5V, Rail-Rail I/O, Zero-Drift, Programmable Gain Instrumentation Amplifiers ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 The ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, Features and ISL28635 are 5V Zero-Drift Rail-to-Rail Input/Output Programmable Gain Instrumentation Amplifiers (PGIA). These instrumentation amplifiers feature low offset, low noise, low gain error and high CMRR. They are ideal for high precision applications over the wide industrial temperature range. • Ultra high precision front end amplifier These Instrumentation Amplifiers are designed with a unique 2-bit, 3-state logic interface that allows up to 9 selectable gain settings. The ISL2853x single-ended output includes and additional uncommitted zero-drift amplifier, useful to buffer the REF input or used as a precision amplifier. The ISL2863x differential output amplifier includes a reference pin to set the common mode output voltage to interface with differential input ADCs. • Single ended output (ISL28533, ISL28534, ISL28535) • Zero drift instrumentation amplifier • Pin selectable 9 gain settings: G = 1 to 1,000 • Rail-to-Rail input/output • Differential output (ISL28633, ISL28634, ISL28635) • RFI filtered inputs improve EMI rejection • Single supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5V to 5.5V • Dual supply . . . . . . . . . . . . . . . . . . . . . . . . . ±1.25V to ±2.75V • Low input offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5µV, Max Applications • Low input offset drift . . . . . . . . . . . . . . . . . . . . . 50nV/°C, Max • • • • • • • • • Low gain error. . . . . . . . . . . . . . . . . . . . . <0.4%, All Gains, Max • High CMRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138dB, G = 100 Pressure and strain gauge transducers Weight scales Flow sensors Biometric: ECG/blood glucose Temperature sensors Test and measurement Data acquisition systems Low ohmic current sense • Gain bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3MHz • Input voltage noise (0.1Hz to 10Hz). . . . . . . . . . . . . . 0.4µVP-P • Operating temperature range. . . . . . . . . . . .-40°C to +125°C Related Literature • “DAQ on a Stick, Strain Gauge with ProgrammableChopper Stabilized IN-Amp” AN1853 • “ISL2853x_63xEV2Z User's Guide” AN1880 INA- INA- + 20kΩ + 20kΩ A1 - RG A3 + RG VAVA+ - OUTA A3 VAVA+ OUTA1MΩ - + RG 20kΩ 20kΩ A1 + RG 1MΩ + 20kΩ 20kΩ REF A2 - + OUT 9 GAIN CONTROL G0 G1 FIGURE 1. ISL2853x SINGLE-ENDED OUTPUT November 22, 2013 FN8364.1 1 A4 + A4 OUTA+ 20kΩ A2 INA+ + ININ+ 20kΩ - INA+ REF 9 GAIN CONTROL G0 G1 FIGURE 2. ISL2863x DIFFERENTIAL OUTPUT CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2013. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Table of Contents Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Typical Sensor Application Block Diagram, ISL28533 Single-Ended Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Typical Bridge Sensor Application Block Diagram, ISL28634 Differential Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 G0 and G1 Programmable Gain Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Typical Instrumentation Amplifier Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Typical Operational Amplifier Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Precision Sensor Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-Ended Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RFI Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain Stage Output VA+/VA- Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable Gain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain Setting with DCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain Switching Delay Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dual Supply Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power supply and REF Pin Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . common mode input range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 25 25 25 25 26 26 27 27 27 27 Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Sensor Health Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Active Shield Guard Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Pin Configurations ISL28633, ISL28634, ISL28635 DIFFERENTIAL OUTPUT (14 LD TSSOP) TOP VIEW ISL28533, ISL28534, ISL28535 SINGLE ENDED OUTPUT (14 LD TSSOP) TOP VIEW G0 1 3 DNC 12 OUTA V+ 2 13 DNC VA- 3 12 OUTA+ 11 REF 10 OUTA- - G1 - VA- 13 14 + 2 V+ + G1 G0 1 14 INA+ 4 11 REF INA+ 4 INA- 5 10 OUT INA- 5 VA+ 6 VA+ 6 9 N.C. V- 7 V- 7 8 N.C. + - 9 IN- 8 IN+ Pin Descriptions ISL28533 ISL28534 ISL28535 (SINGLE- ENDED OUT) ISL28633 ISL28634 ISL28635 (DIFFERENTIAL OUT) PIN NAME EQUIVALENT CIRCUIT 4 4 INA+ Circuit 1 INA+ Input Positive Differential Input 5 5 INA- Circuit 1 INA- Input Negative Differential Input FUNCTION COMMENTS 12 - OUTA Circuit 2 INA Output Single Ended Output - 12 OUTA+ Circuit 2 INA +Output Positive Differential Output - 10 OUTA- Circuit 2 INA -Output Negative Differential Output 6 6 VA+ Circuit 1 A2 Output INA Gain Stage +Output 3 3 VA- Circuit 1 A1 Output INA Gain Stage -Output 11 11 REF Circuit 1 Output Reference INA Output Reference 1 1 G0 Circuit 1 Gain Control Logic Input 2 2 G1 Circuit 1 Gain Control Logic Input 8 - IN+ Circuit 1 Non-Inverting Op Amp Input Auxiliary Amplifier IN+ 9 - IN- Circuit 1 Inverting Op Amp Input Auxiliary Amplifier IN- 10 - OUT Circuit 2 Op Amp Output Auxiliary Amplifier OUT 14 14 V+ Circuit 3 Positive supply 7 7 V- Circuit 3 Negative supply Single Supply: +2.5V to +5.5V Dual Supply: ±1.25V to ±2.75V - 8, 9 N.C. No Connect 13 13 DNC Do Not Connect INA+, V+ V+ INA-, Pin must float V+ CAPACITIVELY COUPLED OUT IN+, V- IN- ESD CLAMP VV- CIRCUIT 1 CIRCUIT 2 3 CIRCUIT 3 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Sensor Application Block Diagram, ISL28533 Single-Ended Output VCC +5V ISL21090 5V VREF V+ OUT+ SENSOR ISL28533 INA- OUT- - COMMON MODE SENSE 20kΩ - ISL28134 + 20kΩ + A1 REF+ RG 10kΩ VAVA+ VCM A3 + RG 10kΩ - 20kΩ OUTA 20kΩ ISL26320 12-bit ADC REF A2 INA+ IN + OUT A4 + VCC ININ+ ISL21090 2.5V VREF V- FIGURE 3. SENSOR APPLICATION WITH COMMON MODE SENSING AND BUFFERED REFERENCE DRIVE Typical Bridge Sensor Application Block Diagram, ISL28634 Differential Output *See ISLRE-BDGSTKEV1Z DAQ on a Stick User’s Guide” AN1853 ISL23328 ISL26104 24-BIT ADC DCP Gain Control +5V Ch 1 35 0Ω Ch 2 FOIL STRAIN GAUGE S ISL28634 50Ω + TO GUI Ch 3 Ch 4 S 35 0Ω 35 0 Ω + - + - Renesas MICROCONTROLLER 50Ω VA+ ISL21010 5V VREF ISL28233 R5F10JBC (RL78/G1C) VA- FIGURE 4. SIMPLIFIED STRAIN GAUGE SCHEMATIC 4 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 G0 and G1 Programmable Gain Setting G1 (NOTE) G0 (NOTE) ISL28533 ISL28633 ISL28534 ISL28634 ISL28535 ISL28635 0 0 1 1 1 0 Z 2 2 100 0 1 4 10 120 Z 0 5 50 150 Z Z 10 100 180 Z 1 20 200 200 1 0 40 300 300 1 Z 50 500 500 1 1 100 1000 1000 MEDICAL PIEZO-ELECTRIC PRESSURE SENSOR FLUID SENSOR SHUNT SENSE OPTICAL SENSORS STRAIN GAUGE THERMOCOUPLE STRAIN GAUGE APPLICATIONS NOTE: For valid logic “Z” state leave G0/G1 pins in high impedance state. Internal 100kΩ pull-up and pull-down resistors on these pins establishes logic “Z”. See Application Section for more information. Ordering Information PART NUMBER (Notes 1, 2, 3) PART MARKING TEMP RANGE (°C) PACKAGE (Pb-Free) PKG. DWG. # ISL28533FVZ 28533 FVZ -40 to +125 14 Ld TSSOP M14.173 ISL28534FVZ 28534 FVZ -40 to +125 14 Ld TSSOP M14.173 ISL28535FVZ 28535 FVZ -40 to +125 14 Ld TSSOP M14.173 ISL28633FVZ 28633 FVZ -40 to +125 14 Ld TSSOP M14.173 ISL28634FVZ 28634 FVZ -40 to +125 14 Ld TSSOP M14.173 ISL28635FVZ 28635 FVZ -40 to +125 14 Ld TSSOP M14.173 ISL28533EV2Z ISL28533 Evaluation Board ISL28534EV2Z ISL28534 Evaluation Board ISL28535EV2Z ISL28535 Evaluation Board ISL28633EV2Z ISL28633 Evaluation Board ISL28634EV2Z ISL28634 Evaluation Board ISL28635EV2Z ISL28635 Evaluation Board NOTES: 1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635. For more information on MSL please see tech brief TB363. 5 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Absolute Maximum Ratings Thermal Information Supply Voltage V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V Input Voltage VIN to GND . . . . . . . . . . . . . . . . . . ((V-) - 0.3V) to ((V+) + 0.3V) Input Differential Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VInput Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA Output Current IOUT (10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±40mA Latch-Up Class 2 Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA ESD Rating Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8kV Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700V Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 14 LD TSSOP (Notes 4, 5) . . . . . . . . . . . . . . 92 30 Maximum Storage Temperature Range . . . . . . . . . . . . . -65°C to +150°C Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +125°C Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . +140°C Supply Voltage . . . . . . . . . . . . . . . . . . . . . . 2.5V (±1.25V) to 5.5V (±2.75V) CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 5. For θJC, the “case temp” location is taken at the package top center. Electrical Specifications V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. PARAMETER DESCRIPTION CONDITIONS MIN (Note 6) TYP MAX (Note 6) UNIT 2.5 - 5.5 V - 2.9 3.4 mA - - 3.5 mA - 3 3.5 mA - - 3.6 mA -5 ±0.6 5 µV POWER SUPPLY DC SPECIFICATIONS VS Supply Voltage VS = (V+) - (V-) IS Supply Current VS = 5V ISL2853X, RL = OPEN ISL2863X, RL = OPEN 5V DC SPECIFICATIONS INSTRUMENTATION AMPLIFIER VOS, I Input Stage Offset Voltage +25°C -40°C to +85°C -9 - 9 µV -40°C to +125°C -10 - 10 µV TCVOS, I Input Stage Offset Voltage Temperature Coefficient -40°C to +125°C -50 ±5 50 nV/°C VOS, O Output Stage Offset Voltage +25°C -15 ±2 15 µV -40°C to +85°C -45 - 45 µV -40°C to +125°C -65 - 65 µV µV/°C TCVOS, O Output Stage Offset Voltage Temperature Coefficient -40°C to +125°C -0.5 ±0.15 0.5 IB Input Bias Current +25°C -400 ±50 400 pA -40°C to +85°C -400 - 400 pA -40°C to +125°C -1 - 1 nA +25°C -300 ±50 300 pA -40°C to +85°C -350 - 350 pA -40°C to +125°C -1 - 1 nA - 10 - GΩ - 5 - pF IOS ZIN Input Offset Current Input Impedance 6 Common Mode FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Electrical Specifications V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued) PARAMETER EGAIN DESCRIPTION Gain Error CONDITIONS G = 1 to 50 G = 100 to 500 G = 1000 MAX (Note 6) UNIT -0.2 ±0.05 0.2 % -0.35 - 0.35 % -0.3 ±0.05 0.3 % -0.4 - 0.4 % -0.4 ±0.05 0.4 % - 0.5 % - 10 - ppm/°C G=1 - 5 - ppm G = 10 - 5 - ppm G = 100 - 10 - ppm G = 1000 - 10 - ppm G=1 80 100 - dB G = 10 100 114 - dB 90 - - dB 110 138 - dB 100 - - dB 120 150 - dB 110 - - dB (V-) +0.1 - (V+) -0.1 V Gain Drift G = 1 to 1,000 -40°C to +125°C GNL Gain Non-Linearity VOUT = +0.1V to +4.9V; RL = 10kΩ Common Mode Rejection Ratio TYP -0.5 GAIN_TC CMRR MIN (Note 6) VCM = +0.1V to +4.9V G = 100 G = 1000 CMIR Common Mode Input Range Guaranteed by CMRR VREF Range Reference Voltage Range ISL2853X V- - V+ V ISL2863X (V-) +0.6 - (V+) -1 V ISL2853X VIN+ = VIN- = VREF = 2.5V -0.5 0.1 0.5 µA -1 - 1 µA ISL2863X VREF = 2.5V -500 150 500 pA -25 - 25 nA ISL2853X 36 40 44 kΩ ISL2863X - 10 - GΩ G=1V/V 110 130 - dB G=10V/V 110 140 - dB G=100V/V 120 140 - dB G=1000V/V 120 140 - dB IREF ZREF PSRR ISC VOH Reference Input Current Reference Input Impedance Power Supply Rejection Ratio Vs = +2.5V to +5.5V Short Circuit Output Source Current RL = Short to V- - 45 - mA Short Circuit Output Sink Current RL = Short to V+ - -45 - mA High Output Voltage from V+ ((V+) - VOUT) RL = 10kΩ V+ to VREF - 10 15 mV - - 20 mV 7 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Electrical Specifications V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued) PARAMETER VOL DESCRIPTION Low Output Voltage from V((V-) + VOUT) CONDITIONS RL = 10kΩ V- to VREF MIN (Note 6) TYP MAX (Note 6) UNIT - 10 15 mV - - 20 mV 0.8*(Vs) - - V 5V G0/G1 LOGIC INPUTS INSTRUMENTATION AMPLIFIER VIH Logic Input High Threshold Vs = (V+) - (V-) VIL Logic Input Low Threshold Vs = (V+) - (V-) - - 0.2*(Vs) V VIH_Z/VIL_Z Hi-Z Logic Input Range Vs = (V+) - (V-) 0.4*(Vs) - 0.6*(Vs) V VOC Open Circuit Logic Voltage Set by 2 internal 100kΩ Resistors; VS = (V+) - (V-) 0.45*VS - 0.55*VS V ZIN Logic Input Impedance - 50k - kΩ 5V AC SPECIFICATIONS INSTRUMENTATION AMPLIFIER eN Total Input Referred