LINER LT1213ACN8

LT1213/LT1214
28MHz, 12V/µs, Single Supply
Dual and Quad
Precision Op Amps
U
DESCRIPTIO
■
■
■
■
■
■
■
■
■
■
■
■
Slew Rate
12V/µs Typ
Gain-Bandwidth Product
28MHz Typ
Fast Settling to 0.01%
2V Step to 200µV
500ns Typ
10V Step to 1mV
1.1µs Typ
Excellent DC Precision in All Packages
Input Offset Voltage
275µV Max
Input Offset Voltage Drift
6µV/°C Max
Input Offset Current
40nA Max
Input Bias Current
200nA Max
Open-Loop Gain
1200V/mV Min
Single Supply Operation
Input Voltage Range Includes Ground
Output Swings to Ground While Sinking Current
Low Input Noise Voltage
10nV/√Hz Typ
Low Input Noise Current
0.2pA/√Hz Typ
Specified at 3.3V, 5V and ±15V
Large Output Drive Current
30mA Min
Low Supply Current per Amplifier
3.5mA Max
Dual in 8-Pin DIP and SO-8
Quad in 14-Pin DIP and NARROW SO-16
Note: For applications requiring higher slew rate, see the LT1215/LT1216
data sheet. For lower power and lower slew rate, see the LT1211/LT1212 data
sheet.
The LT1213 is a dual, single supply precision op amp with
a 28MHz gain-bandwidth product and a 12V/µs slew rate.
The LT1214 is a quad version of the same amplifier. The
DC precision of the LT1213/LT1214 eliminates trims in
most systems while providing high frequency performance not usually found in single supply amplifiers.
The LT1213/LT1214 will operate on any supply greater
than 2.5V and less than 36V total. These amplifiers are
specified at single 3.3V, single 5V and ±15V supplies, and
only require 2.7mA of quiescent supply current per amplifier. The inputs can be driven beyond the supplies without
damage or phase reversal of the output. The minimum
output drive is 30mA, ideal for driving low impedance
loads.
UO
FEATURES
APPLICATI
■
■
■
■
■
■
S
2.5V Full-Scale 12-Bit Systems
10V Full-Scale 16-Bit Systems
Active Filters
Photodiode Amplifiers
DAC Current-to-Voltage Amplifiers
Battery-Powered Systems
VOS ≤ 0.45LSB
VOS ≤ 1.8LSB
UO
TYPICAL APPLICATI
Single Supply 3-Pole 1MHz Butterworth Filter
V+
C2
200pF
R2
680Ω
VIN
0
R1
680Ω
C3
390pF
10
0.1µF
–10
+
C1
150pF
1/2
LT1213
VOUT
–
4.12k
AV = 2
MAXIMUM OUTPUT OFFSET = 714µV
GAIN (dB)
R3
680Ω
Frequency Response
–20
–30
–40
–50
4.12k
5pF
1213/14 TA01
–60
10k
100k
1M
FREQUENCY (Hz)
10M
1213/14 TA02
1
LT1213/LT1214
W W
W
AXI U
U
ABSOLUTE
RATI GS
Total Supply Voltage (V + to V –) ............................. 36V
Input Current ..................................................... ±15mA
Output Short-Circuit Duration (Note 1) ........ Continuous
Operating Temperature Range
LT1213C/LT1214C ............................ – 40°C to 85°C
LT1213M ......................................... – 55°C to 125°C
Storage Temperature Range ................ – 65°C to 150°C
Junction Temperature (Note 2)
Plastic Package (N8, S8, N, S) ........................ 150°C
Ceramic Package (J8) ...................................... 175°C
Lead Temperature (Soldering, 10 sec)................. 300°C
U
W
U
PACKAGE/ORDER I FOR ATIO
ORDER PART
NUMBER
TOP VIEW
8 V+
OUT A 1
–IN A 2
7 OUT B
A
+IN A 3
LT1213CN8
LT1213ACN8
LT1213MJ8
LT1213AMJ8
6 –IN B
B
V– 4
J8 PACKAGE
8-LEAD CERAMIC DIP
5 +IN B
N8 PACKAGE
8-LEAD PLASTIC DIP
TJMAX = 175°C, θJA = 100°C/W (J)
TJMAX = 150°C, θJA = 100°C/W (N)
ORDER PART
NUMBER
14 OUT D
–IN A 2
13 –IN D
+IN A 3
A
D
V+ 4
+IN B 5
C
–IN C
OUT B 7
8
OUT C
8 V
7 OUT B
A
LT1213CS8
6 –IN B
B
V– 4
5 +IN B
S8 PART MARKING
S8 PACKAGE
8-LEAD PLASTIC SOIC
1213
TOP VIEW
16 OUT D
OUT A 1
+IN A 3
A
ORDER PART
NUMBER
15 –IN D
14 +IN D
LT1214CS
13 V –
B
C
12 +IN C
–IN B 6
11 –IN C
OUT B 7
10 OUT C
NC 8
N PACKAGE
14-LEAD PLASTIC DIP
D
4
+IN B 5
10 +IN C
9
+IN A 3
V+
11 V –
B
–IN A 2
