Fig. 10b - Switching Time Waveforms
Fig. 9 - Maximum Drain Current vs. Case Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
PDM
0.01
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.00001
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
V DS
15 V
L
VDS
D.U.T
RG
IAS
20 V
tp
tp
Driver
+
A
- VDD
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91241
S-Pending-Rev. A, 26-Jun-08
A
I AS
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRFPC50A, SiHFPC50A
Vishay Siliconix
EAS , Single Pulse Avalanche Energy (mJ)
2000
TOP
1600
BOTTOM
ID
4.9A
7.0A
11A
QG
10 V
QGS
Q GD
1200
VG
800
Charge
400
Fig. 13a - Basic Gate Charge Waveform
0
25
50
75
100
125
Current regulator
Same type as D.U.T.
150
Starting TJ , Junction Temperature ( ° C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
50 kΩ
12 V
0.2 µF
0.3 µF
V DSav , Avalanche Voltage (V)
730
D.U.T.
+
V
- DS
720
VGS
710
3 mA
700
IG
690
ID
Current sampling resistors
Fig. 13b - Gate Charge Test Circuit
680
670
660
650
0
1
2
3
4
5
6
7
8
9
10 11 12 13
I av , Avalanche Current (A)
Fig. 12d - Typical Drain-to-Source Voltage vs.
Avalanche Current
www.vishay.com
6
Document Number: 91241
S-Pending-Rev. A, 26-Jun-08
IRFPC50A, SiHFPC50A
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
•
•
•
•
RG
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Body diode
VDD
forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91241.
Document Number: 91241
S-Pending-Rev. A, 26-Jun-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1
Similar pages