Voltage Noise eN = √(eNi2 + (eNo/G)2 + (IN*RS)2) eNi Input Noise Voltage f = 0.1Hz to 10Hz; G = 100 - 0.4 - µVP-P f = 1kHz; G = 100 - 17 - nV/√Hz f = 0.1Hz to 10Hz; G = 1 - 1.8 - µVP-P f = 1kHz; G = 1 - 65 - nV/√Hz eNo Output Noise Voltage IN Input Noise Current f = 10Hz; RS = 5MΩ; G = 100 - 100 - fA/√Hz GBWP Gain Bandwidth Product G ≥ 10 - 2.3 - MHz G < 10 - 1.6 - MHz VOUT = 4VP-P; G = 1 - 0.8 - V/µs VOUT = 4VP-P; G = 100 - 0.28 - V/µs 5V TRANSIENT RESPONSE INSTRUMENTATION AMPLIFIER SR Slew Rate 20% to 80% tGPD Gain Select Prop Delay All Gains, 2V to 4V output after gain change - 1 - µs ts Settling Time To 0.1%, 4VP-P Step - 20 - µs To 0.01%, 4VP-P Step - 70 - µs G=1 - 1 - µs - 140 - dB -2.5 -0.2 2.5 µV TA = -40°C to +85°C -3.475 - 3.475 µV TA = -40°C to +125°C -4 - -4 µV TA = -40°C to +125°C -15 -0.5 15 nV/°C trecover Output Overload Recovery Time, Recovery to 90% of output saturation 5V DC SPECIFICATIONS OPERATIONAL AMPLIFIER AvOPEN Open Loop Gain VOS Input Offset Voltage TCVOS Input Offset Voltage Temperature Coefficient IB Input Bias Current 8 TA = +25°C TA = +25°C -300 ±15 300 pA TA = -40°C to +85°C -300 - 300 pA TA = -40°C to +125°C -550 - 550 pA FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Electrical Specifications V+ = 5V, V- = 0V, VIN+ = VIN- = VREF = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued) PARAMETER IOS DESCRIPTION CONDITIONS Input Offset Current Common Mode Input Voltage Range MIN (Note 6) TYP MAX (Note 6) UNIT -600 ±50 600 pA TA = -40°C to +85°C -600 - 600 pA TA = -40°C to +125°C -1100 - 1100 pA V+ = 5.0V, V- = 0V Guaranteed by CMRR 0 - 5 V 135 - dB CMRR Common Mode Rejection Ratio VCM = 0V to 5V 110 97 - - dB PSRR Power Supply Rejection Ratio VS = 2.5V to 5.5V 120 135 - dB ISC Short Circuit Output Source Current RL = Short to V- - 40 - mA Short Circuit Output Sink Current RL = Short to V+ - -40 - mA Output Voltage Swing, HIGH From VOUT to V+ RL = 10kΩ to V- - 20 45 mV RL = 10kΩ to V- - - 50 mV RL = 10kΩ to V+ - 20 45 mV RL = 10kΩ to V+ - - 50 mV VOH VOL Output Voltage Swing, LOW From V- to VOUT 5V AC SPECIFICATIONS OPERATIONAL AMPLIFIER CIN Input Capacitance Differential - 5.2 - pF Common Mode - 5.6 - pF - 0.25 - µVP-P eN Input Noise Voltage f = 0.1Hz to 10Hz f = 1kHz - 10 - nV/√Hz IN Input Noise Current f = 1kHz - 200 - fA/√Hz GBWP Gain Bandwidth Product - 3 - MHz Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. MIN (Note 6) TYP MAX (Note 6) UNIT +25°C -5 ±0.6 5 µV -40°C to +85°C -9 - 9 µV -40°C to +125°C -10 - 10 µV TCVOS, I Input Stage Offset Voltage Temperature -40°C to +125°C Coefficient -50 ±5 50 nV/°C VOS, O Output Stage Offset Voltage +25°C -15 ±2 15 µV -40°C to +85°C -45 - 45 µV -40°C to +125°C -65 - 65 µV PARAMETER DESCRIPTION CONDITIONS 2.5V DC SPECIFICATIONS INSTRUMENTATION AMPLIFIER VOS, I Input Stage Offset Voltage TCVOS, O Output Stage Offset Voltage Temperature Coefficient -40°C to +125°C -0.5 ±0.15 0.5 µV/°C IB Input Bias Current +25°C -400 ±50 400 pA -40°C to +85°C -400 - 400 pA -40°C to +125°C -1 - 1 nA 9 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued) PARAMETER IOS MIN (Note 6) TYP +25°C -300 ±50 300 pA -40°C to +85°C -350 - 350 pA -40°C to +125°C -1 - 1 nA - 10 - GΩ DESCRIPTION Input Offset Current CONDITIONS ZIN Input Impedance Common Mode EGAIN Gain Error G = 1 to 50 G = 100 to 500 MAX (Note 6) UNIT - 5 - pF -0.2 ±0.05 0.2 % -0.35 - 0.35 % -0.3 ±0.05 0.3 % -0.4 - 0.4 % -0.4 ±0.05 0.4 % -0.5 - 0.5 % - 10 - ppm/°C G=1 80 100 - dB G = 10 100 114 - dB 90 - - dB 110 138 - dB 100 - - dB 120 150 - dB 110 - - dB (V-) +0.1 - (V+) -0.1 V G = 1000 GAIN_TC Gain Drift G = 1 to 1,000 -40°C to +125°C CMRR Common Mode Rejection Ratio VCM = +0.1V to +2.4V G = 100 G = 1000 CMIR Common Mode Input Range Guaranteed by CMRR VREF Range Reference Voltage Range ISL2853x V- - V+ V ISL2863x (V-) +0.6 - (V+) -1 V ISL2853x VIN+ = VIN- = VREF = 1.25V -0.5 0.1 0.5 µA -1 - 1 µA ISL2863x -500 150 500 pA -25 - 25 nA ISL2853x 36 40 44 kΩ ISL2863x - 10 - GΩ G = 1V/V 110 130 - dB G = 10V/V 110 140 - dB G = 100V/V 120 140 - dB G = 1000V/V 120 140 - dB IREF ZREF PSRR ISC VOH Reference Input Current Reference Input Impedance Power Supply Rejection Ratio Vs = +2.5V to +5.5V Short Circuit Output Source Current RL = Short to V- - 25 - mA Short Circuit Output Sink Current RL = Short to V+ - -25 - mA Output Voltage Swing, HIGH RL = 10kΩ to VREF - 5 15 mV - - 20 mV 10 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued) PARAMETER VOL DESCRIPTION Output Voltage Swing, LOW CONDITIONS RL = 10kΩ to VREF MIN (Note 6) TYP MAX (Note 6) UNIT - 5 15 mV - - 20 mV 0.8*(Vs) - - V 2.5V G0/G1 LOGIC INPUTS INSTRUMENTATION AMPLIFIER VIH Logic Input High Threshold VIL Logic Input Low Threshold Vs = (V+) - (V-) - - 0.2*(Vs) V VIH_Z/VIL_Z Hi-Z Logic Input Range Vs = (V+) - (V-) 0.4*(Vs) - 0.6*(Vs) V VOC Open Circuit Logic Voltage Set by 2 internal 100kΩ Resistors; VS = (V+) - (V-) 0.45*VS - 0.55*VS V ZIN Logic Input Impedance - 50k - kΩ Vs = (V+) - (V-) 2.5V AC SPECIFICATIONS INSTRUMENTATION AMPLIFIER eN Total Input Referred Voltage Noise eN = √(eNi2 + (eNo/G)2 + (IN*RS)2) eNi Input Noise Voltage f = 0.1Hz to 10Hz; G = 100 - 0.4 - µVP-P f = 1kHz; G = 100 - 17 - nV/√Hz f = 0.1Hz to 10Hz; G = 1 - 1.8 - µVP-P f = 1kHz; G = 1 - 65 - nV/√Hz eNo Output Noise Voltage IN Input Noise Current f = 10Hz; RS = 5MΩ; G = 100 - 100 - fA/√Hz GBWP Gain Bandwidth Product G ≥ 10 - 2.3 - MHz G < 10 - 1.6 - MHz Slew Rate 10% to 90% VOUT = 2VP-P; G = 1 - 0.8 - V/µs VOUT = 2VP-P; G = 100 - 0.1 - V/µs tGPD Gain Select Prop Delay All Gains - 1 - µs ts Settling Time to 0.1%, 4VP-P Step To 0.1%, 2VP-P Step - 20 - µs To 0.01%, 2VP-P Step - 70 - µs - 1.5 - µs - 140 - dB 2.5V TRANSIENT RESPONSE INSTRUMENTATION AMPLIFIER SR trecover Output Overload Recovery Time, Recovery to 90% of output saturation 2.5V DC SPECIFICATIONS OPERATIONAL AMPLIFIER AvOPEN Open Loop Gain VOS Input Offset Voltage TA = +25°C -2.5 -0.2 2.5 µV -3.475 - 3.475 µV TA = -40°C to +125°C -4 - -4 µV TA = -40°C to +85°C TCVOS Input Offset Voltage Temperature Coefficient TA = -40°C to +125°C -15 -0.5 15 nV/°C IB Input Bias Current TA = +25°C -300 ±15 300 pA TA = -40°C to +85°C -300 - 300 pA TA = -40°C to +125°C -550 - 550 pA 