–IN A 2
LT1214CN
12 +IN D
–IN B 6
OUT A 1
+
TJMAX = 150°C, θJA = 150°C/W
TOP VIEW
OUT A 1
ORDER PART
NUMBER
TOP VIEW
9
NC
S PACKAGE
16-LEAD PLASTIC SOIC
TJMAX = 150°C, θJA = 100°C/W
TJMAX = 150°C, θJA = 70°C/W
U
AVAILABLE OPTIO S
NUMBER OF
OP AMPS
Two (Dual)
TA RANGE
– 40°C to 85°C
Two (Dual)
– 55°C to 125°C
Four (Quad)
– 40°C to 85°C
2
MAX VOS (25°C)
150µV
275µV
275µV
150µV
275µV
275µV
MAX TC VOS
(∆VOS /∆T)
1.5µV/°C
3µV/°C
6µV/°C
1.5µV/°C
3µV/°C
6µV/°C
CERAMIC DIP
(J)
PACKAGE
PLASTIC DIP
(N)
LT1213ACN8
LT1213CN8
SURFACE MOUNT
(S)
LT1213CS8
LT1213AMJ8
LT1213MJ8
LT1214CN
LT1214CS
LT1213/LT1214
5V ELECTRICAL CHARACTERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆Time
IOS
IB
en
PARAMETER
Input Offset Voltage
Long-Term Input Offset
Voltage Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density
in
Input Noise Current Density
Input Resistance (Note 3)
Input Capacitance
Input Voltage Range
CMRR
PSRR
AVOL
IO
SR
GBW
IS
tr, tf
OS
tPD
tS
THD
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
Maximum Output Current
Slew Rate
Gain-Bandwidth Product
Supply Current per Amplifier
Minimum Supply Voltage
Full Power Bandwidth
Rise Time, Fall Time
Overshoot
Propagation Delay
Settling Time
Open-Loop Output Resistance
Total Harmonic Distortion
CONDITIONS
0.1Hz to 10Hz
fO = 10Hz
fO = 1000Hz
fO = 10Hz
fO = 1000Hz
Differential Mode
Common Mode
f = 1MHz
VCM = 0V to 3.5V
VS = 2.5V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 20mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 20mA
(Note 9)
AV = – 2
f = 100kHz
LT1213AC
LT1213AM
MIN
TYP
MAX
75
150
0.5
LT1213C/LT1213M
LT1214C
MIN
TYP
MAX
100
275
0.6
5
80
200
10
10
0.9
0.2
40
200
10
3.8
– 0.3
105
116
850
4.39
4.30
3.92
0.004
0.033
0.475
±50
8.5
26
2.7
2.2
1.0
24
30
17
500
50
0.001
5
100
200
10
10
0.9
0.2
40
200
10
3.8
– 0.3
105
116
850
4.39
4.30
3.92
0.004
0.033
0.475
±50
8.5
26
2.7
2.2
1.0
24
30
17
500
50
0.001
10
3.5
0
90
93
250
4.30
4.20
3.80
±30
2.0
Single Supply, VCM = 0V
AV = 1, VO = 2.5VP-P
AV = 1, 10% to 90%, VO = 100mV
AV = 1, VO = 100mV
AV = 1, VO = 100mV
0.01%, AV = 1, ∆VO = 2V
IO = 0mA, f = 10MHz
AV = 1, VO = 1VRMS, 20Hz to 20kHz
30
160
10
3.5
0
86
90
250
4.30
4.20
3.80
0.007
0.050
0.620
±30
3.8
2.5
2.0
40
200
0.007
0.050
0.620
3.8
2.5
UNITS
µV
µV/Mo
nA
nA
nVP-P
nV/√Hz
nV/√Hz
pA/√Hz
pA/√Hz
MΩ
MΩ
pF
V
V
dB
dB
V/mV
V
V
V
V
V
V
mA
V/µs
MHz
mA
V
MHz
ns
%
ns
ns
Ω
%
3
LT1213/LT1214
5V ELECTRICAL CHARACTERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
CMRR
PSRR
AVOL
IS
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
VCM = 0.1V to 3.4V
VS = 2.5V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 15mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 15mA
MIN
8-Pin DIP Package
14-Pin DIP, SOIC Package
Supply Current per Amplifier
3.4
0.1
89
92
200
4.20
4.10
3.84
1.8
LT1213AC
TYP
MAX
100
175
0.7
1.5
10
90
3.5
– 0.1
105
114
580
4.33
4.25
3.96
0.005
0.036
0.370
2.9
45
190
0.008
0.055
0.530
4.0
LT1213C/LT1214C
MIN
TYP
MAX
150
375
1
3
2
6
10
55
110
230
3.4
3.5
0.1
– 0.1
85
105
89
114
200
580
4.20
4.33
4.10
4.25
3.84
3.96
0.005 0.008
0.036 0.055
0.370 0.530
1.8
2.9
4.0
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
V
V
V
V
mA
LT1213C/LT1214C
MIN
TYP
MAX
175
500
1
3
2
6
20
75
120
250
3.1
3.2
0.2
0
84
104
88
113
200
510
4.15
4.25
4.00
4.16
3.72
3.89
0.006 0.009
0.037 0.060
0.380 0.550
1.5
2.9
4.0
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
V
V
V
V
mA
VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5)
SYMBOL
VOS
∆VOS
∆T
IOS
IB
CMRR
PSRR
AVOL
IS
4
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
VCM = 0.2V to 3.1V
