PD - 95956 AUTOMOTIVE MOSFET IRLR3705ZPbF IRLU3705ZPbF Features l l l l l l l Logic Level Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free Description HEXFET® Power MOSFET D VDSS = 55V RDS(on) = 8.0mΩ G Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. ID = 42A S D-Pak IRLR3705Z I-Pak IRLU3705Z Absolute Maximum Ratings Parameter Max. I D @ T C = 25°C Continuous Drain Current, V GS @ 10V (Silicon Limited) I D @ T C = 100°C Continuous Drain Current, V GS @ 10V I D @ T C = 25°C Continuous Drain Current, V GS @ 10V (Package Limited) Pulsed Drain Current I DM 42 c V GS d E AS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value E AS (Tested ) c I AR Avalanche Current E AR TJ Repetitive Avalanche Energy T STG Storage Temperature Range 360 h Parameter Junction-to-Ambient (PCB mount) Junction-to-Ambient j A °C Mounting Torque, 6-32 or M3 screw R θJA mJ -55 to + 175 300 (1.6mm from case ) y ij y 10 lbf in (1.1N m) Thermal Resistance R θJA 110 mJ Soldering Temperature, for 10 seconds j W W/°C V 190 Operating Junction and Junction-to-Case 130 0.88 ± 16 See Fig.12a, 12b, 15, 16 g R θJC A 63 P D @T C = 25°C Power Dissipation Linear Derating Factor Gate-to-Source Voltage Units 89 Typ. Max. ––– 1.14 ––– 40 ––– 110 Units °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 12/21/04 IRLR/U3705ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– VGS = 0V, ID = 250µA ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.053 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 6.5 8.0 mΩ ––– ––– 11 ––– ––– 12 1.0 ––– 3.0 e = 34A e = 21A e VGS = 10V, ID = 42A VGS = 5.0V, ID VGS = 4.5V, ID V VDS = VGS, ID = 250µA ––– S VDS = 25V, ID = 42A 20 µA VDS = 55V, VGS = 0V nA VGS = 16V VGS(th) Gate Threshold Voltage gfs Forward Transconductance 89 ––– IDSS Drain-to-Source Leakage Current ––– ––– ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 200 VDS = 55V, VGS = 0V, TJ = 125°C Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 44 66 VGS = -16V Qgs Gate-to-Source Charge ––– 13 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 22 ––– VGS = 5.0V td(on) Turn-On Delay Time ––– 17 ––– VDD = 28V tr Rise Time ––– 150 ––– td(off) Turn-Off Delay Time ––– 33 ––– tf Fall Time ––– 70 ––– VGS = 5.0V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– ID = 42A nC VDS = 44V e ID = 42A ns nH RG = 4.2 Ω e D 6mm (0.25in.) G from package S and center of die contact Ciss Input Capacitance ––– 2900 ––– VGS = 0V Coss Output Capacitance ––– 420 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 230 ––– Coss Output Capacitance ––– 1550 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 320 ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 500 ––– VGS = 0V, VDS = 0V to 44V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 42 ISM (Body Diode) Pulsed Source Current ––– ––– 360 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V trr Reverse Recovery Time ––– 21 42 ns TJ = 25°C, IF = 42A, VDD = 28V Qrr Reverse Recovery Charge ––– 14 28 nC di/dt = 100A/µs ton Forward Turn-On Time 2 c MOSFET symbol A showing the integral reverse e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRLR/U3705ZPbF 1000 1000 VGS 12V 10V 8.0V 5.0V 4.5V 3.5V 3.0V 2.8V 100 BOTTOM TOP 10 2.8V ≤ 60µs PULSE WIDTH Tj = 25°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 BOTTOM 2.8V 10 ≤ 60µs PULSE WIDTH Tj = 175°C 1 0.1 1 10 100 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 100 TJ = 25°C TJ = 175°C 100.0 10.0 VDS = 15V ≤ 60µs PULSE WIDTH Gfs, Forward Transconductance (S) ID, Drain-to-Source Current(Α) 100 VGS 12V 10V 8.0V 5.0V 4.5V 3.5V 3.0V 2.8V TJ = 25°C 80 60 TJ = 175°C 40 20 VDS = 8.0V 380µs PULSE WIDTH 1.