11 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Operating Specifications V+ = 2.5V, V- = 0V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued) PARAMETER IOS DESCRIPTION Input Offset Current Common Mode Input Voltage Range CONDITIONS MIN (Note 6) TYP MAX (Note 6) UNIT TA = +25°C -600 ±50 600 pA TA = -40°C to +85°C -600 - 600 pA TA = -40°C to +125°C -1100 - 1100 pA V+ = 2.5V, V- = 0V Guaranteed by CMRR 0 - 2.5 V 135 - dB CMRR Common Mode Rejection Ratio VCM = 0V to 2.5V 110 97 - - dB PSRR Power Supply Rejection Ratio Vs = 2.5V to 5.5V 120 135 - dB ISC Short Circuit Output Source Current RL = Short to V- - 25 - mA Short Circuit Output Sink Current RL = Short to V+ - -25 - mA VOH Output Voltage Swing, HIGH From VOUT to V+ RL = 10kΩ to VCM - 10 20 mV RL = 10kΩ to VCM - - 25 mV RL = 10kΩ to VCM - 10 20 mV RL = 10kΩ to VCM - - 25 mV VOL Output Voltage Swing, LOW From V- to VOUT 2.5V AC SPECIFICATIONS OPERATIONAL AMPLIFIER CIN Input Capacitance eN Input Noise Voltage IN Input Noise Current GBWP Gain Bandwidth Product Differential - 5.2 - pF Common Mode - 5.6 - pF f = 0.1Hz to 10Hz - 0.25 - µVP-P f = 1kHz - 10 - nV/√Hz f = 1kHz - 200 - fA/√Hz - 3 - MHz NOTE: 6. Compliance to data sheet limits are assured by one or more methods: production test, characterization and/or design. 12 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. 12 TA = -40°C TO +125°C Vs = ± 2.5VDC TA = -40°C to +125°C 10 NUMBER OF AMPLIFIERS 10 NUMBER OF AMPLIFIERS 12 Vs = ± 2.5VDC 8 6 4 2 8 6 4 2 0 -0.3 -0.2 -0.1 0 0.1 0.2 0 0.3 -0.3 -0.2 GAIN ERROR (%) FIGURE 5. PGIA GAIN ERROR DISTRIBUTION, G = 1 -0.1 0 0.1 GAIN ERROR (%) 12 Vs = ± 2.5VDC Vs = ± 2.5VDC TA = -40°C to +125°C 8 6 4 TA = -40°C to +125°C 10 NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS 10 2 8 6 4 2 -0.3 -0.2 -0.1 0 0.1 GAIN ERROR (%) 0.2 0 0.3 FIGURE 7. PGIA GAIN ERROR DISTRIBUTION, G = 100 140 120 -0.3 -0.2 -0.1 0 0.1 GAIN ERROR (%) 0.2 0.3 FIGURE 8. PGIA GAIN ERROR DISTRIBUTION, G = 1,000 Vs = ± 2.5VDC 1.0 TA = +25°C 0.9 0.8 100 0.7 VOS (µV) NUMBER OF AMPLIFIERS 0.3 FIGURE 6. PGIA GAIN ERROR DISTRIBUTION, G = 10 12 0 0.2 80 60 0.6 0.5 0.4 0.3 40 Vs = ± 2.5VDC 0.2 20 TA = +25°C 0.1 G = 1,000 0 0 -0.1 -0.075 -0.05 -0.025 0 -0.025 -0.05 -0.075 -0.1 GAIN ERROR (%) FIGURE 9. PGIA GAIN ERROR DISTRIBUTION, G = 1 TO 1,000 13 0 10 20 30 40 50 60 TIME (DAYS) FIGURE 10. PGIA LONG TERM DRIFT OFFSET VOLTAGE FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. (Continued) 18 30 Vs = ± 2.5VDC NUMBER OF AMPLIFIERS 25 NUMBER OF AMPLIFIERS Vs = ± 2.5VDC 16 20 15 10 5 14 12 10 8 6 4 2 0 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 0 2.0 VOSI (µV) -4 0 -2 2 4 6 8 10 6 Vs = ± 1.25VDC 4 Vs = ± 2.5VDC 4 2 VOS (µV) 2 0 0 -2 -2 -4 -4 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 -6 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 INPUT COMMOM MODE VOLTAGE(V) 200 180 150 100 IB+, VS = 5V 140 IB-, VS = 2.5V IB-, VS = 5V 100 1.0 1.5 2.0 2.5 3.0 IB+, VS = 2.5V 80 IOS, VS = 5V 50 IOS (pA) 120 0.5 FIGURE 14. PGIA RTI VOS vs COMMON-MODE VOLTAGE 200 160 0 INPUT COMMON MODE VOLTAGE (V) FIGURE 13. PGIA RTI VOS vs COMMON-MODE VOLTAGE INPUT BIAS CURRENT (pA) -6 FIGURE 12. PGIA OUTPUT OFFSET VOLTAGE DISTRIBUTION 6 VOS (µV) -8 VOSO (µV) FIGURE 11. PGIA INPUT OFFSET VOLTAGE DISTRIBUTION -6 -2.0 -10 IOS, VS = 2.5V 0 -50 60 -100 40 -150 20 0 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (°C) FIGURE 15. PGIA INPUT BIAS CURRENT vs TEMPERATURE 14 -200 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (°C) FIGURE 16. PGIA IOS vs TEMPERATURE FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, 3 3 2 2 COMMON MODE VOLTAGE (V) COMMON MODE VOLTAGE (V) unless otherwise specified. (Continued) 1 Vs = ± 2. 5VDC VREF = 0V ISL2853x 0 -1 -2 -3 -3 -2 -1 0 1 2 Vs = ± 2. 5VDC VREF = +2.5V ISL2853x 1 0 -1 -2 -3 3 -3 -2 -1 OUTPUT VOLTAGE (V) FIGURE 17. PGIA INPUT COMMON-MODE RANGE vs OUTPUT VOLTAGE Vs = ± 2. 5VDC VREF = -2.5V ISL2853x 2 COMMON MODE VOLTAGE (V) COMMON MODE VOLTAGE (V) 2 3 3 1 0 -1 -2 -3 -2 -1 0 1 2 Vs = ± 2. 5VDC VREF = 0V ISL2863x 2 1 0 -1 -2 -3 3 -6 -4 -2 OUTPUT VOLTAGE (V) 2 4 6 FIGURE 20. PGIA INPUT COMMON-MODE RANGE vs DIFFERENTIAL OUTPUT VOLTAGE 180 180 Vs = ± 2. 5VDC 160 140 140 120 120 PSRR (dB) 160 100 80 Vs = ± 2. 5VDC 100 80 60 60 40 20 0 -50 0 VOUT+ TO VOUT- (V) FIGURE 19. PGIA INPUT COMMON-MODE RANGE vs OUTPUT VOLTAGE CMRR (dB) 1 FIGURE 18. PGIA INPUT COMMON-MODE RANGE vs OUTPUT VOLTAGE 3 -3 0 OUTPUT VOLTAGE (V) -25 0 25 50 75 100 G = 1000 40 G = 100 G = 10 G=1 20 125 TEMPERATURE (°C) FIGURE 21. PGIA CMRR vs TEMPERATURE 15 150 G = 1000 G = 100 G = 10 G=1 0 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (°C) FIGURE 22. PGIA PSRR vs TEMPERATURE FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. (Continued) 1 VOLTAGE DROP FROM RAIL (V) VOLTAGE DROP FROM RAIL (V) 1 0.1 0.01 VOH 0.001 VOL 0.0001 Vs = +3V 0.01 0.1 1 10 0.1 0.01 VOH 0.1 LOAD CURRENT (mA) 1 Vs = +5V VOLTAGE DROP FROM RAIL (V) VOLTAGE DROP FROM RAIL (V) Vs = +5V 0.1 VOL 0.01 VOH 10 1 FIGURE 25. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT, ISL2853x VOH 0.01 VOL 0.1 10 1 100 LOAD CURRENT (mA) FIGURE 26. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT, ISL2863x 12 4.0 VOH AND VOL VOLTAGE (mV) 3.8 3.6 SUPPLY CURRENT (mA) 0.1 0.001 0.01 100 LOAD CURRENT (mA) 3.4 3.2 3.0 2.8 2.6 T = -40°C 2.4 T = +25°C T = +85°C 2.2 2.0 2.0 100 FIGURE 24. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT, ISL2863x 1 0.1 10 1 LOAD CURRENT (mA) FIGURE 23. PGIA OUTPUT VOLTAGE SWING vs OUTPUT CURRENT, ISL2853x 0.001 0.01 Vs = +3V VOL 0.001 0.01 100 10 8 6 4 VOL 5V VOH 5V VOH 2.5V VOL 2.5V 2 T = +125°C 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 SUPPLY VOLTAGE VS (V) FIGURE 27. SUPPLY CURRENT vs SUPPLY VOLTAGE vs TEMPERATURE 16 0 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (°C) FIGURE 28. PGIA VOH AND VOL vs TEMPERATURE FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, 4 0.5 3 0.4 VOLTAGE NOISE PK TO PK (µV) VOLTAGE NOISE PK TO PK (µV) unless otherwise specified. (Continued) 2 1 0 -1 -2 Vs = ±2.5V G=1 -3 1 2 3 4 5 6 7 8 0.2 0.1 0 -0.1 -0.2 -0.3 Vs = ±2.5V G = 1000 -0.4 -4 0 0.3 9 -0.5 10 0 1 2 3 4 TIME (s) FIGURE 29. PGIA 0.1Hz TO 10Hz NOISE 8 9 10 Vs = ±2.5V ISL2863x 10k 10k VOLTAGE NOISE (nV/√Hz) VOLTAGE NOISE (nV/√Hz) 7 100k Vs = ±2.5V ISL2853x 1k G=1 100 10 G = 100 1 10 100 1000 10k 1k G=1 100 10 1 100k G = 100 1 10 FREQUENCY (Hz) 100 1000 10k 100k FREQUENCY (Hz) FIGURE 31. PGIA VOLTAGE NOISE SPECTRAL DENSITY vs FREQUENCY, 1Hz TO 100kHz FIGURE 32. PGIA VOLTAGE NOISE SPECTRAL DENSITY vs FREQUENCY, 1Hz TO 100kHz 10k 10k CURRENT NOISE (fA/√Hz) CURRENT NOISE (fA/√Hz) 6 FIGURE 30. PGIA 0.1Hz TO 10Hz NOISE 100k 1 5 TIME (s) 1k G=1 100 G = 100 10 ISL2853x VS = ±2.5V RS = 5MΩ 1 1k G=1 100 10 ISL2863x VS = ±2.5V RS = 5MΩ 1 Roll off from CSOURCE Roll off from CSOURCE 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) FIGURE 33. PGIA CURRENT NOISE SPECTRAL DENSITY 1Hz TO 100kHz, ISL2853x 17 G = 100 0.1 1 10 100 1k 10k 100k FREQUENCY (Hz) FIGURE 34. PGIA CURRENT NOISE SPECTRAL DENSITY 1Hz TO 100kHz, ISL2863x FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. (Continued) 70 160 60 1000 500 300 200 100 50 20 10 4 2 1 50 GAIN (dB) 40 30 20 Vs = ± 2. 5VDC 140 G = 1000 120 CMRR (dB) Vs = ± 2. 5V RL = 10kΩ 100 80 60 10 40 0 20 -10 10 100 1k 10k 100k 1M G = 100 0 10 10M G = 10 G=1 100 1k FREQUENCY (Hz) FIGURE 35. PGIA GAIN VS FREQUENCY vs GAIN SETTINGS 140 120 NEGATIVE PSRR (dB) POSITIVE PSRR (dB) Vs = ± 2. 5VDC Vs = ± 2. 5VDC 140 120 G = 100 100 80 60 G = 10 40 G=1 20 10 100 G = 100 100 80 60 G = 10 40 G=1 20 1k 10k 0 10 10M 1M 100k 100 1k FREQUENCY (Hz) 11 Vs = ± 2. 5VDC AV = 1V RL = 10k VOUT = 100mVP-P 4700pF Vs = ± 2. 5VDC AV = 1V RL = 10k VOUT = 10mVP-P 9 7 3300pF 4700pF 3300pF 2200pF 5 1000pF 3 470pF 1 GAIN (dB) GAIN (dB) 7 -3 1M FREQUENCY (Hz) FIGURE 39. PGIA GAIN vs FREQUENCY vs CL, ISL2853x 18 10M 470pF 1 -3 100k 1000pF 3 -1 10k 2200pF 5 -1 -5 1k 10M 1M 100k FIGURE 38. PGIA NEGATIVE PSRR vs FREQUENCY 13 9 10k FREQUENCY (Hz) FIGURE 37. PGIA POSITIVE PSRR vs FREQUENCY 11 10M 1M 100k FIGURE 36. PGIA CMRR vs FREQUENCY 160 0 10k FREQUENCY (Hz) -5 1k 10k 100k 1M 10M FREQUENCY (Hz) FIGURE 40. PGIA GAIN vs FREQUENCY vs CL, ISL2863x FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. (Continued) 0.06 0.1 0.08 0.04 0.06 VOUT+ TO VOUT- (V) VOLTAGE (V) 0.04 0.02 0 -0.02 -0.04 Vs = ± 2. 5VDC RL = OPEN VOUT = 100mVP-P -0.06 -0.08 -0.1 0 -10 0.02 0 -0.02 Vs = ± 2. 5VDC RL = OPEN VOUT = 100mVP-P -0.04 20 10 30 -0.06 -10 40 5 0 -5 10 TIME (µs) FIGURE 41. PGIA SMALL SIGNAL PULSE RESPONSE, G = 1, ISL2853x 40 AV = 1 2 VOUT+ TO VOUT- (V) 2 VOLTAGE (V) 35 3 G=1 G=2 1 G = 10 0 -1 Vs = ± 2. 5VDC RL = OPEN VOUT = 4VP-P -2 0 -10 AV = 10 0 -1 Vs = ± 2. 5VDC RL = OPEN VOUT = 4VP-P -2 20 10 AV = 2 1 30 -3 40 -20 0 -10 TIME (µs) 2.0 2.0 1.5 1.5 VOUT+ TO VOUT- (V) 2.5 1.0 0.5 0 -0.5 Vs = ± 2. 5VDC RL = OPEN VOUT = 4VP-P -1.5 40 1.0 0.5 0 -0.5 Vs = ± 2. 5VDC RL = OPEN VOUT = 4VP-P -1.0 -1.5 -2.0 -2.0 -2.5 -400 30 FIGURE 44. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1, 2, 10 ISL2863x 2.5 -1.0 20 10 TIME (µs) FIGURE 43. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1, 2, 10 ISL2853x VOLTAGE (V) 30 FIGURE 42. PGIA SMALL SIGNAL PULSE RESPONSE, G = 1, ISL2863x 3 -3 25 20 15 TIME (µs) -200 0 200 400 600 800 TIME (µs) FIGURE 45. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1000, ISL2853x 19 1000 -2.5 -400 -200 0 200 400 600 800 1000 TIME (µs) FIGURE 46. PGIA LARGE SIGNAL PULSE RESPONSE, G = 1000, ISL2863x FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. (Continued) 0.06 0.1 0pF 100pF 300pF 500pF 800pF 1000pF OUTPUT VOLTAGE (V) 0.06 0.04 0.04 0.02 OUTPUT VOLTAGE (V) 0.08 0.02 0 -0.02 -0.04 0pF OUT+ 0pF OUT100pF OUT+ 100pF OUT300pF OUT+ 300pF OUT500pF OUT+ 500pF OUT800pF OUT+ 800pF OUT1nF OUT+ 1nF OUT- 0 -0.02 -0.04 -0.06 -0.08 -0.1 -0.12 -0.06 -0.14 -0.08 -10 0 10 20 30 40 50 -0.16 -10 0 10 20 FIGURE 47. CAPACITIVE LOAD OVERSHOOT; ISL2853x 6 VIN 2 G = 100 G = 10 1 G=1 0 -1 -2 -3 0 2 4 6 8 10 12 14 16 18 4 60 G = 100 G = 10 2 G=1 0 -2 -4 -6 20 0 20 40 60 80 100 120 140 160 180 TIME (µs) FIGURE 49. POSITIVE OVERLOAD RECOVERY TIME, ISL2853x FIGURE 50. POSITIVE OVERLOAD RECOVERY TIME, ISL2863x 6 2 VIN INPUT AND OUTPUT VOLTAGE (V) 3 INPUT AND OUTPUT VOLTAGE (V) 50 VIN TIME (µs) G=1 1 0 -1 G = 10 -2 -3 40 FIGURE 48. CAPACITIVE LOAD OVERSHOOT; ISL2863x INPUT AND OUTPUT VOLTAGE (V) INPUT AND OUTPUT VOLTAGE (V) 3 30 TIME (µs) TIME (µs) G = 100 0 2 4 6 8 10 12 14 TIME (µs) FIGURE 51. NEGATIVE OVERLOAD RECOVERY TIME, ISL2853x 20 4 VIN 2 G=1 0 G = 10 -2 G = 100 -4 -6 0 20 40 60 80 100 120 140 160 180 TIME (µs) FIGURE 52. NEGATIVE OVERLOAD RECOVERY TIME, ISL2863x FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Instrumentation Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. (Continued) 140 140 INA G = 1 120 OpAmp AV = 1 CHANNEL SEPARATION (dB) CHANNEL SEPARATION (dB) 120 100 80 60 40 20 0 INA G = 10 INA G = 100 100 80 60 40 20 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) FIGURE 53. CHANNEL SEPARATION vs FREQUENCY, HOSTILE INA, MONITOR OPAMP 21 0 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) FIGURE 54. CHANNEL SEPARATION vs FREQUENCY, HOSTILE OPAMP, MONITOR INA FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Operational Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. 10 10 8 6 AV= 100 4 4 2 2 VOS (µV) VOS (µV) 6 0 -2 0 -2 -4 -4 -6 -6 -8 -8 -10 -2 -1.5 -1 -0.5 0 0.5 1 1.5 Vs = ± 2.5VDC AV= 100 8 Vs = ± 1.25VDC -10 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 2 INPUT COMMON MODE VOLTAGE (V) FIGURE 55. OP AMP VOS vs COMMON MODE 35 300 IB+, VS = 2.5V IB+, VS = 5V 200 VOH AND VOL VOLTAGE (mV) INPUT BIAS CURRENT (pA) 0.5 1.0 1.5 2.0 2.5 3.0 FIGURE 56. OP AMP VOS vs COMMON MODE 400 IB-, VS = 2.5V IB-, VS = 5V 100 0 -100 -200 30 25 -400 -50 -25 0 25 50 75 100 125 VOL 5V VOH 5V VOH 2.5V VOL 2.5V 20 15 10 5 -300 0 -50 150 0 50 TEMPERATURE (°C) 1 100 150 TEMPERATURE (°C) FIGURE 57. OP AMP BIAS CURRENT vs TEMPERATURE FIGURE 58. OP AMP VOH AND VOL vs TEMPERATURE 1 Vs = +5VDC Vs = +3VDC VOLTAGE DROP FROM RAIL (V) VOLTAGE DROP FROM RAIL (V) 0 INPUT COMMON MODE VOLTAGE (V) 0.1 0.01 VOL 0.1 0.01 VOL 0.001 VOH VOH 0.001 0.01 0.1 1 10 100 LOAD CURRENT (mA) FIGURE 59. OP AMP OUTPUT VOLTAGE SWING vs OUTPUT CURRENT 22 0.0001 0.01 0.1 1 10 100 LOAD CURRENT (mA) FIGURE 60. OP AMP OUTPUT VOLTAGE SWING vs OUTPUT CURRENT FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Operational Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. (Continued) 14 80 Vs = ± 2. 