PD - 93828A IRHQ7214 RADIATION HARDENED POWER MOSFET SURFACE MOUNT (LCC-28) 250V, QUAD N-CHANNEL ® ™ RAD-Hard HEXFET MOSFET TECHNOLOGY Product Summary Part Number Radiation Level IRHQ7214 100K Rads (Si) IRHQ3214 300K Rads (Si) RDS(on) 2.25Ω 2.25Ω ID 1.6A 1.6A IRHQ4214 600K Rads (Si) 2.25Ω 1.6A IRHQ8214 1000K Rads (Si) 2.25Ω 1.6A TM LCC-28 HEXFET® International Rectifier’s RAD-Hard MOSFET technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters. Features: n n n n n n n n n n Single Event Effect (SEE) Hardened Low RDS(on) Low Total Gate Charge Proton Tolerant Simple Drive Requirements Ease of Paralleling Hermetically Sealed Ceramic Package Surface Mount Light Weight Pre-Irradiation Absolute Maximum Ratings ( Per Die) Parameter ID @ VGS = 12V, TC = 25°C ID @ VGS = 12V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current ➀ Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy ➁ Avalanche Current ➀ Repetitive Avalanche Energy ➀ Peak Diode Recovery dv/dt ➂ Operating Junction Storage Temperature Range Pckg. Mounting Surface Temp. Weight Units 1.6 1.0 6.4 12 0.1 ±20 62 1.6 1.2 3.5 -55 to 150 A W W/°C V mJ A mJ V/ns o C 300 (for 5s) 0.89 (Typical) g For footnotes refer to the last page www.irf.com 1 04/22/03 IRHQ7214 Pre-Irradiation Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified) (Per Die) Parameter Min Drain-to-Source Breakdown Voltage 250 — — V — 0.3 — V/°C — — 2.0 0.9 — — — — — — — — 2.25 Ω 4.0 — 25 250 V S( ) ∆BVDSS /∆T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current Typ Max Units IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance — — — — — — — — — — — — — — — — — — — 6.1 100 -100 19 3.4 7.0 15 7.0 39 42 — Ciss C oss C rss Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — 280 70 18 — — — Test Conditions VGS = 0V, ID = 1.0mA Reference to 25°C, ID = 1.0mA VGS = 12V, ID = 1.0A ➃ VDS = VGS, ID = 1.0mA VDS > 15V, I DS = 1.0A ➃ VDS= 200V, VGS=0V VDS = 200V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VGS = 12V, ID = 1.6A, VDS = 125V Ω BVDSS µA nA nC VDD = 125V, ID = 1.6A, VGS = 12V, RG = 7.5Ω ns nH Measured from the center of drain pad to center of source pad pF VGS = 0V, VDS = 25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics (Per Die) Parameter Min Typ Max Unit IS ISM VSD trr Q RR Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ➀ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ton Forward Turn-On Time — — — — — — — — — — 1.6 6.4 1.5 226 900 Test Conditions A V nS nC Tj = 25°C, IS = 1.6A, VGS = 0V ➃ Tj = 25°C, IF = 1.6A, di/dt ≤ 100A/µs VDD ≤ 25V ➃ Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance (Per Die) Parameter RthJC Junction-to-Case Min Typ Max Units — — 10.4 Test Conditions °C/W For footnotes refer to the last page 2 www.irf.com Radiation Characteristics IRHQ7214 Pre-Irradiation International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅ (Per Die) Parameter BVDSS VGS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD 100K Rads(Si)1 Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source ➃ On-State Resistance (TO-39) Static Drain-to-Source ➃ On-State Resistance (LCC-28) Diode Forward Voltage ➃ 300K to 1000K Rads (Si)2 Units Test Conditions Min Max Min Max 250 2.0 — — — — — 4.0 100 -100 25 2.205 250 1.25 — — — — — 4.5 100 -100 25 2.205 µA Ω VGS = 0V, ID = 1.0mA VGS = VDS, ID = 1.0mA VGS = 20V VGS = -20 V VDS = 200V, VGS =0V VGS = 12V, ID = 1.0A — 2.25 — 2.25 Ω VGS = 12V, ID = 1.0A — 1.5 1.5 V VGS = 0V, I S = 1.6A — V nA 1. Part numbers IRHQ7214, IRHQ3214 and IRHQ4214 2. Part number IRHQ8214 International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2. Table 