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 0 0 10 20 30 40 50 60 70 80 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRLR/U3705ZPbF 5000 VGS, Gate-to-Source Voltage (V) 4000 C, Capacitance (pF) 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd Ciss 3000 2000 1000 Coss Crss VDS = 44V 10 VDS= 28V VDS= 11V 8 6 4 2 0 0 1 ID= 42A 10 0 100 10000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 TJ = 175°C 10.0 TJ = 25°C 1.0 VGS = 0V 0.6 0.8 1.0 1.2 1.4 1.6 1.8 VSD , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 80 100 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 100 100µsec 10 1msec 10msec 1 Tc = 25°C Tj = 175°C Single Pulse DC 0.1 0.1 0.4 60 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 0.2 40 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 100.0 20 2.0 1 10 100 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRLR/U3705ZPbF 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 LIMITED BY PACKAGE ID , Drain Current (A) 80 60 40 20 0 25 50 75 100 125 150 ID = 42A VGS = 10V 2.0 1.5 1.0 0.5 175 -60 -40 -20 TC , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 τJ 0.05 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τC τ τ2 Ri (°C/W) τi (sec) 0.6984 0.000465 0.4415 0.004358 Ci= τi/Ri Ci i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRLR/U3705ZPbF D.U.T RG VGS 20V DRIVER L VDS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 500 15V ID 5.3A 7.0A BOTTOM 42A TOP 400 300 200 100 0 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 2.5 VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K VGS(th) Gate threshold Voltage (V) 10 V ID = 250µA ID = 150µA 2.0 ID = 50µA 1.5 1.0 0.5 VCC 0.0 -75 -50 -25 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage vs. Temperature www.irf.com IRLR/U3705ZPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 0.05 0.10 10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 120 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A 100 80 60 40 20 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRLR/U3705ZPbF D.U.T Driver Gate Drive + * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - D= Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRLR/U3705ZPbF D-Pak (TO-252AA) Package Outline D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H AS S EMBLY LOT CODE 1234 AS S EMBLED ON WW 16, 1999 IN THE AS S EMBLY LINE "A" PART NUMBER INT ERNATIONAL RECT IFIER LOGO Note: "P" in ass embly line position indicates "Lead-Free" IRFU120 12 916A 34 AS S EMBLY LOT CODE DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A OR INT ERNATIONAL RECT IFIER LOGO PART NUMBER IRFU120 12 AS S EMBLY LOT CODE www.irf.com 34 DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 16 A = AS S EMBLY S IT E CODE 9 IRLR/U3705ZPbF I-Pak (TO-251AA) Package Outline I-Pak (TO-251AA) Part Marking Information E XAMPL E : T HIS IS AN IR F U 120 WIT H AS S E MB L Y L OT CODE 5678 AS S E MB L E D ON WW 19, 1999 IN T H E AS S E MB L Y L INE "A" INT E R NAT IONAL R E CT IF IE R L OGO PAR T NU MB E R IR F U 120 919A 56 78 AS S E MB L Y L OT CODE Note: "P" in as s embly line pos ition indicates "L ead-F ree" DAT E CODE YE AR 9 = 1999 WE E K 19 L INE A OR INT E R NAT IONAL R E CT IF IE R L OGO PAR T NU MB E R IRF U120 56 AS S E MB L Y L OT CODE 10 78 DAT E CODE P = DE S IGNAT E S L E AD-F R E E PR ODU CT (OPT IONAL ) YE AR 9 = 1999 WE E K 19 A = AS S E MB L Y S IT E CODE www.irf.com IRLR/U3705ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.12mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Rθ is measured at TJ approximately 90°C Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/04 www.irf.com 11