SN54HCT245, SN74HCT245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCLS020E – MARCH 1984 – REVISED AUGUST 2003 D D D D D D D Operating Voltage Range of 4.5 V to 5.5 V High-Current 3-State Outputs Drive Bus Lines Directly or Up To 15 LSTTL Loads Low Power Consumption, 80-µA Max ICC Typical tpd = 14 ns ±6-mA Output Drive at 5 V Low Input Current of 1 µA Max Inputs Are TTL-Voltage Compatible SN54HCT245 . . . J OR W PACKAGE SN74HCT245 . . . DB, DW, N, NS, OR PW PACKAGE (TOP VIEW) DIR A1 A2 A3 A4 A5 A6 A7 A8 GND description/ordering information These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements. 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 VCC OE B1 B2 B3 B4 B5 B6 B7 B8 SN54HCT245 . . . FK PACKAGE (TOP VIEW) A2 A1 DIR VCC OE The ’HCT245 devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated. 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 B1 B2 B3 B4 B5 A8 GND B8 B7 B6 A3 A4 A5 A6 A7 ORDERING INFORMATION PACKAGE† TA PDIP – N SN74HCT245N Tube of 25 SN74HCT245DW Reel of 2000 SN74HCT245DWR SOP – NS Reel of 2000 SN74HCT245NSR HCT245 SSOP – DB Reel of 2000 SN74HCT245DBR HT245 Tube of 70 SN74HCT245PW Reel of 2000 SN74HCT245PWR TSSOP – PW –55°C 125°C –55 C to 125 C TOP-SIDE MARKING Tube of 20 SOIC – DW –40 C to 85 –40°C 85°C C ORDERABLE PART NUMBER SN74HCT245N HCT245 HT245 Reel of 250 SN74HCT245PWT CDIP – J Tube of 20 SNJ54HCT245J SNJ54HCT245J CFP – W Tube of 85 SNJ54HCT245W SNJ54HCT245W LCCC – FK Tube of 55 SNJ54HCT245FK SNJ54HCT245FK † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2003, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN54HCT245, SN74HCT245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCLS020E – MARCH 1984 – REVISED AUGUST 2003 FUNCTION TABLE INPUTS OE DIR OPERATION L L B data to A bus L H A data to B bus H X Isolation logic diagram (positive logic) DIR 1 19 A1 OE 2 18 B1 To Seven Other Channels absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±35 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±70 mA Package thermal impedance, θJA (see Note 2): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69°C/W NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN54HCT245, SN74HCT245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCLS020E – MARCH 1984 – REVISED AUGUST 2003 recommended operating conditions (see Note 3) SN54HCT245 NOM MAX MIN NOM MAX 4.5 5 5.5 4.5 5 5.5 VCC VIH Supply voltage VIL VI Low-level input voltage Input voltage 0 VO ∆t/∆v Output voltage 0 High-level input voltage VCC = 4.5 V to 5.5 V VCC = 4.5 V to 5.5 V SN74HCT245 MIN 2 2 Input transition rise/fall time V V 0.8 VCC VCC UNIT 0 0 500 0.8 V VCC VCC V 500 ns V TA Operating free-air temperature –55 125 –40 85 °C NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC VOH VI = VIH or VIL IOH = –20 µA IOH = –6 mA 4.5 V VOL VI = VIH or VIL IOL = 20 µA IOL = 6 mA 4.5 V II IOZ DIR or OE A or B ICC ∆ICC† Ci‡ MIN TA = 25°C TYP MAX SN54HCT245 MIN MAX SN74HCT245 MIN 4.4 4.499 4.4 4.4 3.98 4.3 3.7 3.84 MAX UNIT V 0.001 0.1 0.1 0.1 0.17 0.26 0.4 0.33 ±1000 ±1000 nA V VI = VCC or 0 VO = VCC or 0 5.5 V ±0.1 ±100 5.5 V ±0.01 ±0.5 ±10 ±5 µA VI = VCC or 0, IO = 0 One input at 0.5 V or 2.4 V, Other inputs at 0 or VCC 5.5 V 8 160 80 µA 1.4 2.4 3 2.9 mA 3 10 10 10 pF 5.5 V 4.5 V to 5.5 V DIR or OE † This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or VCC. ‡ Parameter Ci does not apply to transceiver I/O ports. switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) tpd A or B B or A ten OE A or B tdis OE A or B tt A or B VCC MIN TA = 25°C TYP MAX SN54HCT245 MIN MAX SN74HCT245 MIN MAX 4.5 V 16 22 33 28 5.5 V 14 20 30 25 