VS = 2.5V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 15mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 15mA
Supply Current per Amplifier
MIN
8-Pin DIP Package
14-Pin DIP, SOIC Package
3.1
0.2
88
91
200
4.15
4.00
3.72
1.5
LT1213AC
TYP
MAX
120
200
0.7
1.5
15
100
3.2
0
104
113
510
4.25
4.16
3.89
0.006
0.037
0.380
2.9
50
200
0.009
0.060
0.550
4.0
LT1213/LT1214
5V ELECTRICAL CHARACTERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
CMRR
PSRR
AVOL
IS
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
VCM = 0.4V to 3.1V
VS = 2.5V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 15mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 15mA
Supply Current per Amplifier
MIN
3.1
0.4
87
90
150
4.05
3.90
3.60
1.3
LT1213AM
TYP
MAX
140
250
0.7
1.5
20
105
3.2
0.2
104
113
300
4.20
4.10
3.80
0.007
0.040
0.400
3.0
MIN
70
210
0.012
0.070
0.750
4.2
LT1213C/LT1213M
LT1214C
MIN
TYP
MAX
150
550
5
40
90
190
13.5
13.8
–15.0 – 15.3
86
107
90
116
1200 4000
13.7
13.9
–14.3 –14.5
±30
±50
10
12
15
28
2.0
3.4
4.7
128
140
±1.2
±2.0
150
1.1
UNITS
µV
nA
nA
V
V
dB
dB
V/mV
V
V
mA
V/µs
MHz
mA
dB
V
kHz
µs
1.3
25
125
3.2
0.2
104
113
300
4.20
4.10
3.80
0.007
0.040
0.400
3.0
100
275
UNITS
µV
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
V
mV
mV
mV
mA
3.1
0.4
83
87
150
4.05
3.90
3.60
0.012
0.070
0.750
4.2
LT1213M
TYP
MAX
200
500
1.0
3.0
+
–15V ELECTRICAL CHARACTERISTICS
VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted.
SYMBOL
VOS
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
IO
SR
GBW
IS
Maximum Output Current
Slew Rate
Gain-Bandwidth Product
Supply Current per Amplifier
Channel Separation
Minimum Supply Voltage
Full-Power Bandwidth
Settling Time
VCM = –15V to 13.5V
VS = ±2V to ±18V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 20mA
Output Low, ISINK = 20mA
(Note 9)
AV = – 2 (Note 6)
f = 100kHz
VO = ±10V, RL = 2k
Equal Split Supplies
AV = 1, VO = 20VP-P
0.01%, AV = 1, ∆VO = 10V
LT1213AC
LT1213AM
MIN
TYP
125
5
70
13.5
13.8
–15.0 – 15.3
90
107
93
116
1200 4000
13.7
13.9
–14.3 –14.5
±30
±50
10
12
15
28
2.0
3.4
128
140
±1.2
150
1.1
MAX
400
30
150
4.7
±2.0
5
LT1213/LT1214
+
–15V ELECTRICAL CHARACTERISTICS
VS = ±15V, VCM = 0V, VOUT = 0V, 0°C ≤ TA ≤ 70°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
VCM = –14.9V to 13.4V
VS = ±2V to ±18V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 15mA
Output Low, ISINK = 15mA
IS
Supply Current per Amplifier
MIN
8-Pin DIP Package
14-Pin DIP, SOIC Package
13.4
–14.9
89
92
1000
13.8
– 14.4
1.8
LT1213AC
TYP
MAX
150
425
0.7
1.5
10
90
13.5
–15.1
105
115
4000
14.0
– 14.6
3.7
35
160
5.0
LT1213C/LT1214C
MIN
TYP
MAX
200
650
1
3
2
6
10
45
95
200
13.4
13.5
–14.9 –15.1
85
105
89
115
1000 4000
13.8
14.0
– 14.4 – 14.6
1.8
3.7
5.0
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
mA
LT1213C/LT1214C
MIN
TYP
MAX
250
700
1
3
2
6
20
75
105
220
13.1
13.2
–14.8 –15.0
84
104
88
114
1000 4000
13.7
13.9
– 14.4 – 14.6
1.5
3.7
5.1
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
mA
LT1213M
TYP
MAX
300
800
1
3
UNITS
µV
µV/°C
VS = ±15V, VCM = 0V, VOUT = 0V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5)
SYMBOL
VOS
∆VOS
∆T
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
VCM = – 14.8V to 13.1V
VS = ±2V to ±18V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 15mA
Output Low, ISINK = 15mA
IS
Supply Current per Amplifier
MIN
8-Pin DIP Package
14-Pin DIP, SOIC Package
13.1
–14.8
88
91
1000
13.7
– 14.4
1.5
LT1213AC
TYP
MAX
175
450
0.7
1.5
10
95
13.2
–15.0
104
114
4000
13.9
– 14.6
3.7
40
180
5.1
VS = ±15V, VCM = 0V, VOUT = 0V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
VCM = – 14.6V to 13.1V