5V RL = 10kΩ 70 AV = 1000 RG = 100, RF = 100k 60 10 GAIN (dB) AV = 100 RG = 1k, RF = 100k 40 30 AV = 10 20 470pF 6 4 RG = 10k, RF = 100k 0 AV = 1 0 -10 10 100 1k 0pF -2 RG = OPEN, RF = 0 -4 10k 100k 1M -6 10M 1k 10k FREQUENCY (Hz) 100k 10M 1M FREQUENCY (Hz) FIGURE 61. OP AMP GAIN vs FREQUENCY FIGURE 62. OP AMP CAPACITIVE LOAD vs FREQUENCY 120 140 Vs = ± 2. 5VDC AV = 1 Vs = ± 2. 5VDC A V= 1 120 100 POSITIVE PSRR (dB) 100 NEGATIVE PSRR (dB) 47pF 100pF 2 10 80 60 40 80 60 40 20 0 1000pF 8 50 GAIN (dB) Vs = ± 2. 5V RL = 10kΩ AV = 1 12 20 10 100 1k 10k 100k 1M 0 10M 10 100 1k FREQUENCY (Hz) 10k 100k 1M 10M FREQUENCY (Hz) FIGURE 63. OP AMP POWER SUPPLY REJECTION RATIO FIGURE 64. OP AMP POWER SUPPLY REJECTION RATIO 1.5 0.10 0.08 1.0 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 0.06 0.04 0.02 0 -0.02 -0.04 Vs = ± 2. 5VDC RL = OPEN VOUT = 100mVP-P -0.06 -0.08 -0.10 -1 0 2 1 AV = 10 0 -0.5 Vs = ± 1.25VDC RL = OPEN VOUT = 2VP-P -1.0 3 TIME (µs) FIGURE 65. OP AMP SMALL SIGNAL TRANSIENT RESPONSE 23 AV = 1 0.5 4 -1.5 -10 0 10 20 30 40 TIME (µs) FIGURE 66. OP AMP LARGE SIGNAL TRANSIENT RESPONSE FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Typical Operational Amplifier Performance Curves TA = +25°C, VCM = Mid Supply, unless otherwise specified. (Continued) 0.5 Vs = ±2.5V AV = 100 10k Vs = ±2.5V AV = 100 0.4 VOLTAGE NOISE PK TO PK (µV) VOLTAGE NOISE (nV/√Hz) 100k 1000 100 10 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 1 1 10 100 1000 -0.5 100k 10k 0 1 2 3 4 FREQUENCY (Hz) FIGURE 67. OP AMP VOLTAGE NOISE SPECTRAL DENSITY vs FREQUENCY GAIN OUTPUT VOLTAGE (V) GAIN (dB)/PHASE (°) PHASE 140 120 100 80 60 Vs = 5V CL = 50pF SIMULATION -20 0.001 0.01 0.1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) FIGURE 69. OP AMP OPEN-LOOP GAIN AND PHASE vs FREQUENCY 24 9 10 0.05 0 0pF 100pF 300pF 500pF 800pF 1000pF -0.05 -0.10 1 8 Vs = ±2.5VDC AV = 1 0.10 160 0 7 0.15 180 20 6 FIGURE 68. OP AMP 0.1Hz TO 10Hz PEAK-TO-PEAK VOLTAGE NOISE 200 40 5 TIME (s) -0.15 -10 0 10 20 30 40 50 TIME (µs) FIGURE 70. OP AMP CAPACITIVE LOAD OVERSHOOT FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Applications Information (Figure 72). With the integrated gain resistors and the programmable gains, these instrumentation amplifiers require no external components for gain setting and operation. The ISL28533, ISL28534 and ISL28535 family of parts are differential input, single ended output instrumentation amplifiers using a three op amp architecture (Figure 71). The first stage is differential input/differential output and is used to set the gain. The second stage is a difference amplifier which is used to remove the common mode voltage from the differential signal. With the integrated gain resistors and the programmable gains, these instrumentation amplifiers require no external components for gain setting and operation. There is an additional uncommitted zero drift operational amplifier included on the chip. This can be used to drive the REF pin if needed to provide a low impedance to REF. The REF pin is used to shift the output DC reference. Note that on this device the REF input is a resistor that is part of the difference amplifier noninverting input. To ensure good common mode rejection in the output stage the REF pin should be driven by a low impedance source, such as the output of amplifier A4. Any parasitic resistance added to the REF pin degrades the common mode rejection of the difference amplifier. + 20kΩ 20kΩ A1 - A3 + RG OUTA+ 1MΩ VAVA+ REF + RG 1MΩ OUTA- - 20kΩ A4 20kΩ A2 INA+ + 3-STATE LOGIC FOR RG GAIN CONTROL G0 20kΩ 20kΩ FIGURE 72. ISL2863x BLOCK DIAGRAM The first stage amplifier is identical to the first stage in the ISL2853x family. The output stage is a difference amplifier which is configured to provide differential output drive. The REF pin is also available on this device and can be used to provide a DC shift of the output signal. On this device the REF pin is a high impedance input of an operational amplifier. The voltage used to drive this pin can be developed using a resistor divider without the need of an additional buffer without penalty of CMRR degradation. RFI FILTER The instrumentation amplifier inputs of the ISL2853x and ISL2863x have RFI filters for Electro Magnetic Interference (EMI) reduction. In EMI sensitive applications, the high frequency RF signal can appear as a rectified DC offset at the output of precision amplifiers. Because the gain of the precision front end can be 100 or greater it is critical not to amplify any conducted or radiated noise that may be present at the amplifier inputs. The RFI input is a 1kΩ, 3pF LPF with a corner frequency of approximately 50MHz (See Figure 73). A1 - INA- RG VAVA+ - + A1 - OUTA A3 - RFI Filter Fc = 50MHz RG + RG INA+ + G1 SINGLE-ENDED OUTPUT INA- INA- - The ISL2853x and ISL2863x are a family of ultra high precision instrumentation amplifiers. These amplifiers feature zero drift circuitry that provides auto offset voltage correction and noise reduction, delivering very low offset voltage drift of 5nV/°C and a low 1/F noise frequency corner down in the sub Hz range. The instrumentation amplifier integrates precision matched resistors for the front gain stage and the differential second stage, providing very high gain accuracy and excellent CMRR. The precision performance makes these amplifiers ideal for analog sensor front end, instrumentation and data acquisition applications such as weigh scales, flow sensors and shunt current sensing that require very low noise and high dynamic range. + Precision Sensor Amplifier 20kΩ RG 20kΩ REF A2 - + OUT 3-STATE LOGIC FOR RG GAIN CONTROL G0 G1 A4 + IN- A2 RFI Filter Fc = 50MHz + IN+ FIGURE 71. ISL2853x BLOCK DIAGRAM DIFFERENTIAL OUTPUT The ISL28633, ISL28634 and ISL28635 family of parts are differential input, differential output instrumentation amplifiers and are ideal as a pre-amplifier/driver for differential input ADCs 25 INA+ FIGURE 73. RFI FILTER INPUTS GAIN STAGE OUTPUT VA+/VA- PINS The ISL2853x and ISL2863x instrumentation