4.5 V 25 46 69 58 5.5 V 22 41 62 52 4.5 V 26 40 60 50 5.5 V 23 36 54 45 4.5 V 9 12 18 15 5.5 V 8 11 16 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT ns ns ns ns 3 SN54HCT245, SN74HCT245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCLS020E – MARCH 1984 – REVISED AUGUST 2003 switching characteristics over recommended operating free-air temperature range, CL = 150 pF (unless otherwise noted) (see Figure 1) PARAMETER FROM (INPUT) TO (OUTPUT) tpd A or B B or A ten OE A or B tt A or B VCC MIN TA = 25°C TYP MAX SN54HCT245 MIN MAX SN74HCT245 MIN MAX 4.5 V 20 30 45 38 5.5 V 18 27 41 34 4.5 V 36 59 89 74 5.5 V 30 53 80 67 4.5 V 17 42 63 53 5.5 V 14 38 57 48 UNIT ns ns ns operating characteristics, TA = 25°C PARAMETER Cpd 4 TEST CONDITIONS Power dissipation capacitance per transceiver POST OFFICE BOX 655303 No load • DALLAS, TEXAS 75265 TYP 40 UNIT pF SN54HCT245, SN74HCT245 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS SCLS020E – MARCH 1984 – REVISED AUGUST 2003 PARAMETER MEASUREMENT INFORMATION VCC From Output Under Test CL (see Note A) PARAMETER S1 Test Point tPZH ten RL S2 1 kΩ tPZL tPHZ tdis –– LOAD CIRCUIT 2.7 V 2.7 V S1 S2 50 pF or 150 pF Open Closed Closed Open 1 kΩ tPLZ tpd or tt Input 1.3 V 0.3 V CL RL 50 pF 50 pF or 150 pF Open Closed Closed Open Open Open 3V 1.3 V 0.3 V 0 V tr tf VOLTAGE WAVEFORM INPUT RISE AND FALL TIMES 3V Input 1.3 V 1.3 V 0V tPLH In-Phase Output 1.3 V 10% tPHL 90% 90% tr tPHL Out-ofPhase Output 90% VOH 1.3 V 10% V OL tf tPLH 1.3 V 10% 1.3 V 10% tf 90% VOH VOL tr VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES Output Control (Low-Level Enabling) 3V 1.3 V 1.3 V 0V tPZL Output Waveform 1 (See Note B) tPLZ ≈VCC 1.3 V 10% tPZH Output Waveform 2 (See Note B) VOL tPHZ 1.3 V 90% VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS NOTES: A. CL includes probe and test-fixture capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns. D. The outputs are measured one at a time with one input transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 PACKAGE OPTION ADDENDUM www.ti.com 17-Dec-2015 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) 5962-8550601VRA ACTIVE CDIP J 20 20 TBD A42 N / A for Pkg Type -55 to 125 5962-8550601VR A SNV54HCT245J 5962-8550601VSA ACTIVE CFP W 20 25 TBD A42 N / A for Pkg Type -55 to 125 5962-8550601VS A SNV54HCT245W 85506012A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 85506012A SNJ54HCT 245FK 8550601RA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 8550601RA SNJ54HCT245J JM38510/65553BRA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65553BRA JM38510/65553BSA ACTIVE CFP W 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65553BSA M38510/65553BRA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65553BRA M38510/65553BSA ACTIVE CFP W 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65553BSA SN54HCT245J ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 SN54HCT245J SN74HCT245DBLE OBSOLETE SSOP DB 20 TBD Call TI Call TI -40 to 85 SN74HCT245DBR ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT245 SN74HCT245DBRG4 ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT245 SN74HCT245DW ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT245 SN74HCT245DWE4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT245 SN74HCT245DWG4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT245 SN74HCT245DWR ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT245 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 17-Dec-2015 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) SN74HCT245DWRE4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT245 