VS = ±2V to ±15V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 15mA
Output Low, ISINK = 15mA
IS
Supply Current per Amplifier
6
MIN
13.1
–14.6
87
90
800
13.6
–14.2
1.3
LT1213AM
TYP
MAX
200
500
0.7
1.5
15
100
13.2
–14.8
104
114
1100
13.8
–14.5
4.0
MIN
60
200
5.4
13.1
–14.6
83
87
800
13.6
–14.2
1.3
25
110
13.2
–14.8
104
114
1100
13.8
–14.5
4.0
90
250
5.4
nA
nA
V
V
dB
dB
V/mV
V
V
mA
LT1213/LT1214
3.3V ELECTRICAL CHARACTERISTICS
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. (Note 7)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 8)
IO
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 20mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 20mA
Maximum Output Current
MIN
1.8
0
2.60
2.50
2.10
±30
LT1213AC
LT1213AM
TYP
MAX
75
150
2.1
– 0.3
2.69
2.60
2.22
0.004 0.007
0.033 0.050
0.475 0.620
±50
LT1213C/LT1213M
LT1214C
MIN
TYP
MAX
100
275
1.8
2.1
0
– 0.3
2.60
2.69
2.50
2.60
2.10
2.22
0.004 0.007
0.033 0.050
0.475 0.620
±30
±50
UNITS
µV
V
V
V
V
V
V
V
V
mA
LT1213C/LT1214C
MIN
TYP
MAX
150
375
1.7
1.8
0.1
– 0.1
2.50
2.63
2.40
2.55
2.14
2.26
0.005 0.008
0.037 0.055
0.400 0.530
UNITS
µV
V
V
V
V
V
V
V
V
LT1213C/LT1214C
MIN
TYP
MAX
175
500
1.4
1.5
0.2
0
2.45
2.55
2.30
2.46
2.02
2.19
0.006 0.009
0.040 0.060
0.410 0.550
UNITS
µV
V
V
V
V
V
V
V
V
LT1213M
TYP
200
1.5
0.2
2.50
2.40
2.10
0.007
0.040
0.500
UNITS
µV
V
V
V
V
V
V
V
V
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. (Note 7)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 8)
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 15mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 15mA
MIN
1.7
0.1
2.50
2.40
2.14
LT1213AC
TYP
100
1.8
– 0.1
2.63
2.55
2.26
0.005
0.037
0.400
MAX
175
0.008
0.055
0.530
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5, 7)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 8)
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 15mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 15mA
MIN
1.4
0.2
2.45
2.30
2.02
LT1213AC
TYP
120
1.5
0
2.55
2.46
2.19
0.006
0.040
0.410
MAX
200
0.009
0.060
0.550
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted. (Note 7)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 8)
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 15mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 15mA
MIN
1.4
0.4
2.35
2.20
1.90
LT1213AM
TYP
MAX
130
250
1.5
0.2
2.50
2.40
2.10
0.007 0.012
0.040 0.070
0.500 0.750
MIN
1.4
0.4
2.35
2.20
1.90
MAX
500
0.012
0.070
0.750
7
LT1213/LT1214
ELECTRICAL CHARACTERISTICS
Note 1: A heat sink may be required to keep the junction temperature
below absolute maximum when the output is shorted indefinitely.
Note 2: TJ is calculated from the ambient temperature TA and power
dissipation PD according to the following formulas:
LT1213MJ8, LT1213AMJ8: TJ = TA + (PD × 100°C/W)
LT1213CN8, LT1213ACN8: TJ = TA + (PD × 100°C/W)
LT1213CS8:
TJ = TA + (PD × 150°C/W)
LT1214CN:
TJ = TA + (PD × 70°C/W)
LT1214CS:
TJ = TA + (PD × 100°C/W)
Note 3: This parameter is not 100% tested.
Note 4: Guaranteed by correlation to 3.3V and ±15V tests.
Note 5: The LT1213/LT1214 are not tested and are not quality-assurance
sampled at – 40°C and at 85°C. These specifications are guaranteed by
design, correlation and/or inference from – 55°C, 0°C, 25°C, 70°C and/or
125°C tests.
Note 6: Slew rate is measured between ±8.5V on an output swing of ±10V
on ±15V supplies.
Note 7: Most LT1213/LT1214 electrical characteristics change very little
with supply voltage. See the 5V tables for characteristics not listed in the
3.3V table.
Note 8: Guaranteed by correlation to 5V and ±15V tests.
Note 9: Guaranteed by correlation to 3.3V tests.
