PD - 90436F POWER MOSFET THRU-HOLE (MO-036AB) IRFG6110 JANTX2N7336 JANTXV2N7336 REF:MIL-PRF-19500/598 100V, Combination 2N-2P-CHANNEL ® HEXFET MOSFET TECHNOLOGY Product Summary Part Number IRFG6110 IRFG6110 RDS(on) 0.7Ω 1.4Ω ID CHANNEL 1.0A N -0.75A P HEXFET® MOSFET technology is the key to International Rectifier’s advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor’s totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance. MO-036AB Features: n n n n n n Simple Drive Requirements Ease of Paralleling Hermetically Sealed Electrically Isolated Dynamic dv/dt Rating Light-weight Absolute Maximum Ratings (Per Die) Parameter ID @ VGS =± 10V, TC = 25°C ID @ VGS =± 10V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current ➀ Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current ➀ Repetitive Avalanche Energy ➀ Peak Diode Recovery dv/dt Operating Junction Storage Temperature Range Lead Temperature Weight N-Channel P-Channel 1.0 0.6 4.0 1.4 0.011 ±20 75 ➁ — — 5.5 ➂ Units -0.75 -0.5 -3.0 1.4 W 0.011 W/°C ±20 75 ➄ — — -5.5 ➅ V mJ A mJ A V/ns -55 to 150 o 300 (0.63 in./1.6 mm from case for 10s) 1.3 (Typical) C g For footnotes refer to the last page www.irf.com 1 04/16/02 IRFG6110 Electrical Characteristics For Each N-Channel Device @ Tj = 25°C (Unless Otherwise Specified) Parameter Min Drain-to-Source Breakdown Voltage 100 ∆BV DSS /∆T J Temperature Coefficient of Breakdown — Voltage RDS(on) Static Drain-to-Source On-State — Resistance — VGS(th) Gate Threshold Voltage 2.0 g fs Forward Transconductance 0.86 IDSS Zero Gate Voltage Drain Current — — Typ Max Units Test Conditions — — V VGS = 0V, ID = 1.0mA 0.13 — V/°C — — — — — — 0.7 0.8 4.0 — Ω 25 250 µA nA IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance — — — — — — — — — — — — — — — — — — — 10 100 -100 15 7.5 7.5 20 25 40 40 — Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — 180 82 15 — — — Reference to 25°C, ID = 1.0mA VGS = 10V, ID = 0.6A ➃ VGS = 10V, ID = 1.0A VDS = VGS, ID = 250µA VDS > 15V, IDS = 0.6A ➃ VDS= 80V, VGS= 0V VDS = 80V, VGS = 0V, TJ =125°C VGS = 20V VGS = -20V VGS =10V, ID = 1.0A, VDS = 50V V S( ) Ω BVDSS nC VDD = 50V, ID = 1.0A, VGS =10V, RG = 7.5Ω ns nH Measured from drain lead (6mm/ 0.25in. from package) to source lead (6mm/0.25in. from package) pF VGS = 0V, VDS = 25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics (Per Die) Parameter Min Typ Max Units IS ISM VSD t rr Q RR Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ➀ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ton Forward Turn-On Time — — — — — — — — — — 1.0 4.0 1.5 200 0.83 Test Conditions A V nS nC Tj = 25°C, IS = 1.0A, VGS = 0V ➃ Tj = 25°C, IF = 1.0A, di/dt ≤ 100A/µs VDD ≤ 50V ➃ Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance (Per Die) Parameter RthJC RthJA Junction-to-Case Junction-to-Ambient Min Typ Max Units — — — — 17 90 °C/W Test Conditions Typical socket mount Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page 2 www.irf.com IRFG6110 Electrical Characteristics For Each P-Channel Device @ Tj = 25°C (Unless Otherwise Specified) Parameter Min Drain-to-Source Breakdown Voltage -100 ∆BV DSS /∆T J Temperature Coefficient of Breakdown — Voltage RDS(on) Static Drain-to-Source On-State — Resistance — VGS(th) Gate Threshold Voltage -2.0 g fs Forward Transconductance 0.67 IDSS Zero Gate Voltage Drain Current — — Typ Max Units — — V -0.098 — V/°C — — — — — — 1.4 1.73 -4.0 — -25 -250 Ω IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance — — — — — — — — — — — — — — — — — — — 10 -100 100 15 7.0 8.0 30 60 40 40 — C iss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — 200 85 30 — — — Test Conditions VGS = 0V, ID = -1.0mA Reference to 25°C, ID = -1.0mA nC VGS = -10V, ID = -0.5A ➃ VGS = -10V, ID =- 0.75A VDS = VGS, ID = -250µA VDS > -15V, IDS = -0.5A ➃ VDS= -80V, VGS= 0V VDS = -80V, VGS = 0V, TJ =125°C VGS = - 20V VGS = 20V VGS = -10V, ID = -0.75A, VDS = -50V ns VDD = -50V, ID = -0.75A, VGS = -10V, RG = 7.5Ω V S( ) Ω BVDSS µA nA nH Measured from drain lead (6mm/ 0.25in. from package) . to source lead (6mm/0.25in. from package) pF VGS = 0V, VDS = -25V f = 1.0MHz Source-Drain Diode Ratings and Characteristics (Per Die) Parameter Min Typ Max Units IS ISM VSD t rr Q RR Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) ➀ Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ton Forward Turn-On Time — — — — — — — — — — -0.75 -3.0 -5.5 200 9.0 Test Conditions A V nS nC Tj = 25°C, IS = -0.75A, VGS = 0V ➃ Tj = 25°C, IF = -0.75A, di/dt ≤ -100A/µs VDD ≤ -50V Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance (Per Die) Parameter R thJC RthJA Junction-to-Case Junction-to-Ambient Min Typ Max Units — — — — 17 90 Test Conditions °C/W Typical socket mount For footnotes refer to the last page www.irf.com 3 IRFG6110 N-Channel Q1,Q3 4 Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com IRFG6110 N-Channel Q1,Q3 13a & b Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area www.irf.com 5 IRFG6110 N-Channel Q1,Q3 V DS VGS RD D.U.T. RG + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 10a. Switching Time Test Circuit VDS 90% 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 6 www.irf.com IRFG6110 N-Channel Q1,Q3 15V D R IV E R L VDS D .U .T. RG IA S 20V 10V tp + V - DD A 0 .01 Ω Fig 12a. Unclamped Inductive Test Circuit V (B R )D S S tp Fig 12c. Maximum Avalanche Energy Vs. Drain Current IAS Current Regulator Same Type as D.U.T. Fig 12b. Unclamped Inductive Waveforms 50KΩ QG 10V 12V .2µF .3µF 10 V QGS QGD 10V + V - DS VGS VG 3mA Charge Fig 13a. Basic Gate Charge Waveform www.irf.com D.U.T. IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 7 IRFG6110 P-Channel Q2,Q4 Fig 14. Typical Output Characteristics Fig 16. Typical Transfer Characteristics 8 Fig 15. Typical Output Characteristics Fig 17. Normalized On-Resistance Vs. Temperature www.irf.com IRFG6110 P-Channel Q2,Q4 26 Fig 18. Typical Capacitance Vs. Drain-to-Source Voltage Fig 20. Typical Source-Drain Diode Forward Voltage www.irf.com Fig 19. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 21. Maximum Safe Operating Area 9 IRFG6110 P-Channel Q2,Q4 V DS VGS RD D.U.T. RG + V DD -10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 23a. Switching Time Test Circuit td(on) tr t d(off) tf VGS 10% 90% Fig22. Maximum Drain Current Vs. Case Temperature VDS Fig 23b. Switching Time Waveforms Fig 24. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 10 www.irf.com IRFG6110 P-Channel Q2,Q4 L VDS D .U .T. RG IA S -20V -10V tp VD D A D R IV E R 0.0 1Ω 15V Fig 25a. Unclamped Inductive Test Circuit IAS Fig 25c. Maximum Avalanche Energy Vs. Drain Current tp V (BR)DSS Fig 25b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG -10V 12V .2µF .3µF -10V QGS QGD D.U.T. +VDS VGS VG -3mA Charge Fig 26a. Basic Gate Charge Waveform www.irf.com IG ID Current Sampling Resistors Fig 26b. Gate Charge Test Circuit 11 IRFG6110 Footnotes: ➀ Repetitive Rating; Pulse width limited by maximum junction temperature. ➁ VDD = 25V, starting TJ = 25°C, L= 150mH, Peak IL = 1.0A, VGS = 10V ➂ ISD ≤ 1.0A, di/dt ≤ 75A/µs, VDD ≤ 100V, TJ ≤ 150°C ➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2% ➄ VDD = - 25V, starting TJ = 25°C, L= 266mH, Peak IL = - 0.75A, VGS = -10V ➅ ISD ≤ - 0.75A, di/dt ≤ - 75A/µs, VDD ≤ -100V, TJ ≤ 150°C Case Outline and Dimensions — MO-036AB IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice.0402 12 www.irf.com