amplifiers include pinouts for the output of the differential gain stage. VA+ is referenced to the non-inverting input of the difference amplifier while VA- is referenced to the inverting input. These pins can be FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 used for measuring the input common mode voltage for sensor feedback and health monitoring. The differential gain stage output pins VA+ and VA- buffers the input common mode voltage while amplifying differential voltage. By tying two resistor across VA+ and VA-, the buffered input common mode voltage is extracted at the midpoint of the resistors (see Figure 74). This voltage can be sent to an ADC for sensor monitoring or feedback control, improving the precision and accuracy of the sensor. INA+ - + -VDM 2 - TABLE 1. LOGIC THRESHOLD VALUES G0/G1 PARAMETER THRESHOLD VOLTAGE +5VDC +3VDC 1 VIH_1MIN 0.8*Vs 4V 2.4V VIH_ZMAX 0.6*Vs 3V 1.8V VOC_H 0.55*Vs 2.75V 1.65V VOC_L 0.45*Vs 2.5V 1.35V VIL_ZMIN 0.4*Vs 2V 1.2V VIL_0MAX 0.2*Vs 1V 0.6V VAVA+ Vx + - It is important to note that logic threshold levels are referenced to the V- negative supply rail of the amplifier. For dual supply operation of the instrumentation amplifier logic threshold levels are shifted by the magnitude of V-. Externally driven logic signals require level shifting to properly set amplifier gain. RG 10kΩ VCM A1 See Table 1 for logic threshold levels. Z RG 10kΩ - +VDM 2 INA+ A2 + - + 0 Vs = (V+) - (V-) VA+ = Vcm + Vdm/2 VA- = Vcm - Vdm/2 Vx = [(VA+) + (VA-)] / 2 Vx = Vcm TABLE 2. PROGRAMMABLE GAIN SETTINGS GAIN (V/V) FIGURE 74. COMMON MODE SENSING WITH VA+/VA- PINS PROGRAMMABLE GAIN LOGIC The ISL2853x and ISL2863x feature a three-state logic interface for digital programming of the amplifier gain. This allows the PGIA’s gain to be changed without an external gain setting resistors, improving the gain accuracy and reducing component count. The three-state logic pins have voltage levels for recognizing valid logic states to set the gain of the amplifier (see Figure 75). With three logic states per input, this allows nine gain settings with just two digital input pins (see Table 2). V+ VIH_1MIN Min High Input for Logic “1” Logic “1” VIH_1MIN Undefined VIH_ZMAX Max Input for Logic “Z” VIH_ZMAX VOC_H Logic “Z” VOC = Floating Pin Voltage Established by Internal Resistors VOC_L VIL_ZMIN Min Input for Logic “Z” VIL_ZMIN G1 G0 ISL28533 ISL28633 ISL28534 ISL28634 ISL28535 ISL28635 0 0 1 1 1 0 Z 2 2 100 0 1 4 10 120 Z 0 5 50 150 Z Z 10 100 180 Z 1 20 200 200 1 0 40 300 300 1 Z 50 500 500 1 1 100 1000 1000 GAIN SETTING WITH DCP For applications without a tri-state driver the alternative solution for programmable switching the 9 gain settings is to use a DCP. Using a Dual DCP implements the capability to select all 9 gains with an I2C/SPI bus interface, saving valuable GPIO lines. The ISL23328 is a Dual 128 tap DCP that can switch the G0 and G1 pins with an I2C interface (see Figure 76). The wiper of the DCP can be swept from V+ to V- in 128 steps. Undefined VIL_0MAX V+ VIL_0MAX Max Low Input for Logic “0” Logic “0” V- FIGURE 75. G0/G1 LOGIC THRESHOLD LEVELS Logic states of the G0/G1 pins can be achieved by simple pinstrapping to the supply rails for logic HI/LOW, or may be left floating for logic Z. Internal resistors on the G0/G1 pins set the logic level to mid-supply for logic Z. Alternatively a micro-controller can be used to drive the pins HI/LOW or they may be left in a High-Z state. The VIH,VIL, and logic Z threshold levels are TTL/CMOS compatible for single 5V and 3V supplies. 26 RHx SCL SDA I2C Bus V+ DUAL128 Tap DCP ISL23328 RW_0 G0 RW_1 G1 RLx IN+ OUT+ ISL2853X ISL2863X REF OUT- IN- VV- FIGURE 76. GAIN SWITCHING WITH ISL23328 DCP FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 GAIN SWITCHING DELAY TIME The G0 and G1 pins change the gain setting of the PGIA. For applications that must switch gains at high frequency, consider that there is a gain switching propagation delay of ~1µs before output response. The total response time for a gain change must also include the amplifier output settling time. See “Electrical Specifications” starting on page 6 for output settling time. DUAL SUPPLY OPERATION ISL2853X and ISL2863X typical applications utilize single supply operation. The single supply range is from 2.5V to 5V, but the amplifiers can also operate with split supplies from ±1.25V to ±2.5V. The G0 and G1 logic thresholds are referenced to the most negative supply rail (V-), therefore a logic level shifter is needed in split supply applications when the G0 and G1 pins are not strapped to the amplifier supply pins (i.e., when driven by a single supply logic device). POWER SUPPLY AND REF PIN SEQUENCING As the REF pin in some applications is tied to a high accuracy voltage reference VREF (such as the ISL21090), proper care must be taken that the voltage at REF does not come up prior to supply voltages V+ and V-. The REF pin ESD protection diodes will be forward biased when the voltage at REF exceeds V+ or V- by more than 0.3V. For applications where REF must be present before V+ or V-, it is recommended to use the ISL2863x family of PGIA. As the REF pin is an very high impedance input, having a series resistance to limit the ESD diode current will not severely impact CMRR performance. Typically a 1kΩ resistor will adequately limit this current. COMMON MODE INPUT RANGE The 3-Op Amp Instrumentation Amplifier architecture amplifies differential input voltage. The common mode voltage is removed by the difference amplifier at the second stage. Consideration of input common mode and differential voltage must be taken to not saturate the output of the A1 and A2 amplifiers. This is a common mistake when input differential voltages plus the input VCM combined is large enough to saturate the output. The PGIA features rail to rail output amplifiers to maximize output dynamic range thus signals VA+, VA- and VOUT+/VOUT- can drive near the supply rails. Figures 17 to 20 give the typical input common mode voltage range vs output voltage for different REF voltages. Application Circuits Typical application circuits for bridge sensor health monitor and active shield guard