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Distribution of Offset Voltage Drift
with Temperature
Distribution of Input Offset Voltage
70
Distribution of Input Offset Voltage
70
50
VS = 5V
60
LT1213 J8 PACKAGE
LT1213 N8 PACKAGE
VS = 5V
VS = ±15V
LT1213 J8 PACKAGE
LT1213 N8 PACKAGE
60
LT1213 J8 PACKAGE
LT1213 N8 PACKAGE
40
30
20
PERCENT OF UNITS (%)
PERCENT OF UNITS (%)
30
20
10
10
0
–350 –250 –150 –50 50
150 250
INPUT OFFSET VOLTAGE (µV)
–1
–2
1
–3
3
0
2
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
1213/14 G01
40
PERCENT OF UNITS (%)
PERCENT OF UNITS (%)
Distribution of Input Offset Voltage
70
VS = 5V
LT1213 S8 PACKAGE
LT1214 N PACKAGE
LT1214 S PACKAGE
40
30
20
700
1213/14 G03
50
50
20
Distribution of Offset Voltage Drift
with Temperature
70
VS = 5V
30
1213/14 G02
Distribution of Input Offset Voltage
60
40
0
–700 –500 –300 –100 100 300 500
INPUT OFFSET VOLTAGE (µV)
0
350
50
10
LT1213 S8 PACKAGE
LT1214 N PACKAGE
LT1214 S PACKAGE
VS = ±15V
60
PERCENT OF UNITS (%)
PERCENT OF UNITS (%)
40
50
30
20
LT1213 S8 PACKAGE
LT1214 N PACKAGE
LT1214 S PACKAGE
50
40
30
20
10
10
10
0
–350 –250 –150 –50 50
150 250
INPUT OFFSET VOLTAGE (µV)
0
350
1213/14 G04
8
–2
–4
2
–6
6
0
4
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
1213/14 G05
0
–700 –500 –300 –100 100 300 500
INPUT OFFSET VOLTAGE (µV)
700
1213/14 G06
LT1213/LT1214
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Voltage Gain, Phase vs
Frequency
Voltage Gain vs Frequency
PHASE
60
40
VS = ±15V
20
GAIN
40
VS = 5V
20
VS = 5V
CL = 20pF
RL = 2k
0
VS = 5V
10
100
1k
10k 100k 1M 10M 100M
FREQUENCY (Hz)
–20
100k
Slew Rate vs Temperature
24
TA = 25°C
AV = –2
RL = 10k
60
20
40
TA = –55°C
30
20
10
3
5 7 10
20
TOTAL SUPPLY VOLTAGE (V)
1
0
30 40
1213/14 G09
Slew Rate vs Supply Voltage
Capacitive Load Handling
80
AV = –2
RL = 10k
14
VS = ±15V
50
TA = 25°C, 125°C
TA = 125°C
VS = 5V
70
60
10
VS = 5V
8
OVERSHOOT (%)
12
12
TA = 25°C
10
TA = –55°C
8
6
50
40
AV = 1
30
20
6
4
2
–50 –25
25
0
50
75
TEMPERATURE (°C)
4
100
125
0
4
8 12 16 20 24 28 32
TOTAL SUPPLY VOLTAGE (V)
25
OUTPUT SWING (VP-P)
AV = 1
2
1
20
15
10
5
10k
100k
FREQUENCY (Hz)
1M
1213/14 G13
VS = ±15V
0
100
1k
10k
100k
FREQUENCY (Hz)
1000
100
CAPACITIVE LOAD (pF)
1213/14 G12
TOTAL HARMONIC DISTORTION AND NOISE (%)
VS = 5V
4
1k
10
Total Harmonic Distortion and
Noise vs Frequency
30
5
0
100
36
Undistorted Output Swing
vs Frequency, VS = ±15V
3
AV = 10
0
1213/14 G11
Undistorted Output Swing
vs Frequency, VS = 5V
AV = –1
AV = 5
10
1213/14 G10
OUTPUT SWING (VP-P)
TA = 125°C
22
–60
100M
1M
10M
FREQUENCY (Hz)
TA = 25°C
26
16
SLEW RATE (V/µs)
SLEW RATE (V/µs)
–40
TA = –55°C
28
1213/14 G08
18
14
–20
VS = ±15V
1213/14 G07
16
20
0
0
–20
60
PHASE SHIFT (DEG)
80
VOLTAGE GAIN (dB)
40
VS = ±15V
PHASE MARGIN (DEG)
100
1
30
80
GAIN-BANDWIDTH PRODUCT (MHz)
CL = 20pF
RL = 2k
120
32
100
60
140
VOLTAGE GAIN (dB)
Gain-Bandwidth Product,
Phase Margin vs Supply Voltage
1M
1213/14 G14
0.1
VS = 5V
VO = 3VP-P
RL = 1k
0.01
AV = 10
0.001
0.0001
10
AV = 1
100
1k
10k
FREQUENCY (Hz)
100k
1213/14 G15
9
LT1213/LT1214
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Open-Loop Voltage Gain
vs Supply Voltage
Positive Output Saturation
Voltage vs Temperature
Open-Loop Gain, VS = 5V
6k
1.4
5k
TA = 25°C
4k
3k
2k
SATURATION VOLTAGE, V + – VOUT (V)
TA = –55°C
INPUT, 5µV/DIV
OPEN-LOOP VOLTAGE GAIN (V/mV)
RL = 2k
RL = 2k
RL =
500Ω
TA = 125°C
0
1k
1
2
3
OUTPUT (V)
4
VS = 5V
1.2
ISOURCE = 20mA
1.0
ISOURCE = 10mA
0.8
ISOURCE = 1mA
0.6
ISOURCE = 10µA
0.4
1213/14 G17
0
4
0
8 12 16 20 24 28 32
TOTAL SUPPLY VOLTAGE (V)
0.2
–50 –25
36
50
25
75
0
TEMPERATURE (°C)
100
1213/14 G16
1213/14 G18
Negative Output Saturation
Voltage vs Temperature
Open-Loop Gain, VS = ±15V
Voltage Gain vs Load Resistance
INPUT, 5µV/DIV
OPEN-LOOP VOLTAGE GAIN (V/mV)
TA = 25°C
VS = ±15V
1k
VS = 5V
RL = 2k
RL =
500Ω
100
–10
0
OUTPUT (V)
10
1213/14 G20
SATURATION VOLTAGE, VOUT – V – (mV)
1000
10k
10
10
100
1k
LOAD RESISTANCE (Ω)
ISINK = 30mA
ISINK = 10mA
100
ISINK = 1mA
10
ISINK = 10µA
VS = 5V
1
–50 –25
10k
0
25
50
75
TEMPERATURE (°C)
Output Short-Circuit Current
vs Temperature
Channel Separation vs Frequency
140
110
100
90
80
70
60
50
40
30
10k
100k
1M
FREQUENCY (Hz)
10M
1213/14 G22
10
1000
VS = ±15V
60
OUTPUT IMPEDANCE (Ω)
120
OUTPUT SHORT-CIRCUIT CURRENT (mA)
VS = ±15V
TA = 25°C
125
Output Impedance vs Frequency
70
130
100
1213/14 G21
1213/14 G19
CHANNEL SEPARATION (dB)
125
VS = 5V
SOURCING
50
40
30
–50 –25
VS = ±15V
SOURCING
OR SINKING
50
25
75
0
TEMPERATURE (°C)
100
125
1213/14 G23
100
10
1
AV = 100
0.1
AV = 10
0.01
10k
AV = 1
100k
1M
FREQUENCY (Hz)
10M
1213/14 G24
LT1213/LT1214
U W
TYPICAL PERFOR A CE CHARACTERISTICS
5V Large-Signal Response
5V Large-Signal Response
5V Small-Signal Response
3V
0V
0V
20mV/DIV
3V
200ns/DIV
50ns/DIV
VS = 5V
AV = 1
VS = 5V
AV = 1
1213/14 G25
1213/14 G26
20mV/DIV
10V
10V
0V
0V
–10V
–10V
50ns/DIV
1µs/DIV
VS = ±15V
AV = 1
1213/14 G28
VS = ±15V
AV = –1
RF = RG = 1k
1213/14 G29
1µs/DIV
1213/14 G30
Settling Time to 0.01%
vs Output Step
±15V Settling
5V Settling
1213/14 G27
±15V Large-Signal Response
±15V Large-Signal Response
±15V Small-Signal Response
VS = ±15V
AV = 1
200ns/DIV
VS = 5V
AV = –1
RF = RG = 1k
CF = 20pF
10
8
2V/DIV
500mV/DIV
1mV/DIV
250µV/DIV
100ns/DIV
VS = 5V
AV = 1
1213/14 G31
VS = ±15V
AV = –1
OUTPUT STEP (V)
6
VS = ±15V
INVERTING
2
0
–2
–4
INVERTING
–6
200ns/DIV
–8
1213/14 G32
NONINVERTING
4
NONINVERTING
–10
300 400 500 600 700 800 900 1000 1100
SETTLING TIME (ns)
1213/14 G33
11
LT1213/LT1214
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Supply Current vs Supply Votage
Supply Current vs Temperature
TA = 25°C
2
TA = –55°C
1
0
1
0
2
3
4
SUPPLY VOLTAGE (V)
2
3.8
VS = ±15V
3.4
3.0
VS = 5V
2.6
2.2
1.8
–50 –25
5
CHANGE IN OFFSET VOLTAGE (µV)
SUPPLY CURRENT PER AMPLIFIER (mA)
25
0
50
75
TEMPERATURE (°C)
110
20
60
80
40
TIME AFTER POWER-UP (SEC)
0
100
IOS
–IB
+IB
80
100
1213/14 G36
Common-Mode Range
vs Temperature
V+
–40
COMMON-MODE RANGE (V)
INPUT BIAS CURRENT (nA)
INPUT BIAS CURRENT (nA)
VS = 5V
RL = ∞
2 TYPICAL AMPLIFIERS
VS = 5V
–20
105
85
–1
–2
125
0
VS = 5V
90
0
Input Bias Current vs
Common-Mode Voltage
Input Bias Current vs Temperature
95
1
1213/14 G35
1213/14 G34
TA = 25°C
–60
TA = 125°C
–80
–100
TA = –55°C
–120
–140
–160
V + –1
V + –2
V – +1
V–
–180
75
–50 –25
50
25
75
0
TEMPERATURE (°C)
100
–200
125
V – –1
0
2
3
1
COMMON-MODE VOLTAGE (V)
–1
Input Noise Current, Noise
Voltage Density vs Frequency
2.0
1.6
14
1.4
12
1.2
VOLTAGE NOISE
10
1.0
8
0.8
6
0.6
4
0.4
CURRENT NOISE
2
10
100
1k
10k
FREQUENCY (Hz)
0.2
0
100k
1213/14 G40
12
100
130
VS = 5V
110
100
90
80
70
60
50
40
30
20
10k
125
Input Referred Power Supply
Rejection Ratio vs Frequency
120
COMMON-MODE REJECTION RATIO (dB)
16
1.8
INPUT NOISE CURRENT DENSITY (pA/√Hz)
VS = ±15V
TA = 25°C
RS = 0Ω
50
25
75
0
TEMPERATURE (°C)
1213/14 G39
Common-Mode Rejection Ratio
vs Frequency
20
18
–50 –25
4
1213/14 G38
1213/14 G37
INPUT NOISE VOLTAGE DENSITY (nV/√Hz)
100
POWER SUPPLY REJECTION RATIO (dB)
SUPPLY CURRENT PER AMPLIFIER (mA)
TA = 125°C
3
0
Warm-Up Drift vs Time
4.2
4
110
100
90
10M
1213/14 G41
POSITIVE SUPPLY
80
70
60
50
NEGATIVE SUPPLY
40
30
100k
1M
FREQUENCY (Hz)
VS = ±15V
AV = 100
120
1k
10k
100k
1M
FREQUENCY (Hz)
10M
1213/14 G42
LT1213/LT1214
U
W
U
UO
APPLICATI
S I FOR ATIO
Supply Voltage
The LT1213/LT1214 op amps are fully functional and all
internal bias circuits are in regulation with 2.2V of supply.
