LT1213/LT1214 28MHz, 12V/µs, Single Supply Dual and Quad Precision Op Amps U DESCRIPTIO ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Slew Rate 12V/µs Typ Gain-Bandwidth Product 28MHz Typ Fast Settling to 0.01% 2V Step to 200µV 500ns Typ 10V Step to 1mV 1.1µs Typ Excellent DC Precision in All Packages Input Offset Voltage 275µV Max Input Offset Voltage Drift 6µV/°C Max Input Offset Current 40nA Max Input Bias Current 200nA Max Open-Loop Gain 1200V/mV Min Single Supply Operation Input Voltage Range Includes Ground Output Swings to Ground While Sinking Current Low Input Noise Voltage 10nV/√Hz Typ Low Input Noise Current 0.2pA/√Hz Typ Specified at 3.3V, 5V and ±15V Large Output Drive Current 30mA Min Low Supply Current per Amplifier 3.5mA Max Dual in 8-Pin DIP and SO-8 Quad in 14-Pin DIP and NARROW SO-16 Note: For applications requiring higher slew rate, see the LT1215/LT1216 data sheet. For lower power and lower slew rate, see the LT1211/LT1212 data sheet. The LT1213 is a dual, single supply precision op amp with a 28MHz gain-bandwidth product and a 12V/µs slew rate. The LT1214 is a quad version of the same amplifier. The DC precision of the LT1213/LT1214 eliminates trims in most systems while providing high frequency performance not usually found in single supply amplifiers. The LT1213/LT1214 will operate on any supply greater than 2.5V and less than 36V total. These amplifiers are specified at single 3.3V, single 5V and ±15V supplies, and only require 2.7mA of quiescent supply current per amplifier. The inputs can be driven beyond the supplies without damage or phase reversal of the output. The minimum output drive is 30mA, ideal for driving low impedance loads. UO FEATURES APPLICATI ■ ■ ■ ■ ■ ■ S 2.5V Full-Scale 12-Bit Systems 10V Full-Scale 16-Bit Systems Active Filters Photodiode Amplifiers DAC Current-to-Voltage Amplifiers Battery-Powered Systems VOS ≤ 0.45LSB VOS ≤ 1.8LSB UO TYPICAL APPLICATI Single Supply 3-Pole 1MHz Butterworth Filter V+ C2 200pF R2 680Ω VIN 0 R1 680Ω C3 390pF 10 0.1µF –10 + C1 150pF 1/2 LT1213 VOUT – 4.12k AV = 2 MAXIMUM OUTPUT OFFSET = 714µV GAIN (dB) R3 680Ω Frequency Response –20 –30 –40 –50 4.12k 5pF 1213/14 TA01 –60 10k 100k 1M FREQUENCY (Hz) 10M 1213/14 TA02 1 LT1213/LT1214 W W W AXI U U ABSOLUTE RATI GS Total Supply Voltage (V + to V –) ............................. 36V Input Current ..................................................... ±15mA Output Short-Circuit Duration (Note 1) ........ Continuous Operating Temperature Range LT1213C/LT1214C ............................ – 40°C to 85°C LT1213M ......................................... – 55°C to 125°C Storage Temperature Range ................ – 65°C to 150°C Junction Temperature (Note 2) Plastic Package (N8, S8, N, S) ........................ 150°C Ceramic Package (J8) ...................................... 175°C Lead Temperature (Soldering, 10 sec)................. 300°C U W U PACKAGE/ORDER I FOR ATIO ORDER PART NUMBER TOP VIEW 8 V+ OUT A 1 –IN A 2 7 OUT B A +IN A 3 LT1213CN8 LT1213ACN8 LT1213MJ8 LT1213AMJ8 6 –IN B B V– 4 J8 PACKAGE 8-LEAD CERAMIC DIP 5 +IN B N8 PACKAGE 8-LEAD PLASTIC DIP TJMAX = 175°C, θJA = 100°C/W (J) TJMAX = 150°C, θJA = 100°C/W (N) ORDER PART NUMBER 14 OUT D –IN A 2 13 –IN D +IN A 3 A D V+ 4 +IN B 5 C –IN C OUT B 7 8 OUT C 8 V 7 OUT B A LT1213CS8 6 –IN B B V– 4 5 +IN B S8 PART MARKING S8 PACKAGE 8-LEAD PLASTIC SOIC 1213 TOP VIEW 16 OUT D OUT A 1 +IN A 3 A ORDER PART NUMBER 15 –IN D 14 +IN D LT1214CS 13 V – B C 12 +IN C –IN B 6 11 –IN C OUT B 7 10 OUT C NC 8 N PACKAGE 14-LEAD PLASTIC DIP D 4 +IN B 5 10 +IN C 9 +IN A 3 V+ 11 V – B –IN A 2 –IN A 2 LT1214CN 12 +IN D –IN B 6 OUT A 1 + TJMAX = 150°C, θJA = 150°C/W TOP VIEW OUT A 1 ORDER PART NUMBER TOP VIEW 9 NC S PACKAGE 16-LEAD PLASTIC SOIC TJMAX = 150°C, θJA = 100°C/W TJMAX = 150°C, θJA = 70°C/W U AVAILABLE OPTIO S NUMBER OF OP AMPS Two (Dual) TA RANGE – 40°C to 85°C Two (Dual) – 55°C to 125°C Four (Quad) – 40°C to 85°C 2 MAX VOS (25°C) 150µV 275µV 275µV 150µV 275µV 275µV MAX TC VOS (∆VOS /∆T) 1.5µV/°C 3µV/°C 6µV/°C 1.5µV/°C 3µV/°C 6µV/°C CERAMIC DIP (J) PACKAGE PLASTIC DIP (N) LT1213ACN8 LT1213CN8 SURFACE MOUNT (S) LT1213CS8 LT1213AMJ8 LT1213MJ8 LT1214CN LT1214CS LT1213/LT1214 5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆Time IOS IB en PARAMETER Input Offset Voltage Long-Term Input Offset Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density in Input Noise Current Density Input Resistance (Note 3) Input Capacitance Input Voltage Range CMRR PSRR AVOL IO SR GBW IS tr, tf OS tPD tS THD Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) Maximum Output Current Slew Rate Gain-Bandwidth Product Supply Current per Amplifier Minimum Supply Voltage Full Power Bandwidth Rise Time, Fall Time Overshoot Propagation Delay Settling Time Open-Loop Output Resistance Total Harmonic Distortion CONDITIONS 0.1Hz to 10Hz fO = 10Hz fO = 1000Hz fO = 10Hz fO = 1000Hz Differential Mode Common Mode f = 1MHz VCM = 0V to 3.5V VS = 2.5V to 12.5V VO = 0.05V to 3.7V, RL = 500Ω Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 20mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 20mA (Note 9) AV = – 2 f = 100kHz LT1213AC LT1213AM MIN TYP MAX 75 150 0.5 LT1213C/LT1213M LT1214C MIN TYP MAX 100 275 0.6 5 80 200 10 10 0.9 0.2 40 200 10 3.8 – 0.3 105 116 850 4.39 4.30 3.92 0.004 0.033 0.475 ±50 8.5 26 2.7 2.2 1.0 24 30 17 500 50 0.001 5 100 200 10 10 0.9 0.2 40 200 10 3.8 – 0.3 105 116 850 4.39 4.30 3.92 0.004 0.033 0.475 ±50 8.5 26 2.7 2.2 1.0 24 30 17 500 50 0.001 10 3.5 0 90 93 250 4.30 4.20 3.80 ±30 2.0 Single Supply, VCM = 0V AV = 1, VO = 2.5VP-P AV = 1, 10% to 90%, VO = 100mV AV = 1, VO = 100mV AV = 1, VO = 100mV 0.01%, AV = 1, ∆VO = 2V IO = 0mA, f = 10MHz AV = 1, VO = 1VRMS, 20Hz to 20kHz 30 160 10 3.5 0 86 90 250 4.30 4.20 3.80 0.007 0.050 0.620 ±30 3.8 2.5 2.0 40 200 0.007 0.050 0.620 3.8 2.5 UNITS µV µV/Mo nA nA nVP-P nV/√Hz nV/√Hz pA/√Hz pA/√Hz MΩ MΩ pF V V dB dB V/mV V V V V V V mA V/µs MHz mA V MHz ns % ns ns Ω % 3 LT1213/LT1214 5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆T IOS IB CMRR PSRR AVOL IS PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) VCM = 0.1V to 3.4V VS = 2.5V to 12.5V VO = 0.05V to 3.7V, RL = 500Ω Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 15mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 15mA MIN 8-Pin DIP Package 14-Pin DIP, SOIC Package Supply Current per Amplifier 3.4 0.1 89 92 200 4.20 4.10 3.84 1.8 LT1213AC TYP MAX 100 175 0.7 1.5 10 90 3.5 – 0.1 105 114 580 4.33 4.25 3.96 0.005 0.036 0.370 2.9 45 190 0.008 0.055 0.530 4.0 LT1213C/LT1214C MIN TYP MAX 150 375 1 3 2 6 10 55 110 230 3.4 3.5 0.1 – 0.1 85 105 89 114 200 580 4.20 4.33 4.10 4.25 3.84 3.96 0.005 0.008 0.036 0.055 0.370 0.530 1.8 2.9 4.0 UNITS µV µV/°C µV/°C nA nA V V dB dB V/mV V V V V V V mA LT1213C/LT1214C MIN TYP MAX 175 500 1 3 2 6 20 75 120 250 3.1 3.2 0.2 0 84 104 88 113 200 510 4.15 4.25 4.00 4.16 3.72 3.89 0.006 0.009 0.037 0.060 0.380 0.550 1.5 2.9 4.0 UNITS µV µV/°C µV/°C nA nA V V dB dB V/mV V V V V V V mA VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5) SYMBOL VOS ∆VOS ∆T IOS IB CMRR PSRR AVOL IS 4 PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) VCM = 0.2V to 3.1V VS = 2.5V to 12.5V VO = 0.05V to 3.7V, RL = 500Ω Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 15mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 15mA Supply Current per Amplifier MIN 8-Pin DIP Package 14-Pin DIP, SOIC Package 3.1 0.2 88 91 200 4.15 4.00 3.72 1.5 LT1213AC TYP MAX 120 200 0.7 1.5 15 100 3.2 0 104 113 510 4.25 4.16 3.89 0.006 0.037 0.380 2.9 50 200 0.009 0.060 0.550 4.0 LT1213/LT1214 5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆T IOS IB CMRR PSRR AVOL IS PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) VCM = 0.4V to 3.1V VS = 2.5V to 12.5V VO = 0.05V to 3.7V, RL = 500Ω Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 15mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 15mA Supply Current per Amplifier MIN 3.1 0.4 87 90 150 4.05 3.90 3.60 1.3 LT1213AM TYP MAX 140 250 0.7 1.5 20 105 3.2 0.2 104 113 300 4.20 4.10 3.80 0.007 0.040 0.400 3.0 MIN 70 210 0.012 0.070 0.750 4.2 LT1213C/LT1213M LT1214C MIN TYP MAX 150 550 5 40 90 190 13.5 13.8 –15.0 – 15.3 86 107 90 116 1200 4000 13.7 13.9 –14.3 –14.5 ±30 ±50 10 12 15 28 2.0 3.4 4.7 128 140 ±1.2 ±2.0 150 1.1 UNITS µV nA nA V V dB dB V/mV V V mA V/µs MHz mA dB V kHz µs 1.3 25 125 3.2 0.2 104 113 300 4.20 4.10 3.80 0.007 0.040 0.400 3.0 100 275 UNITS µV µV/°C nA nA V V dB dB V/mV V V V mV mV mV mA 3.1 0.4 83 87 150 4.05 3.90 3.60 0.012 0.070 0.750 4.2 LT1213M TYP MAX 200 500 1.0 3.0 + –15V ELECTRICAL CHARACTERISTICS VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted. SYMBOL VOS IOS IB PARAMETER Input Offset Voltage Input Offset Current Input Bias Current Input Voltage Range CONDITIONS CMRR PSRR AVOL Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing IO SR GBW IS Maximum Output Current Slew Rate Gain-Bandwidth Product Supply Current per Amplifier Channel Separation Minimum Supply Voltage Full-Power Bandwidth Settling Time VCM = –15V to 13.5V VS = ±2V to ±18V VO = 0V to ±10V, RL = 2k Output High, ISOURCE = 20mA Output Low, ISINK = 20mA (Note 9) AV = – 2 (Note 6) f = 100kHz VO = ±10V, RL = 2k Equal Split Supplies AV = 1, VO = 20VP-P 0.01%, AV = 1, ∆VO = 10V LT1213AC LT1213AM MIN TYP 125 5 70 13.5 13.8 –15.0 – 15.3 90 107 93 116 1200 4000 13.7 13.9 –14.3 –14.5 ±30 ±50 10 12 15 28 2.0 3.4 128 140 ±1.2 150 1.1 MAX 400 30 150 4.7 ±2.0 5 LT1213/LT1214 + –15V ELECTRICAL CHARACTERISTICS VS = ±15V, VCM = 0V, VOUT = 0V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS CMRR PSRR AVOL Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing VCM = –14.9V to 13.4V VS = ±2V to ±18V VO = 0V to ±10V, RL = 2k Output High, ISOURCE = 15mA Output Low, ISINK = 15mA IS Supply Current per Amplifier MIN 8-Pin DIP Package 14-Pin DIP, SOIC Package 13.4 –14.9 89 92 1000 13.8 – 14.4 1.8 LT1213AC TYP MAX 150 425 0.7 1.5 10 90 13.5 –15.1 105 115 4000 14.0 – 14.6 3.7 35 160 5.0 LT1213C/LT1214C MIN TYP MAX 200 650 1 3 2 6 10 45 95 200 13.4 13.5 –14.9 –15.1 85 105 89 115 1000 4000 13.8 14.0 – 14.4 – 14.6 1.8 3.7 5.0 UNITS µV µV/°C µV/°C nA nA V V dB dB V/mV V V mA LT1213C/LT1214C MIN TYP MAX 250 700 1 3 2 6 20 75 105 220 13.1 13.2 –14.8 –15.0 84 104 88 114 1000 4000 13.7 13.9 – 14.4 – 14.6 1.5 3.7 5.1 UNITS µV µV/°C µV/°C nA nA V V dB dB V/mV V V mA LT1213M TYP MAX 300 800 1 3 UNITS µV µV/°C VS = ±15V, VCM = 0V, VOUT = 0V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5) SYMBOL VOS ∆VOS ∆T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS CMRR PSRR AVOL Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing VCM = – 14.8V to 13.1V VS = ±2V to ±18V VO = 0V to ±10V, RL = 2k Output High, ISOURCE = 15mA Output Low, ISINK = 15mA IS Supply Current per Amplifier MIN 8-Pin DIP Package 14-Pin DIP, SOIC Package 13.1 –14.8 88 91 1000 13.7 – 14.4 1.5 LT1213AC TYP MAX 175 450 0.7 1.5 10 95 13.2 –15.0 104 114 4000 13.9 – 14.6 3.7 40 180 5.1 VS = ±15V, VCM = 0V, VOUT = 0V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS CMRR PSRR AVOL Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing VCM = – 14.6V to 13.1V VS = ±2V to ±15V VO = 0V to ±10V, RL = 2k Output High, ISOURCE = 15mA Output Low, ISINK = 15mA IS Supply Current per Amplifier 6 MIN 13.1 –14.6 87 90 800 13.6 –14.2 1.3 LT1213AM TYP MAX 200 500 0.7 1.5 15 100 13.2 –14.8 104 114 1100 13.8 –14.5 4.0 MIN 60 200 5.4 13.1 –14.6 83 87 800 13.6 –14.2 1.3 25 110 13.2 –14.8 104 114 1100 13.8 –14.5 4.0 90 250 5.4 nA nA V V dB dB V/mV V V mA LT1213/LT1214 3.3V ELECTRICAL CHARACTERISTICS VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. (Note 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) IO CONDITIONS Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 20mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 20mA Maximum Output Current MIN 1.8 0 2.60 2.50 2.10 ±30 LT1213AC LT1213AM TYP MAX 75 150 2.1 – 0.3 2.69 2.60 2.22 0.004 0.007 0.033 0.050 0.475 0.620 ±50 LT1213C/LT1213M LT1214C MIN TYP MAX 100 275 1.8 2.1 0 – 0.3 2.60 2.69 2.50 2.60 2.10 2.22 0.004 0.007 0.033 0.050 0.475 0.620 ±30 ±50 UNITS µV V V V V V V V V mA LT1213C/LT1214C MIN TYP MAX 150 375 1.7 1.8 0.1 – 0.1 2.50 2.63 2.40 2.55 2.14 2.26 0.005 0.008 0.037 0.055 0.400 0.530 UNITS µV V V V V V V V V LT1213C/LT1214C MIN TYP MAX 175 500 1.4 1.5 0.2 0 2.45 2.55 2.30 2.46 2.02 2.19 0.006 0.009 0.040 0.060 0.410 0.550 UNITS µV V V V V V V V V LT1213M TYP 200 1.5 0.2 2.50 2.40 2.10 0.007 0.040 0.500 UNITS µV V V V V V V V V VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. (Note 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 15mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 15mA MIN 1.7 0.1 2.50 2.40 2.14 LT1213AC TYP 100 1.8 – 0.1 2.63 2.55 2.26 0.005 0.037 0.400 MAX 175 0.008 0.055 0.530 VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5, 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 15mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 15mA MIN 1.4 0.2 2.45 2.30 2.02 LT1213AC TYP 120 1.5 0 2.55 2.46 2.19 0.006 0.040 0.410 MAX 200 0.009 0.060 0.550 VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted. (Note 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 15mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 15mA MIN 1.4 0.4 2.35 2.20 1.90 LT1213AM TYP MAX 130 250 1.5 0.2 2.50 2.40 2.10 0.007 0.012 0.040 0.070 0.500 0.750 MIN 1.4 0.4 2.35 2.20 1.90 MAX 500 0.012 0.070 0.750 7 LT1213/LT1214 ELECTRICAL CHARACTERISTICS Note 1: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely. Note 2: TJ is calculated from the ambient temperature TA and power dissipation PD according to the following formulas: LT1213MJ8, LT1213AMJ8: TJ = TA + (PD × 100°C/W) LT1213CN8, LT1213ACN8: TJ = TA + (PD × 100°C/W) LT1213CS8: TJ = TA + (PD × 150°C/W) LT1214CN: TJ = TA + (PD × 70°C/W) LT1214CS: TJ = TA + (PD × 100°C/W) Note 3: This parameter is not 100% tested. Note 4: Guaranteed by correlation to 3.3V and ±15V tests. Note 5: The LT1213/LT1214 are not tested and are not quality-assurance sampled at – 40°C and at 85°C. These specifications are guaranteed by design, correlation and/or inference from – 55°C, 0°C, 25°C, 70°C and/or 125°C tests. Note 6: Slew rate is measured between ±8.5V on an output swing of ±10V on ±15V supplies. Note 7: Most LT1213/LT1214 electrical characteristics change very little with supply voltage. See the 5V tables for characteristics not listed in the 3.3V table. Note 8: Guaranteed by correlation to 5V and ±15V tests. Note 9: Guaranteed by correlation to 3.3V tests. U W TYPICAL PERFOR A CE CHARACTERISTICS Distribution of Offset Voltage Drift with Temperature Distribution of Input Offset Voltage 70 Distribution of Input Offset Voltage 70 50 VS = 5V 60 LT1213 J8 PACKAGE LT1213 N8 PACKAGE VS = 5V VS = ±15V LT1213 J8 PACKAGE LT1213 N8 PACKAGE 60 LT1213 J8 PACKAGE LT1213 N8 PACKAGE 40 30 20 PERCENT OF UNITS (%) PERCENT OF UNITS (%) 30 20 10 10 0 –350 –250 –150 –50 50 150 250 INPUT OFFSET VOLTAGE (µV) –1 –2 1 –3 3 0 2 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C) 1213/14 G01 40 PERCENT OF UNITS (%) PERCENT OF UNITS (%) Distribution of Input Offset Voltage 70 VS = 5V LT1213 S8 PACKAGE LT1214 N PACKAGE LT1214 S PACKAGE 40 30 20 700 1213/14 G03 50 50 20 Distribution of Offset Voltage Drift with Temperature 70 VS = 5V 30 1213/14 G02 Distribution of Input Offset Voltage 60 40 0 –700 –500 –300 –100 100 300 500 INPUT OFFSET VOLTAGE (µV) 0 350 50 10 LT1213 S8 PACKAGE LT1214 N PACKAGE LT1214 S PACKAGE VS = ±15V 60 PERCENT OF UNITS (%) PERCENT OF UNITS (%) 40 50 30 20 LT1213 S8 PACKAGE LT1214 N PACKAGE LT1214 S PACKAGE 50 40 30 20 10 10 10 0 –350 –250 –150 –50 50 150 250 INPUT OFFSET VOLTAGE (µV) 0 350 1213/14 G04 8 –2 –4 2 –6 6 0 4 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C) 1213/14 G05 0 –700 –500 –300 –100 100 300 500 INPUT OFFSET VOLTAGE (µV) 700 1213/14 G06 LT1213/LT1214 U W TYPICAL PERFOR A CE CHARACTERISTICS Voltage Gain, Phase vs Frequency Voltage Gain vs Frequency PHASE 60 40 VS = ±15V 20 GAIN 40 VS = 5V 20 VS = 5V CL = 20pF RL = 2k 0 VS = 5V 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) –20 100k Slew Rate vs Temperature 24 TA = 25°C AV = –2 RL = 10k 60 20 40 TA = –55°C 30 20 10 3 5 7 10 20 TOTAL SUPPLY VOLTAGE (V) 1 0 30 40 1213/14 G09 Slew Rate vs Supply Voltage Capacitive Load Handling 80 AV = –2 RL = 10k 14 VS = ±15V 50 TA = 25°C, 125°C TA = 125°C VS = 5V 70 60 10 VS = 5V 8 OVERSHOOT (%) 12 12 TA = 25°C 10 TA = –55°C 8 6 50 40 AV = 1 30 20 6 4 2 –50 –25 25 0 50 75 TEMPERATURE (°C) 4 100 125 0 4 8 12 16 20 24 28 32 TOTAL SUPPLY VOLTAGE (V) 25 OUTPUT SWING (VP-P) AV = 1 2 1 20 15 10 5 10k 100k FREQUENCY (Hz) 1M 1213/14 G13 VS = ±15V 0 100 1k 10k 100k FREQUENCY (Hz) 1000 100 CAPACITIVE LOAD (pF) 1213/14 G12 TOTAL HARMONIC DISTORTION AND NOISE (%) VS = 5V 4 1k 10 Total Harmonic Distortion and Noise vs Frequency 30 5 0 100 36 Undistorted Output Swing vs Frequency, VS = ±15V 3 AV = 10 0 1213/14 G11 Undistorted Output Swing vs Frequency, VS = 5V AV = –1 AV = 5 10 1213/14 G10 OUTPUT SWING (VP-P) TA = 125°C 22 –60 100M 1M 10M FREQUENCY (Hz) TA = 25°C 26 16 SLEW RATE (V/µs) SLEW RATE (V/µs) –40 TA = –55°C 28 1213/14 G08 18 14 –20 VS = ±15V 1213/14 G07 16 20 0 0 –20 60 PHASE SHIFT (DEG) 80 VOLTAGE GAIN (dB) 40 VS = ±15V PHASE MARGIN (DEG) 100 1 30 80 GAIN-BANDWIDTH PRODUCT (MHz) CL = 20pF RL = 2k 120 32 100 60 140 VOLTAGE GAIN (dB) Gain-Bandwidth Product, Phase Margin vs Supply Voltage 1M 1213/14 G14 0.1 VS = 5V VO = 3VP-P RL = 1k 0.01 AV = 10 0.001 0.0001 10 AV = 1 100 1k 10k FREQUENCY (Hz) 100k 1213/14 G15 9 LT1213/LT1214 U W TYPICAL PERFOR A CE CHARACTERISTICS Open-Loop Voltage Gain vs Supply Voltage Positive Output Saturation Voltage vs Temperature Open-Loop Gain, VS = 5V 6k 1.4 5k TA = 25°C 4k 3k 2k SATURATION VOLTAGE, V + – VOUT (V) TA = –55°C INPUT, 5µV/DIV OPEN-LOOP VOLTAGE GAIN (V/mV) RL = 2k RL = 2k RL = 500Ω TA = 125°C 0 1k 1 2 3 OUTPUT (V) 4 VS = 5V 1.2 ISOURCE = 20mA 1.0 ISOURCE = 10mA 0.8 ISOURCE = 1mA 0.6 ISOURCE = 10µA 0.4 1213/14 G17 0 4 0 8 12 16 20 24 28 32 TOTAL SUPPLY VOLTAGE (V) 0.2 –50 –25 36 50 25 75 0 TEMPERATURE (°C) 100 1213/14 G16 1213/14 G18 Negative Output Saturation Voltage vs Temperature Open-Loop Gain, VS = ±15V Voltage Gain vs Load Resistance INPUT, 5µV/DIV OPEN-LOOP VOLTAGE GAIN (V/mV) TA = 25°C VS = ±15V 1k VS = 5V RL = 2k RL = 500Ω 100 –10 0 OUTPUT (V) 10 1213/14 G20 SATURATION VOLTAGE, VOUT – V – (mV) 1000 10k 10 10 100 1k LOAD RESISTANCE (Ω) ISINK = 30mA ISINK = 10mA 100 ISINK = 1mA 10 ISINK = 10µA VS = 5V 1 –50 –25 10k 0 25 50 75 TEMPERATURE (°C) Output Short-Circuit Current vs Temperature Channel Separation vs Frequency 140 110 100 90 80 70 60 50 40 30 10k 100k 1M FREQUENCY (Hz) 10M 1213/14 G22 10 1000 VS = ±15V 60 OUTPUT IMPEDANCE (Ω) 120 OUTPUT SHORT-CIRCUIT CURRENT (mA) VS = ±15V TA = 25°C 125 Output Impedance vs Frequency 70 130 100 1213/14 G21 1213/14 G19 CHANNEL SEPARATION (dB) 125 VS = 5V SOURCING 50 40 30 –50 –25 VS = ±15V SOURCING OR SINKING 50 25 75 0 TEMPERATURE (°C) 100 125 1213/14 G23 100 10 1 AV = 100 0.1 AV = 10 0.01 10k AV = 1 100k 1M FREQUENCY (Hz) 10M 1213/14 G24 LT1213/LT1214 U W TYPICAL PERFOR A CE CHARACTERISTICS 5V Large-Signal Response 5V Large-Signal Response 5V Small-Signal Response 3V 0V 0V 20mV/DIV 3V 200ns/DIV 50ns/DIV VS = 5V AV = 1 VS = 5V AV = 1 1213/14 G25 1213/14 G26 20mV/DIV 10V 10V 0V 0V –10V –10V 50ns/DIV 1µs/DIV VS = ±15V AV = 1 1213/14 G28 VS = ±15V AV = –1 RF = RG = 1k 1213/14 G29 1µs/DIV 1213/14 G30 Settling Time to 0.01% vs Output Step ±15V Settling 5V Settling 1213/14 G27 ±15V Large-Signal Response ±15V Large-Signal Response ±15V Small-Signal Response VS = ±15V AV = 1 200ns/DIV VS = 5V AV = –1 RF = RG = 1k CF = 20pF 10 8 2V/DIV 500mV/DIV 1mV/DIV 250µV/DIV 100ns/DIV VS = 5V AV = 1 1213/14 G31 VS = ±15V AV = –1 OUTPUT STEP (V) 6 VS = ±15V INVERTING 2 0 –2 –4 INVERTING –6 200ns/DIV –8 1213/14 G32 NONINVERTING 4 NONINVERTING –10 300 400 500 600 700 800 900 1000 1100 SETTLING TIME (ns) 1213/14 G33 11 LT1213/LT1214 U W TYPICAL PERFOR A CE CHARACTERISTICS Supply Current vs Supply Votage Supply Current vs Temperature TA = 25°C 2 TA = –55°C 1 0 1 0 2 3 4 SUPPLY VOLTAGE (V) 2 3.8 VS = ±15V 3.4 3.0 VS = 5V 2.6 2.2 1.8 –50 –25 5 CHANGE IN OFFSET VOLTAGE (µV) SUPPLY CURRENT PER AMPLIFIER (mA) 25 0 50 75 TEMPERATURE (°C) 110 20 60 80 40 TIME AFTER POWER-UP (SEC) 0 100 IOS –IB +IB 80 100 1213/14 G36 Common-Mode Range vs Temperature V+ –40 COMMON-MODE RANGE (V) INPUT BIAS CURRENT (nA) INPUT BIAS CURRENT (nA) VS = 5V RL = ∞ 2 TYPICAL AMPLIFIERS VS = 5V –20 105 85 –1 –2 125 0 VS = 5V 90 0 Input Bias Current vs Common-Mode Voltage Input Bias Current vs Temperature 95 1 1213/14 G35 1213/14 G34 TA = 25°C –60 TA = 125°C –80 –100 TA = –55°C –120 –140 –160 V + –1 V + –2 V – +1 V– –180 75 –50 –25 50 25 75 0 TEMPERATURE (°C) 100 –200 125 V – –1 0 2 3 1 COMMON-MODE VOLTAGE (V) –1 Input Noise Current, Noise Voltage Density vs Frequency 2.0 1.6 14 1.4 12 1.2 VOLTAGE NOISE 10 1.0 8 0.8 6 0.6 4 0.4 CURRENT NOISE 2 10 100 1k 10k FREQUENCY (Hz) 0.2 0 100k 1213/14 G40 12 100 130 VS = 5V 110 100 90 80 70 60 50 40 30 20 10k 125 Input Referred Power Supply Rejection Ratio vs Frequency 120 COMMON-MODE REJECTION RATIO (dB) 16 1.8 INPUT NOISE CURRENT DENSITY (pA/√Hz) VS = ±15V TA = 25°C RS = 0Ω 50 25 75 0 TEMPERATURE (°C) 1213/14 G39 Common-Mode Rejection Ratio vs Frequency 20 18 –50 –25 4 1213/14 G38 1213/14 G37 INPUT NOISE VOLTAGE DENSITY (nV/√Hz) 100 POWER SUPPLY REJECTION RATIO (dB) SUPPLY CURRENT PER AMPLIFIER (mA) TA = 125°C 3 0 Warm-Up Drift vs Time 4.2 4 110 100 90 10M 1213/14 G41 POSITIVE SUPPLY 80 70 60 50 NEGATIVE SUPPLY 40 30 100k 1M FREQUENCY (Hz) VS = ±15V AV = 100 120 1k 10k 100k 1M FREQUENCY (Hz) 10M 1213/14 G42 LT1213/LT1214 U W U UO APPLICATI S I FOR ATIO Supply Voltage The LT1213/LT1214 op amps are fully functional and all internal bias circuits are in regulation with 2.2V of supply. The amplifiers will continue to function with as little as 1.5V, although the input common-mode range and the phase margin are about gone. The minimum operating supply voltage is guaranteed by the PSRR tests which are done with the input common mode equal to 500mV and a minimum supply voltage of 2.5V. The LT1213/LT1214 are guaranteed over the full – 55°C to 125°C range with a minimum supply voltage of 2.5V. The positive supply pin of the LT1213/LT1214 should be bypassed with a small capacitor (about 0.01µF) within an inch of the pin. When driving heavy loads and for good settling time, an additional 4.7µF capacitor should be used. When using split supplies, the same is true for the negative supply pin. Power Dissipation The LT1213/LT1214 amplifiers combine high speed and large output current drive into very small packages. Because these amplifiers work over a very wide supply range, it is possible to exceed the maximum junction temperature under certain conditions. To insure that the LT1213/ LT1214 are used properly, calculate the worst case power dissipation, define the maximum ambient temperature, select the appropriate package and then calculate the maximum junction temperature. The worst case amplifier power dissipation is the total of the quiescent current times the total power supply voltage plus the power in the IC due to the load. The quiescent supply current of the LT1213/LT1214 has a positive temperature coefficient. The maximum supply current of each amplifier at 125°C is given by the following formula: ISMAX = 4.2 + 0.048 × (VS – 5) in mA VS is the total supply voltage. The power in the IC due to the load is a function of the output voltage, the supply voltage and load resistance. The worst case occurs when the output voltage is at half supply, if it can go that far, or its maximum value if it cannot reach half supply. For example, calculate the worst case power dissipation while operating on ±15V supplies and driving a 500Ω load. ISMAX = 4.2 + 0.048 × (30 – 5) = 5.4mA PDMAX = 2 × VS × ISMAX + (VS – VOMAX) × VOMAX/RL PDMAX = 2 × 15V × 5.4mA + (15V – 7.5V) × 7.5V/500 = 0.162 + 0.113 = 0.275 Watt per Amp If this is the dual LT1213, the total power in the package is twice that, or 0.550W. Now calculate how much the die temperature will rise above the ambient. The total power dissipation times the thermal resistance of the package gives the amount of temperature rise. For this example, in the SO-8 surface mount package, the thermal resistance is 150°C/W junction-to-ambient in still air. Temperature Rise = PDMAX × θJA = 0.550W × 150°C/W = 82.5°C The maximum junction temperature allowed in the plastic package is 150°C. Therefore the maximum ambient allowed is the maximum junction temperature less the temperature rise. Maximum Ambient = 150°C – 82.5°C = 67.5°C That means the SO-8 dual can be operated at or below 67.5°C on ±15V supplies with a 500Ω load. As a guideline to help in the selection of the LT1213/ LT1214, the following table describes the maximum supply voltage that can be used with each part based on the following assumptions: 1. The maximum ambient is 70°C or 125°C depending on the part rating. 2. The load is 500Ω including the feedback resistors. 3. The output can be anywhere between the supplies. PART LT1213MJ8 LT1213CN8 LT1213CS8 LT1214CN LT1214CS MAX SUPPLIES 18.0V or ±14.1V 23.7V or ±18.0V 18.7V or ±14.7V 19.5V or ±15.4V 15.8V or ±12.2V MAX POWER AT MAX TA 500mW 800mW 533mW 1143mW 800mW 13 LT1213/LT1214 U W U UO APPLICATI S I FOR ATIO Inputs Typically at room temperature, the inputs of the LT1213/ LT1214 can common mode 400mV below ground (V –) and to within 1.2V of the positive supply with the amplifier still functional. However, the input bias current and offset voltage will shift as shown in the characteristic curves. For full precision performance, the common-mode range should be limited between ground (V –) and 1.5V below the positive supply. When either of the inputs is taken below ground (V –) by more than about 700mV, that input current will increase dramatically. The current is limited by internal 100Ω resistors between the input pins and diodes to each supply. The output will remain low (no phase reversal) for inputs 1.3V below ground (V –). If the output does not have to sink current, such as in a single supply system with a 1k load to ground, there is no phase reversal for inputs up to 8V below ground. There are no clamps across the inputs of the LT1213/ LT1214 and therefore each input can be forced to any voltage between the supplies. The input current will remain constant at about 100nA over most of this range. When an input gets closer than 1.5V to the positive supply, that input current will gradually decrease to zero until the input goes above the supply, then it will increase due to the previously mentioned diodes. If the inverting input is held more positive than the noninverting input by 200mV or more, while at the same time the noninverting input is within 300mV of ground (V –), then the supply current will increase by 2mA and the noninverting input current will increase to about 10µA. This should be kept in mind in comparator applications where the inverting input stays above ground (V –) and the noninverting input is at or near ground (V –). Output The output of the LT1213/LT1214 will swing to within 0.61V of the positive supply with no load. The open-loop output resistance, when the output is driven hard into the 14 positive rail, is about 100Ω as the output starts to source current; this resistance drops to about 20Ω as the current increases. Therefore when the output sources 1mA, the output will swing to within 0.7V of the positive supply. While sourcing 30mA, it is within 1.25V of the positive supply. The output of the LT1213/LT1214 will swing to within 4mV of the negative supply while sinking zero current. Thus, in a typical single supply application with the load going to ground, the output will go to within 4mV of ground. The open-loop output resistance when the output is driven hard into the negative rail is about 29Ω at low currents and reduces to about 23Ω at high currents. Therefore when the output sinks 1mA, the output is about 33mV above the negative supply and while sinking 30mA, it is about 690mV above it. The output of the LT1213/LT1214 has reverse-biased diodes to each supply. If the output is forced beyond either supply, unlimited currents will flow. If the current is transient and limited to several hundred mA, no damage will occur. Feedback Components Because the input currents of the LT1213/LT1214 are less than 200nA, it is possible to use high value feedback resistors to set the gain. However, care must be taken to insure that the pole that is formed by the feedback resistors and the input capacitance does not degrade the stability of the amplifier. For example, if a single supply, noninverting gain of two is set with two 10k resistors, the LT1213/LT1214 will probably oscillate. This is because the amplifier goes open-loop at 6MHz (6dB of gain) and has 45° of phase margin. The feedback resistors and the 10pF input capacitance generate a pole at 3MHz that introduces 63° of phase shift at 6MHz! The solution is simple, lower the values of the resistors or add a feedback capacitor of 10pF or more. LT1213/LT1214 W U U UO APPLICATI S I FOR ATIO following photos. These amplifiers are unity-gain stable op amps and not fast comparators, therefore, the logic being driven may oscillate due to the long transition time. The output can be speeded up by adding 20mV or more of hysteresis (positive feedback), but the offset is then a function of the input direction. Comparator Applications Sometimes it is desirable to use an op amp as a comparator. When operating the LT1213/LT1214 on a single 3.3V or 5V supply, the output interfaces directly with most TTL and CMOS logic. The response time of the LT1213/LT1214 is a strong function of the amount of input overdrive as shown in the LT1213 Comparator Response (+) 20mV, 10mV, 5mV, 2mV Overdrives LT1213 Comparator Response (–) 20mV, 10mV, 5mV, 2mV Overdrives 4 OUTPUT (V) OUTPUT (V) 4 2 2 0 INPUT (mV) INPUT (mV) 0 100 0 100 0 5µs/DIV 5µs/DIV VS = 5V RL = ∞ VS = 5V RL = ∞ 1213/14 AI01 1213/14 AI02 W W SI PLIFIED SCHE ATIC V+ I1 I4 I3 I2 I6 I5 Q3 Q13 BIAS CM Q14 Q4 –IN Q15 +IN Q1 Q11 Q2 OUT RF Q7 Q12 CF Q10 Q8 Q5 Q9 Q6 Q16 I7 CO I8 CI V– 1213/14 SS Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 15 LT1213/LT1214 UO TYPICAL APPLICATI S Instrumentation Amplifier with Guard/Shield Driver and Input Bias Current Cancellation V+ 0.1µF + 1M GUARD – 1/4 LT1214 A 10k** 1k INPUT BIAS CURRENT vs COMMON-MODE VOLTAGE RF 1020Ω 100 RG 113Ω + + 1/4 LT1214 B 200Ω INPUTS 5000pF 1/4 LT1214 C OUTPUT – – 1M* – RG 113Ω 1M 80 60 40 20 22pF GUARD – 1/4 LT1214 D RF 1020Ω 0 0.01 1k 0.1 1 COMMON-MODE VOLTAGE (V) 10k 1213/14 TA03a ( ) R GAIN = 10 1 + F = 100 RG * TRIM FOR INPUT BIAS CURRENT ** TRIM FOR CMRR Ground Current Sense Amplifier Difference Amplifier with Wide Input Common-Mode Range V+ 3.3V V+ 5V V REF 0.1µF LOAD 10k 1/2 LT1213 VO = 1V/A – 0.05Ω 1910Ω 750Ω 1.2V + IIN 10 1213/14 TA03b + COMMON MODE RIN = 3G DIFFERENTIAL RIN = 2M BANDWIDTH = 2MHz t r = 170ms EACH INPUT BIAS CURRENT (mA) V + = 5V + OFFSET ≤ 5.5mA BANDWIDTH = 500kHz t r = 1µs LT1004-1.2 1k 10k + +IN 10k 0.1µF 1/2 LT1213 1k V OUT – –IN 10k 100Ω 100pF 1213/14 TA04 GAIN = 1; VOUT = VREF FOR VIN(DIF) = 0 ±10V COMMON-MODE RANGE BANDWIDTH = 3MHz 1213/14 TA05 U PACKAGE DESCRIPTIO For package description please see other Linear Technology data sheets or databooks. 16 Linear Technology Corporation LTC/GP 0793 10K REV 0 1630 McCarthy Blvd., Milpitas, CA 95035-7487 (408) 432-1900 ● FAX: (408) 434-0507 ● TELEX: 499-3977 LINEAR TECHNOLOGY CORPORATION 1993