driver are shown in Figures 77 and 78. Sensor Health Monitor A bridge type sensor uses four matched resistive elements to create a balanced differential circuit. The bridge can be a combination of discrete resistors and resistive sensors for a quarter, half and full bridge applications. The bridge is excited by a low noise, high accuracy voltage reference or current source on two legs. The other two legs are the differential signal whose output voltage change is analogous to changes in the sensed environment. In a bridge circuit, the common mode voltage of the differential signal is at the mid point potential voltage of the bridge 27 excitation source. For example in a single supply system using a +5V reference for excitation, the common mode voltage is +2.5V. The concept of sensor health monitoring is to keep track of the bridge impedance within the data acquisition system. Changes in the environment, degradation over time or a faulty bridge resistive element will imbalance the bridge, causing measurement errors. Since the bridge differential output common mode voltage is one-half the excitation voltage, by measuring this common mode the sensor impedance health can be monitored, for example through an ADC channel (see Figure 77). While common mode voltage can be measured directly off the bridge, this is not recommended because the bridge impedance is highly sensitive to any additional loading. Sensing off the legs directly can give an erroneous reading of the analog signal being measured. Since the VA+ and VA- pins buffer the input common mode voltage, this provides a low impedance point to drive the ADC without using additional amplifiers. By continuously monitoring the common mode voltage this gives an indication of sensor health. Active Shield Guard Drive Sensors that operate at far distances from the signal conditioning circuits are subject to noise environments that reduce the signal to noise ratio into an amplifier. Differential signaling and shielded cables are a few techniques that are used to reduce noise from sensitive signal lines. Reducing noise that the instrumentation amplifier cannot reject (high frequency noise or common mode voltage levels beyond supply rail) improves measuring accuracy. Shielded cables offer excellent rejection of noise coupling into signal lines. However, cable impedance mismatch to signal wires form a common mode error into the amplifier. Driving the cable shield to a low impedance potential reduces the impedance mismatch. The cable shield is usually tied to chassis ground as it makes an excellent low impedance point and is easily accessible. However, this may not always be the best potential voltage to tie the shield to, in particular for single supply amplifiers. In some data acquisition systems the sensor signal amplifiers are powered with dual supplies (±5V or ±12V). By tying the shield to analog ground 0V, this places the common mode voltage of the shield right at the middle of the supply bias - where the amplifiers operate with the best CMR performance. With single supply amplifiers becoming more popular choice as a sensor amplifier, shield at 0V is now at the lower power supply rail of the amplifier - typically a common mode voltage where the same CMR performance degrades. Tying the shield at common mode voltage of mid supply rail is most applicable for high impedance sensor applications. An alternative solution for an improved shield guard drive is to use the VA+ and VA- pins for sensing common mode and driving the shield to this voltage (see Figure 78). Using the VA+ and VApins generate a low impedance reference of the input common mode voltage. Driving the shield to the input common mode voltage reduces cable impedance mismatch and improves CMR performance in single supply sensor applications. For further buffering of the shield driver, the additional unused op amp on the ISL2853x products can be used, reducing the need of adding an external amplifier. FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 +5V +5V ISL28634 ISL21090 5V VREF V+ VA- INAFOIL STRAIN GAUGE + 20kΩ 20kΩ A1 - A3 + RG V+ 10kΩ 35 0 0 35 VS+ REF+ OUTA+ VS- REF + RG 10kΩ + INA+ 20kΩ - 0 35 V- VAOUTA- IN+ OUTA+ VA+ IN- ISL26102 24-bit ADC OUTA- A4 REF- 20kΩ A2 + VA+ V- FIGURE 77. APPLICATION CIRCUIT: SENSOR HEALTH MONITOR +5V ISL28533 V+ INA- + 20kΩ 20kΩ A1 RG SHIELDED CABLE VA- +SIG - OUTA A3 -SIG + RG INA+ 20kΩ 20kΩ REF A2 + IN10kΩ VCM SENSE IN+ + A4 OUT VA+ V- 10kΩ 100Ω COMMON MODE DRIVER FIGURE 78. APPLICATION CIRCUIT: ACTIVE SHIELD DRIVER 28 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision. DATE REVISION CHANGE November 22, 2013 FN8364.1 Ordering information table on page 5: Removed “coming soon” for ISL28535FVZ and ISL28635FVZ and Evaluation boards. September 24, 2013 FN8364.0 Initial Release About Intersil Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com. For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at http://www.intersil.com/en/support/qualandreliability.html#reliability For additional products, see www.intersil.com/en/products.html Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 29 FN8364.1 November 22, 2013 ISL28533, ISL28534, ISL28535, ISL28633, ISL28634, ISL28635 Package Outline Drawing M14.173 14 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 3, 10/09 A 1 3 5.00 ±0.10 SEE DETAIL "X" 8 14 6.40 PIN #1 I.D. MARK 4.40 ±0.10 2 3 1 0.20 C B A 7 B 0.65 0.09-0.20 TOP VIEW END VIEW 1.00 REF 0.05 H C 0.90 +0.15/-0.10 1.20 MAX SEATING PLANE 0.25 +0.05/-0.06 0.10 C 0.10 GAUGE PLANE 0.25 5 0°-8° 0.05 MIN 0.15 MAX CBA SIDE VIEW 0.60 ±0.15 DETAIL "X" (1.45) NOTES: 1. Dimension does not include mold flash, protrusions or gate burrs. (5.65) Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. 2. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. 3. Dimensions are measured at datum plane H. 4. Dimensioning and tolerancing per ASME Y14.5M-1994. 5. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.80mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. (0.65 TYP) (0.35 TYP) TYPICAL RECOMMENDED LAND PATTERN 30 6. Dimension in ( ) are for reference only. 7. Conforms to JEDEC MO-153, variation AB-1. FN8364.1 November 22, 2013