The amplifiers will continue to function with as little as
1.5V, although the input common-mode range and the
phase margin are about gone. The minimum operating
supply voltage is guaranteed by the PSRR tests which are
done with the input common mode equal to 500mV and a
minimum supply voltage of 2.5V. The LT1213/LT1214 are
guaranteed over the full – 55°C to 125°C range with a
minimum supply voltage of 2.5V.
The positive supply pin of the LT1213/LT1214 should be
bypassed with a small capacitor (about 0.01µF) within an
inch of the pin. When driving heavy loads and for good
settling time, an additional 4.7µF capacitor should be
used. When using split supplies, the same is true for the
negative supply pin.
Power Dissipation
The LT1213/LT1214 amplifiers combine high speed and
large output current drive into very small packages. Because these amplifiers work over a very wide supply range,
it is possible to exceed the maximum junction temperature
under certain conditions. To insure that the LT1213/
LT1214 are used properly, calculate the worst case power
dissipation, define the maximum ambient temperature,
select the appropriate package and then calculate the
maximum junction temperature.
The worst case amplifier power dissipation is the total of
the quiescent current times the total power supply voltage
plus the power in the IC due to the load. The quiescent
supply current of the LT1213/LT1214 has a positive temperature coefficient. The maximum supply current of each
amplifier at 125°C is given by the following formula:
ISMAX = 4.2 + 0.048 × (VS – 5) in mA
VS is the total supply voltage.
The power in the IC due to the load is a function of the
output voltage, the supply voltage and load resistance. The
worst case occurs when the output voltage is at half
supply, if it can go that far, or its maximum value if it
cannot reach half supply.
For example, calculate the worst case power dissipation
while operating on ±15V supplies and driving a 500Ω load.
ISMAX = 4.2 + 0.048 × (30 – 5) = 5.4mA
PDMAX = 2 × VS × ISMAX + (VS – VOMAX) × VOMAX/RL
PDMAX = 2 × 15V × 5.4mA + (15V – 7.5V) × 7.5V/500
= 0.162 + 0.113 = 0.275 Watt per Amp
If this is the dual LT1213, the total power in the package is
twice that, or 0.550W. Now calculate how much the die
temperature will rise above the ambient. The total power
dissipation times the thermal resistance of the package
gives the amount of temperature rise. For this example, in
the SO-8 surface mount package, the thermal resistance is
150°C/W junction-to-ambient in still air.
Temperature Rise = PDMAX × θJA = 0.550W × 150°C/W
= 82.5°C
The maximum junction temperature allowed in the plastic
package is 150°C. Therefore the maximum ambient allowed is the maximum junction temperature less the
temperature rise.
Maximum Ambient = 150°C – 82.5°C = 67.5°C
That means the SO-8 dual can be operated at or below
67.5°C on ±15V supplies with a 500Ω load.
As a guideline to help in the selection of the LT1213/
LT1214, the following table describes the maximum supply voltage that can be used with each part based on the
following assumptions:
1. The maximum ambient is 70°C or 125°C depending on
the part rating.
2. The load is 500Ω including the feedback resistors.
3. The output can be anywhere between the supplies.
PART
LT1213MJ8
LT1213CN8
LT1213CS8
LT1214CN
LT1214CS
MAX SUPPLIES
18.0V or ±14.1V
23.7V or ±18.0V
18.7V or ±14.7V
19.5V or ±15.4V
15.8V or ±12.2V
MAX POWER AT MAX TA
500mW
800mW
533mW
1143mW
800mW
13
LT1213/LT1214
U
W
U
UO
APPLICATI
S I FOR ATIO
Inputs
Typically at room temperature, the inputs of the LT1213/
LT1214 can common mode 400mV below ground (V –)
and to within 1.2V of the positive supply with the amplifier
still functional. However, the input bias current and offset
voltage will shift as shown in the characteristic curves. For
full precision performance, the common-mode range
should be limited between ground (V –) and 1.5V below the
positive supply.
When either of the inputs is taken below ground (V –) by
more than about 700mV, that input current will increase
dramatically. The current is limited by internal 100Ω
resistors between the input pins and diodes to each
supply. The output will remain low (no phase reversal) for
inputs 1.3V below ground (V –). If the output does not have
to sink current, such as in a single supply system with a 1k
load to ground, there is no phase reversal for inputs up to
8V below ground.
There are no clamps across the inputs of the LT1213/
LT1214 and therefore each input can be forced to any
voltage between the supplies. The input current will remain constant at about 100nA over most of this range.
When an input gets closer than 1.5V to the positive supply,
that input current will gradually decrease to zero until the
input goes above the supply, then it will increase due to the
previously mentioned diodes. If the inverting input is held
more positive than the noninverting input by 200mV or
more, while at the same time the noninverting input is
within 300mV of ground (V –), then the supply current will
increase by 2mA and the noninverting input current will
increase to about 10µA. This should be kept in mind in
comparator applications where the inverting input stays
above ground (V –) and the noninverting input is at or near
ground (V –).
Output
The output of the LT1213/LT1214 will swing to within
0.61V of the positive supply with no load. The open-loop
output resistance, when the output is driven hard into the
14
positive rail, is about 100Ω as the output starts to source
current; this resistance drops to about 20Ω as the current
increases. Therefore when the output sources 1mA, the
output will swing to within 0.7V of the positive supply.
While sourcing 30mA, it is within 1.25V of the positive
supply.
The output of the LT1213/LT1214 will swing to within 4mV
of the negative supply while sinking zero current. Thus, in
a typical single supply application with the load going to
ground, the output will go to within 4mV of ground. The
open-loop output resistance when the output is driven
hard into the negative rail is about 29Ω at low currents and
reduces to about 23Ω at high currents. Therefore when
the output sinks 1mA, the output is about 33mV above the
negative supply and while sinking 30mA, it is about
690mV above it.
The output of the LT1213/LT1214 has reverse-biased
diodes to each supply. If the output is forced beyond either
supply, unlimited currents will flow. If the current is
transient and limited to several hundred mA, no damage
will occur.
Feedback Components
Because the input currents of the LT1213/LT1214 are less
than 200nA, it is possible to use high value feedback
resistors to set the gain. However, care must be taken to
insure that the pole that is formed by the feedback resistors and the input capacitance does not degrade the
stability of the amplifier. For example, if a single supply,
noninverting gain of two is set with two 10k resistors, the
LT1213/LT1214 will probably oscillate. This is because
the amplifier goes open-loop at 6MHz (6dB of gain) and
has 45° of phase margin. The feedback resistors and the
10pF input capacitance generate a pole at 3MHz that
introduces 63° of phase shift at 6MHz! The solution is
simple, lower the values of the resistors or add a feedback
capacitor of 10pF or more.
LT1213/LT1214
W
U
U
UO
APPLICATI
S I FOR ATIO
following photos. These amplifiers are unity-gain stable
op amps and not fast comparators, therefore, the logic
being driven may oscillate due to the long transition time.
The output can be speeded up by adding 20mV or more of
hysteresis (positive feedback), but the offset is then a
function of the input direction.
Comparator Applications
Sometimes it is desirable to use an op amp as a comparator. When operating the LT1213/LT1214 on a single 3.3V
or 5V supply, the output interfaces directly with most TTL
and CMOS logic.
The response time of the LT1213/LT1214 is a strong
function of the amount of input overdrive as shown in the
LT1213 Comparator Response (+)
20mV, 10mV, 5mV, 2mV Overdrives
LT1213 Comparator Response (–)
20mV, 10mV, 5mV, 2mV Overdrives
4
OUTPUT (V)
OUTPUT (V)
4
2
2
0
INPUT (mV)
INPUT (mV)
0
100
0
100
0
5µs/DIV
5µs/DIV
VS = 5V
RL = ∞
VS = 5V
RL = ∞
1213/14 AI01
1213/14 AI02
W
W
SI PLIFIED SCHE ATIC
V+
I1
I4
I3
I2
I6
I5
Q3
Q13
BIAS
CM
Q14
Q4
–IN
Q15
+IN
Q1
Q11
Q2
OUT
RF
Q7
Q12
CF
Q10
Q8
Q5
Q9
Q6
Q16
I7
CO
I8
CI
V–
1213/14 SS
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
15
LT1213/LT1214
UO
TYPICAL APPLICATI
S
Instrumentation Amplifier with Guard/Shield Driver and Input Bias Current Cancellation
V+
0.1µF
+
1M
GUARD
–
1/4
LT1214
A
10k**
1k
INPUT BIAS CURRENT vs
COMMON-MODE VOLTAGE
RF
1020Ω
100
RG
113Ω
+
+
1/4
LT1214
B
200Ω
INPUTS
5000pF
1/4
LT1214
C
OUTPUT
–
–
1M*
–
RG
113Ω
1M
80
60
40
20
22pF
GUARD
–
1/4
LT1214
D
RF
1020Ω
0
0.01
1k
0.1
1
COMMON-MODE VOLTAGE (V)
10k
1213/14 TA03a
( )
R
GAIN = 10 1 + F = 100
RG
* TRIM FOR INPUT BIAS CURRENT
** TRIM FOR CMRR
Ground Current Sense Amplifier
Difference Amplifier with Wide Input Common-Mode Range
V+
3.3V
V+
5V
V REF
0.1µF
LOAD
10k
1/2
LT1213
VO = 1V/A
–
0.05Ω
1910Ω
750Ω
1.2V
+
IIN
10
1213/14 TA03b
+
COMMON MODE RIN = 3G
DIFFERENTIAL RIN = 2M
BANDWIDTH = 2MHz
t r = 170ms
EACH INPUT BIAS CURRENT (mA)
V + = 5V
+
OFFSET ≤ 5.5mA
BANDWIDTH = 500kHz
t r = 1µs
LT1004-1.2
1k
10k
+
+IN
10k
0.1µF
1/2
LT1213
1k
V OUT
–
–IN
10k
100Ω
100pF
1213/14 TA04
GAIN = 1; VOUT = VREF FOR VIN(DIF) = 0
±10V COMMON-MODE RANGE
BANDWIDTH = 3MHz
1213/14 TA05
U
PACKAGE DESCRIPTIO
For package description please see other Linear Technology data sheets or databooks.
16
Linear Technology Corporation
LTC/GP 0793 10K REV 0
1630 McCarthy Blvd., Milpitas, CA 95035-7487
(408) 432-1900 ● FAX: (408) 434-0507 ● TELEX: 499-3977
 LINEAR TECHNOLOGY CORPORATION 1993