SMPS IGBT PD - 95615 IRGB20B60PD1PbF WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE • • • • • Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies Lead-Free Equivalent MOSFET Parameters RCE(on) typ. = 158mΩ ID (FET equivalent) = 20A G Features • • • • • • • VCES = 600V VCE(on) typ. = 2.05V @ VGE = 15V IC = 13.0A C Applications NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability E n-channel Benefits E C G • Parallel Operation for Higher Current Applications • Lower Conduction Losses and Switching Losses • Higher Switching Frequency up to 150kHz TO-220AB Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 40 IC @ TC = 100°C Continuous Collector Current 22 ICM 80 ILM Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current IF @ TC = 25°C Diode Continous Forward Current 10 IF @ TC = 100°C Diode Continous Forward Current Maximum Repetitive Forward Current IFRM d 80 A 4 e 16 VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 215 W PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range 86 -55 to +150 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.58 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 5.0 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.50 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 80 Weight ––– 2 (0.07) ––– g (oz) 8/2/04 IRGB20B60PD1PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. 600 — Temperature Coeff. of Breakdown Voltage — 0.32 — Internal Gate Resistance — 4.3 — — 2.05 2.35 — 2.50 2.80 V(BR)CES Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ RG VCE(on) Collector-to-Emitter Saturation Voltage Max. Units — V Conditions V/°C VGE = 0V, IC = 1mA (25°C-125°C) Ω 1MHz, Open Collector IC = 13A, VGE = 15V V IC = 20A, VGE = 15V — 2.65 3.00 IC = 13A, VGE = 15V, TJ = 125°C — 3.30 3.70 IC = 20A, VGE = 15V, TJ = 125°C IC = 250µA V mV/°C VCE = VGE, IC = 1.0mA S VCE = 50V, IC = 40A, PW = 80µs VGE(th) Gate Threshold Voltage 3.0 4.0 5.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -11 — gfe ICES Forward Transconductance — 19 — Collector-to-Emitter Leakage Current — 1.0 250 µA VGE = 0V, VCE = 600V — 0.1 — mA VGE = 0V, VCE = 600V, TJ = 125°C — 1.5 1.8 V — 1.4 1.7 — — ±100 VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current Ref.Fig VGE = 0V, IC = 500µA 4, 5,6,8,9 7,8,9 IF = 4.0A, VGE = 0V 10 IF = 4.0A, VGE = 0V, TJ = 125°C nA VGE = ±20V, VCE = 0V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Qgc Total Gate Charge (turn-on) Parameter — 68 Max. Units 102 Gate-to-Collector Charge (turn-on) — 24 36 Conditions nC 17 VCC = 400V CT1 Qge Gate-to-Emitter Charge (turn-on) — 10 15 Eon Turn-On Switching Loss — 95 140 Eoff Turn-Off Switching Loss — 100 145 Etotal Total Switching Loss — 195 285 TJ = 25°C td(on) Turn-On delay time — 20 26 IC = 13A, VCC = 390V VGE = +15V, RG = 10Ω, L = 200µH tr Rise time — 5.0 7.0 td(off) Turn-Off delay time — 115 135 VGE = 15V IC = 13A, VCC = 390V µJ ns TJ = 25°C f Fall time — 6.0 8.0 Turn-On Switching Loss — 165 215 Eoff Turn-Off Switching Loss — 150 195 Etotal Total Switching Loss — 315 410 TJ = 125°C td(on) Turn-On delay time — 19 25 IC = 13A, VCC = 390V tr Rise time — 6.0 8.0 td(off) Turn-Off delay time — 125 140 tf Fall time — 13 17 Cies Input Capacitance — 1560 — VGE = 0V VCC = 30V Output Capacitance — 95 — — 20 — Coes eff. Reverse Transfer Capacitance Effective Output Capacitance (Time Related) — 83 — Coes eff. (ER) Effective Output Capacitance (Energy Related) — 61 — RBSOA Reverse Bias Safe Operating Area FULL SQUARE trr Diode Reverse Recovery Time — 28 42 — 38 57 — 40 60 — 70 105 — 2.9 5.2 — 3.7 6.7 g g CT3 f tf Cres CT3 VGE = +15V, RG = 10Ω, L = 200µH Eon Coes Ref.Fig IC = 13A IC = 13A, VCC = 390V µJ ns 11,13 f WF1,WF2 CT3 VGE = +15V, RG = 10Ω, L = 200µH TJ = 125°C pF CT3 VGE = +15V, RG = 10Ω, L = 200µH 12,14 f WF1,WF2 16 f = 1Mhz VGE = 0V, VCE = 0V to 480V 15 TJ = 150°C, IC = 80A 3 VCC = 480V, Vp =600V CT2 Rg = 22Ω, VGE = +15V to 0V Qrr Diode Reverse Recovery Charge Irr Peak Reverse Recovery Current Notes: RCE(on) typ. = equivalent on-resistance = VCE(on) typ. / IC, where VCE(on) typ. = 2.05V and IC = 13A. ns nC TJ = 25°C IF = 4.0A, VR = 200V, 19 TJ = 125°C di/dt = 200A/µs IF = 4.0A, VR = 200V, 21 TJ = 25°C di/dt = 200A/µs IF = 4.0A, VR = 200V, 19,20,21,22 TJ = 125°C di/dt = 200A/µs TJ = 25°C TJ = 125°C A CT5 ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions. VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω. Pulse width limited by max. junction temperature. Energy losses include "tail" and diode reverse recovery. Data generated with use of Diode 8ETH06. Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% V CES. Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES. 2 www.irf.com IRGB20B60PD1PbF 250 45 40 200 35 Ptot (W) 30 IC (A) 25 20 150 100 15 10 50 5 0 0 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 120 140 160 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 40 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 35 30 10 IC A) ICE (A) 25 20 15 1 10 5 0 0 10 100 1000 0 1 2 VCE (V) Fig. 3 - Reverse Bias SOA TJ = 150°C; VGE =15V 5 6 40 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 25 ICE (A) 25 ICE (A) 4 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 40 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 3 VCE (V) 6 0 1 2 3 4 5 6 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 3 IRGB20B60PD1PbF 450 10 400 9 8 350 T J = 25°C TJ = 125°C 6 VCE (V) ICE (A) 300 ICE = 20A ICE = 13A 7 250 200 ICE = 8.0A 5 4 150 3 100 2 50 1 0 0 0 5 10 15 0 20 5 10 Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 20 Fig. 8 - Typical VCE vs. VGE TJ = 25°C 10 Instantaneous Forward Current - IF (A) 100 9 VCE (V) 15 VGE (V) VGE (V) 8 ICE = 20A 7 ICE = 13A 6 ICE = 8.0A 5 4 3 2 TJ = 150°C 10 TJ = 125°C T = J 25°C 1 1 0 0 5 10 15 0.1 0.0 20 1.0 2.0 3.0 4.0 Forward Voltage Drop - V VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 125°C 5.0 6.0 (V) FM Fig. 10 - Typ. Diode Forward Characteristics tp = 80µs 350 1000 300 EON tdOFF Swiching Time (ns) Energy (µJ) 250 200 EOFF 150 100 100 tdON tF 10 tR 50 0 1 0 5 10 15 20 25 IC (A) Fig. 11 - Typ. Energy Loss vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V. Diode clamp used: 8ETH06 (See C.T.3) 4 0 5 10 15 20 25 IC (A) Fig. 12 - Typ. Switching Time vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V. Diode clamp used: 8ETH06 (See C.T.3) www.irf.com IRGB20B60PD1PbF 1000 250 td OFF EON Swiching Time (ns) Energy (µJ) 200 EOFF 150 100 tdON 10 tF 100 tR 1 50 0 5 10 15 20 25 30 0 35 10 20 30 40 RG ( Ω) RG ( Ω) Fig. 13 - Typ. Energy Loss vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V Diode clamp used: 8ETH06 (See C.T.3) Fig. 14 - Typ. Switching Time vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V Diode clamp used: 8ETH06 (See C.T.3) 12 10000 10 Cies Capacitance (pF) Eoes (µJ) 8 6 4 1000 Coes 100 2 Cres 0 10 0 100 200 300 400 500 600 700 0 60 80 100 Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE 16 1.6 1.5 14 400V Normalized V CE(on) (V) 12 10 VGE (V) 40 VCE (V) VCE (V) 8 6 4 2 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0 0.6 0 10 20 30 40 50 60 Q G , Total Gate Charge (nC) 70 80 Fig. 17 - Typical Gate Charge vs. VGE ICE = 13A www.irf.com 20 -50 0 50 100 150 200 T J , Junction Temperature (°C) Fig. 18 - Normalized Typical VCE(on) vs. Junction Temperature ICE = 13A; VGE = 15V 5 IRGB20B60PD1PbF 14 50 I F = 8.0A 45 12 VR = 200V TJ = 125°C TJ = 25°C I F = 4.0A 10 I F = 4.0A 8 Irr- ( A) trr- (nC) 40 I F = 8.0A 35 6 30 4 25 2 VR = 200V TJ = 125°C TJ = 25°C 20 100 di f /dt - (A/µs) 0 100 1000 Fig. 19 - Typical Reverse Recovery vs. dif/dt 1000 di f /dt - (A/µs) Fig. 20 - Typical Recovery Current vs. dif/dt 1000 200 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 160 I F = 8.0A I F = 4.0A Qrr- (nC) 120 di (rec) M/dt- (A /µs) I F = 8.0A 80 I F = 4.0A 40 0 100 di f /dt - (A/µs) 1000 Fig. 21 - Typical Stored Charge vs. dif/dt 6 100 100 A 1000 di f /dt - (A/µs) Fig. 22 - Typical di(rec)M/dt vs. dif/dt, www.irf.com IRGB20B60PD1PbF 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 τJ 0.05 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τ2 τ1 τ3 τ2 τ4 τ3 τ4 Ci= τi/Ri Ci i/Ri 0.01 Ri (°C/W) τC τ τi (sec) 0.0076 0.000001 0.2696 0.000270 0.1568 0.001386 0.1462 0.015586 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.02 0.01 τJ R1 R1 τJ τ1 SINGLE PULSE ( THERMAL RESPONSE ) R2 R2 τC τ1 τ2 τ2 Ci= τi/Ri Ci i/Ri τ Ri (°C/W) τi (sec) 1.779 0.000226 3.223 0.001883 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGB20B60PD1PbF L L VCC DUT 0 80 V DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) R= L PFC diode DUT / DRIVER VCC DUT Rg VCC ICM VCC Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit REVERSE RECOVERY CIRCUIT VR = 200V 0.01 Ω L = 70µH D.U.T. dif/dt ADJUST D G IRFP250 S Fig. C.T.5 - Reverse Recovery Parameter Test Circuit 8 www.irf.com IRGB20B60PD1PbF 18 450 400 16 400 tf 300 90% ICE 350 12 300 10 200 8 5% V CE 150 100 6 5% ICE 50 0 -50 -0.20 Eoff Loss 0.00 0.20 0.40 25 90% test current 200 10% test current 150 4 100 2 50 0 0 35 30 tr 250 20 15 10 5% V CE Eon Loss -50 7.75 -2 0.80 0.60 40 TEST CURRENT VCE (V) VCE (V) 250 14 ICE (A) 350 45 I CE (A) 450 7.85 7.95 8.05 5 0 -5 8.15 Time (µs) Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.3 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.3 3 trr IF tb ta 0 2 Q rr I RRM 4 0.5 I RRM di(rec)M/dt 5 0.75 I RRM 1 di f /dt 1. dif/dt - Rate of change of current through zero crossing 2. I RRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going I F to point where a line passing through 0.75 I RRM and 0.50 IRRM extrapolated to zero current 4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M /dt - Peak rate of change of current during tb portion of trr Fig. WF3 - Reverse Recovery Waveform and Definitions www.irf.com 9 IRGB20B60PD1PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LE A D A S S IG N M E N T S 1.15 (.045) MIN 1 2 3 1234- 14.09 (.555) 13.47 (.530) G A T2E- DRAIN - SOURCE D R A3IN S O U4R- C E DRAIN D R A IN IG B T s , C oP A C K 1234- G ATE C O L LE C T O R E M IT T E R C O L LE C T O R 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS H E X FE1T- GATE 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E X AM P L E : T H IS IS AN IR F 1 0 1 0 L OT CO D E 1 7 8 9 AS S E M B L E D O N W W 1 9 , 1 9 9 7 IN T H E AS S E M B L Y L IN E "C " N ote : "P " in a sse m b ly lin e p o sitio n in d ica te s "L e a d -Fre e " IN T E R N AT IO N AL R E C T IF IE R L O GO AS S E M B L Y L O T COD E P AR T N U M B E R D AT E C O D E YE AR 7 = 1997 WE E K 19 L IN E C TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/