2. Single Event Effect Safe Operating Area (Per Die) Ion Cu Br LET MeV/(mg/cm2)) 28.0 36.8 VDS (V) Range (µm) @VGS=0V @VGS=-5V @VGS=-10V @VGS=-15V @VGS=-20V 43.0 250 250 250 250 250 39.0 250 250 250 225 210 Energy (MeV) 285 305 300 250 VDS 200 Cu Br 150 100 50 0 0 -5 -10 -15 -20 VGS Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page www.irf.com 3 IRHQ7214 Pre-Irradiation 100 10 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V 10 1 5.0V 0.1 20µs PULSE WIDTH T = 25 C 1 1 10 100 VDS , Drain-to-Source Voltage (V) 0.1 10 TJ = 150 ° C 1 V DS = 50V 20µs PULSE WIDTH 11 13 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 4 R DS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) TJ = 25 ° C 9 10 100 Fig 2. Typical Output Characteristics 2.5 7 ° J 1 VDS , Drain-to-Source Voltage (V) 100 5 20µs PULSE WIDTH T = 150 C 0.01 0.1 Fig 1. Typical Output Characteristics 0.1 5.0V ° J 0.01 0.1 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP ID = 1.6A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 12V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com Pre-Irradiation VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd 500 400 300 200 100 20 VGS , Gate-to-Source Voltage (V) 600 C, Capacitance (pF) IRHQ7214 0 1 10 ID = 1.6A VDS = 200V VDS = 125V VDS = 50V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 100 0 4 VDS , Drain-to-Source Voltage (V) 8 12 16 20 QG , Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100 100 OPERATION IN THIS AREA LIMITED BY R I D , Drain Current (A) ISD , Reverse Drain Current (A) DS(on) 10 TJ = 150 ° C 1 10 10us 100us 1 1ms TJ = 25 ° C V GS = 0 V 0.1 0.4 0.6 0.8 1.0 1.2 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com 1.4 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 10ms 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 5 IRHQ7214 Pre-Irradiation RD VDS 1.6 VGS 1.2 I D , Drain Current (A) D.U.T. RG + -V DD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 0.8 Fig 10a. Switching Time Test Circuit 0.4 VDS 90% 0.0 25 50 75 100 125 TC , Case Temperature 150 ( °C) 10% VGS td(on) Fig 9. Maximum Drain Current Vs. Case Temperature tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 100 10 D = 0.50 0.20 0.10 1 0.05 0.02 0.01 0.1 0.01 0.00001 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.irf.com Pre-Irradiation IRHQ7214 15V L VD S D.U .T. RG IA S 2V 0V GS DR IV E R + V - DD 0.01 Ω tp Fig 12a. Unclamped Inductive Test Circuit A EAS , Single Pulse Avalanche Energy (mJ) 150 TOP 120 BOTTOM 90 60 30 0 25 V (B R )D SS ID 0.7A 1.0A 1.6A 50 75 100 125 150 Starting TJ , Junction Temperature ( ° C) tp Fig 12c. Maximum Avalanche Energy Vs. Drain Current IAS Current Regulator Same Type as D.U.T. Fig 12b. Unclamped Inductive Waveforms 50KΩ QG 12V .2µF .3µF 12 V QGS QGD + V - DS VGS VG 3mA Charge Fig 13a. Basic Gate Charge Waveform www.irf.com D.U.T. IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 7 IRHQ7214 Pre-Irradiation Footnotes: ➀ Repetitive Rating; Pulse width limited by maximum junction temperature. ➁ VDD = 50V, starting TJ = 25°C, L= 48mH, Peak IL = 1.6A, VGS = 12V ➂ I SD ≤ 1.6A, di/dt ≤ 336A/µs, VDD ≤ 250V, TJ ≤ 150°C ➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2% ➄ Total Dose Irradiation with VGS Bias. 12 volt VGS applied and V DS = 0 during irradiation per MIL-STD-750, method 1019, condition A ➅ Total Dose Irradiation with VDS Bias. 200 volt V DS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A Case Outline and Dimensions — LCC-28 Q2 Q1 Q3 Q4 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 04/03 8 www.irf.com