SN74HCT245DWRG4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT245 SN74HCT245N ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SN74HCT245N SN74HCT245N3 OBSOLETE PDIP N 20 TBD Call TI Call TI -40 to 85 SN74HCT245NE4 ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SN74HCT245N SN74HCT245NSR ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT245 SN74HCT245NSRG4 ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HCT245 SN74HCT245PW ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT245 SN74HCT245PWG4 ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT245 SN74HCT245PWLE OBSOLETE TSSOP PW 20 TBD Call TI Call TI -40 to 85 SN74HCT245PWR ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 HT245 SN74HCT245PWRE4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT245 SN74HCT245PWRG4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT245 SN74HCT245PWT ACTIVE TSSOP PW 20 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HT245 SNJ54HCT245FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 85506012A SNJ54HCT 245FK SNJ54HCT245J ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 8550601RA SNJ54HCT245J SNJ54HCT245W ACTIVE CFP W 20 1 TBD A42 N / A for Pkg Type -55 to 125 SNJ54HCT245W (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 17-Dec-2015 NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN54HCT245, SN54HCT245-SP, SN74HCT245 : • Catalog: SN74HCT245, SN54HCT245 • Military: SN54HCT245 • Space: SN54HCT245-SP Addendum-Page 3 PACKAGE OPTION ADDENDUM www.ti.com 17-Dec-2015 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Military - QML certified for Military and Defense Applications • Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 27-Dec-2014 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant SN74HCT245DBR SSOP DB 20 2000 330.0 16.4 8.2 7.5 2.5 12.0 16.0 Q1 SN74HCT245DWR SOIC DW 20 2000 330.0 24.4 10.8 13.3 2.7 12.0 24.0 Q1 SN74HCT245NSR SO NS 20 2000 330.0 24.4 9.0 13.0 2.4 4.0 24.0 Q1 SN74HCT245PWR TSSOP PW 20 2000 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1 SN74HCT245PWR TSSOP PW 20 2000 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1 SN74HCT245PWT TSSOP PW 20 250 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 27-Dec-2014 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74HCT245DBR SN74HCT245DWR SSOP DB 20 2000 367.0 367.0 38.0 SOIC DW 20 2000 367.0 367.0 45.0 SN74HCT245NSR SO NS 20 2000 367.0 367.0 45.0 SN74HCT245PWR TSSOP PW 20 2000 364.0 364.0 27.0 SN74HCT245PWR TSSOP PW 20 2000 367.0 367.0 38.0 SN74HCT245PWT TSSOP PW 20 250 367.0 367.0 38.0 Pack Materials-Page 2 PACKAGE OUTLINE DW0020A SOIC - 2.65 mm max height SCALE 1.200 SOIC C 10.63 TYP 9.97 SEATING PLANE PIN 1 ID AREA A 0.1 C 20 1 13.0 12.6 NOTE 3 18X 1.27 2X 11.43 10 11 B 7.6 7.4 NOTE 4 20X 0.51 0.31 0.25 C A B 2.65 MAX 0.33 TYP 0.10 SEE DETAIL A 0.25 GAGE PLANE 0 -8 0.3 0.1 1.27 0.40 DETAIL A TYPICAL 4220724/A 05/2016 NOTES: 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side. 5. Reference JEDEC registration MS-013. www.ti.com EXAMPLE BOARD LAYOUT DW0020A SOIC - 2.65 mm max height SOIC 20X (2) SYMM 1 20 20X (0.6) 18X (1.27) SYMM (R0.05) TYP 10 11 (9.3) LAND PATTERN EXAMPLE SCALE:6X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.07 MAX ALL AROUND 0.07 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS 4220724/A 05/2016 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN DW0020A SOIC - 2.65 mm max height SOIC 20X (2) SYMM 1 20 20X (0.6) 18X (1.27) SYMM 11 10 (9.3) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:6X 4220724/A 05/2016 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated