LTC2054/LTC2055 Single/Dual Micropower Zero-Drift Operational Amplifiers DESCRIPTIO U FEATURES ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ The LTC®2054/LTC2055 are low power, low noise single/ dual zero-drift operational amplifiers available in the SOT-23 (ThinSOTTM) and MS8 packages. For space limited applications, the LTC2055 is also available in a 3mm × 3mm × 0.8mm dual fine pitch leadless package (DFN). They operate from a single 2.7V minimum supply and support ±5V applications. The current consumption is typically 150µA for the LTC2054 and 130µA/amp for the LTC2055. Supply Current 150µA (Max per Amplifier) Guaranteed Over Temperature Offset Voltage 3µV (Max) Offset Voltage Drift 30nV/°C (Max) Common Mode Input Range from V– to V+ –0.5V Output Swings Rail-to-Rail Voltage Gain: 140dB (Typ) PSRR and CMRR: 130dB (Typ) Input Bias Current: 1pA (Typ, 25°C) Noise: 1.6µVP-P (0.01Hz to 10Hz Typ) Supply Operation: 2.7V to 6V (LTC2054/LTC2055) 2.7V to ±5.5V (LTC2054HV/LTC2055HV) Low Profile (1mm) SOT-23, MS8 and 3mm × 3mm × 0.8mm DFN Packages The LTC2054/LTC2055, despite their miniature size, feature uncompromising DC performance. The typical input offset voltage and offset drift are 0.5µV and 25nV/°C. The almost zero DC offset and drift are supported with a power supply rejection ratio (PSRR) and common mode rejection ratio (CMRR) of more than 130dB. U APPLICATIO S ■ ■ ■ ■ ■ ■ ■ Thermocouple Amplifiers Electronic Scales Medical Instrumentation Strain Gauge Amplifiers High Resolution Data Acquisition DC Accurate RC Active Filters Low Side Current Sense Battery-Powered Systems , LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation U ■ The input common mode voltage ranges from the negative supply up to typically 0.5V from the positive supply. The open-loop gain is typically 140dB. The LTC2054/LTC2055 also feature a 1.6µVP-P DC to 10Hz noise and a 500kHz gain-bandwidth product. TYPICAL APPLICATIO Supply Current (per Amplifier) –48V Low Side Precision Current Sense 250 225 100Ω 1% 0.01µF – 39k LTC2054 + 0.1µF – LTC2054 + VOUT = 100VSENSE 175 LTC2054 150 125 LTC2055 100 75 50 0.1µF 25 0 –40 0.003Ω 1% 3W – 200 5V 100Ω BZX84C5V1 VZ = 5.1 –48V SUPPLY 10k 1% SUPPLY CURRENT (µA) Q1 ZETEX ZVN3320F + ISENSE, VSENSE –48V LOAD 20545 TA01 –15 5 25 45 70 85 125 TEMPERATURE (°C) 20545 TA01b sn20545 20545fas 1 LTC2054/LTC2055 W W W AXI U U ABSOLUTE RATI GS (Note 1) Total Supply Voltage (V + to V –) LTC2054/LTC2055 .................................................. 7V LTC2054HV/LTC2055HV ....................................... 12V Input Voltage ........................ (V + + 0.3V) to (V – – 0.3V) Input Current ...................................................... ±10mA Output Short-Circuit Duration ......................... Indefinite Operating Temperature Range ............. – 40°C to 125°C Specified Temperature Range (Note 3) – 40°C to 125°C Storage Temperature Range ................ – 65°C to 150°C DD Package ...................................... – 65°C to 125°C Lead Temperature (Soldering, 10 sec)................. 300°C U U W PACKAGE/ORDER I FOR ATIO TOP VIEW TOP VIEW OUT 1 5 V+ V– 2 +IN 3 OUT A 1 8 V+ –IN A 2 7 OUT B +IN A 3 6 –IN B V– 4 5 +IN B 4 –IN S5 PACKAGE 5-LEAD PLASTIC SOT-23 TOP VIEW OUT A –IN A +IN A V– 8 7 6 5 V+ OUT B –IN B +IN B MS8 PACKAGE 8-LEAD PLASTIC MSOP DD PACKAGE 8-LEAD (3mm × 3mm) PLASTIC DFN UNDERSIDE METAL INTERNALLY CONNECTED TO V – (PCB CONNECTION OPTIONAL) TJMAX = 150°C, θJA = 250°C/W 1 2 3 4 TJMAX = 150°C, θJA = 200°C/W TJMAX = 125°C, θJA = 160°C/W, NOTE 5 ORDER PART NUMBER* S5 PART MARKING ORDER PART NUMBER* DD PART MARKING ORDER PART NUMBER* MS8 PART MARKING LTC2054CS5 LTC2054HVCS5 LTC2054IS5 LTC2054HVIS5 LTC2054HS5 LTC2054HVHS5 LTAGB LTAGD LTAGB LTAGD LTAGB LTAGD LTC2055CDD LTC2055HVCDD LTC2055IDD LTC2055HVIDD LTC2055HDD LTC2055HVHDD LBCW LBCX LBCW LBCX LBCW LBCX LTC2055CMS8 LTC2055HVCMS8 LTC2055IMS8 LTC2055HVIMS8 LTC2055HMS8 LTC2055HVHMS8 LTBCR LTBCT LTBCR LTBCT LTBCR LTBCT *The temperature grade (C, I or H) is indicated on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges. ELECTRICAL CHARACTERISTICS (LTC2054/LTC2055, LTC2054HV/LTC2055HV) The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 5V unless otherwise noted. (Note 3) SYMBOL IS PARAMETER Supply Current (LTC2054) IS Supply Current Per Amplifier (LTC2055) Input Offset Voltage Average Input Offset Drift Long-Term Offset Drift Input Bias Current (Note 4) VOS ∆VOS/∆T IB CONDITIONS No Load, VS = 3V No Load, VS = 5V No Load, VS = 3V No Load, VS = 5V (Note 2) (Note 2) VS = 3V VS = 3V VS = 5V VS = 5V ● ● ● ● ● ● ● LTC2054C/LTC2055C LTC2054I/LTC2055I MIN TYP MAX 140 175 150 175 130 150 135 150 ±0.5 ±3 0.02 ±0.03 50 ±1 ±150 ±1 ±150 LTC2054H/LTC2055H MIN TYP MAX UNITS 140 180 µA 150 180 µA 130 155 µA 135 155 µA ±0.5 ±3 µV 0.02 ±0.05 µV/°C 50 nV/√mo ±1 pA ±3000 pA ±1 pA ±3000 pA sn20545 20545fas 2 LTC2054/LTC2055 ELECTRICAL CHARACTERISTICS (LTC2054/LTC2055, LTC2054HV/LTC2055HV) The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 5V unless otherwise noted. (Note 3) SYMBOL IOS PARAMETER Input Offset Current (Note 4) PSRR Power Supply Rejection Ratio CONDITIONS VS = 3V VS = 3V VS = 5V VS = 5V RS = 100Ω, DC to 1Hz RS = 100Ω, DC to 10Hz VCM = GND to V + – 0.7V VS = 3V VCM = GND to V + – 0.7V VS = 5V VS = 2.7V to 6V AVOL Large-Signal Voltage Gain RL = 100k, VS = 3V, VOUT = VS/2 en Input Noise Voltage CMRR Common Mode Rejection Ratio RL = 100k, VS = 5V, VOUT = VS/2 VOUT VOUT SR GBW fS Output Voltage Swing High Output Voltage Swing Low Slew Rate Gain Bandwidth Product Internal Sampling Frequency RL = 5k to GND, VS = 3V RL = 5k to GND, VS = 3V RL = 5k to GND, VS = 5V RL = 5k to GND, VS = 5V RL = 100k to GND, VS = 3V RL = 100k to GND, VS = 3V RL = 100k to GND, VS = 5V RL = 100k to GND, VS = 5V RL = 5k to GND, VS = 3V RL = 5k to GND, VS = 3V RL = 5k to GND, VS = 5V RL = 5k to GND, VS = 5V RL = 100k to GND, VS = 3V RL = 100k to GND, VS = 3V RL = 100k to GND, VS = 5V RL = 100k to GND, VS = 5V ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● LTC2054C/LTC2055C LTC2054I/LTC2055I MIN TYP MAX ±2 ±300 ±2 ±300 0.6 1.6 115 130 110 120 130 115 120 130 115 120 135 115 125 140 120 2.87 2.89 2.85 4.80 4.83 4.75 2.98 2.99 2.975 4.985 4.99 4.980 2 8 10 2 8 10 2 8 10 2 8 10 0.5 500 1 LTC2054H/LTC2055H MIN TYP MAX ±2 ±700 ±2 ±700 0.6 1.6 115 130 110 120 130 115 120 130 115 120 135 115 125 140 120 2.87 2.89 2.84 4.80 4.83 4.70 2.98 2.99 2.97 4.985 4.99 4.970 3 8 10 3 8 10 3 8 10 3 8 10 0.5 500 1 UNITS pA pA pA pA µVP-P µVP-P dB dB dB dB dB dB dB dB dB dB V V V V V V V V mV mV mV mV mV mV mV mV V/µs kHz kHz sn20545 20545fas 3 LTC2054/LTC2055 ELECTRICAL CHARACTERISTICS (LTC2054HV/LTC2055HV) The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±5V unless otherwise noted. (Note 3) SYMBOL IS IS VOS ∆VOS/∆T IB PARAMETER Supply Current Supply Current (Per Amplifier) Input Offset Voltage Average Input Offset Drift Long-Term Offset Drift Input Bias Current (Note 4) IOS Input Offset Current (Note 4) en Input Noise Voltage CMRR Common Mode Rejection Ratio CONDITIONS No Load (LTC2054) No Load (LTC2055) (Note 2) (Note 2) ● ● ● ● ● RS = 100Ω, DC to 1Hz RS = 100Ω, DC to 10Hz VCM = GND to V + – 0.9 PSRR Power Supply Rejection Ratio VS = 2.7V to 11V AVOL Large-Signal Voltage Gain RL = 100k, VOUT = GND VOUT Maximum Output Voltage Swing RL = 5k to GND RL = 5k to GND RL = 100k to GND RL = 100k to GND SR GBW fS Slew Rate Gain Bandwidth Product Internal Sampling Frequency Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired. Note 2: These parameters are guaranteed by design. Thermocouple effects preclude measurements of these voltage levels during automated testing. Note 3: All versions of the LTC2054/LTC2055 are designed, characterized and expected to meet the extended temperature limits of – 40°C and 125°C. The LTC2054C/LTC2055C/LTC2054HVC/LTC2055HVC are guaranteed to meet the temperature limits of 0°C and 70°C. The LTC2054I/ LTC2055I/LTC2054HVI/LTC2055HVI are guaranteed to meet temperature ● ● ● ● ● LTC2054HVC/LTC2055HVC LTC2054HVI/LTC2055HVI MIN TYP MAX 175 210 150 180 ±0.5 ±5 0.025 ±0.03 50 ±3 ±150 ±6 ±300 0.6 1.6 120 130 115 120 130 115 125 140 120 ±4.78 ±4.82 ±4.75 ±4.98 ±4.99 ±4.975 0.5 500 1 LTC2054HVH/LTC2055HVH MIN TYP MAX UNITS 175 215 µA 150 185 µA ±0.5 ±5 µV 0.025 ±0.05 µV/°C 50 nV/√mo ±3 pA ±3000 pA ±6 pA ±700 pA 0.6 µVP-P 1.6 µVP-P 120 130 dB 115 dB 120 130 dB 115 dB 125 140 dB 120 dB ±4.78 ±4.82 V ±4.70 V ±4.98 ±4.99 V ±4.97 V 0.5 V/µs 500 kHz 1 kHz limits of – 40°C and 85°C. The LTC2054H/LTC2055H and LTC2054HVH/ LTC2055HVH are guaranteed to meet the temperature limits of – 40°C and 125°C. Note 4: Limit is determined by high speed automated test capability. See Typical Chacteristic curves for actual typical performance. For tighter specifications, please consult Linear Technology Marketing. Note 5: The θJA specified for the DD package is with minimal PCB heat spreading metal. Using expanded metal area on all layers of a board reduces this value. sn20545 20545fas 4 LTC2054/LTC2055 U W TYPICAL PERFOR A CE CHARACTERISTICS Common Mode Rejection Ratio vs Frequency DC CMRR vs Common Mode Input Range 140 PSRR vs Frequency 140 140 VS = 3V OR 5V VCM = 0.5VP-P 120 VS = ±2.5V 120 120 100 100 80 60 80 80 PSRR (dB) CMRR (dB) CMRR (dB) 100 VS = 5V VS = 3V 60 40 60 –PSRR 40 20 40 +PSRR 0 20 20 0 0 10k 100 1k FREQUENCY (Hz) 100k –40 0 1 2 3 4 VS = ±5V V + – 0.5 VS = ±5V V+ 2 VS = ±1.5V 1 – 1.0 V + – 1.5 0 VS = ±1.5V –1 OUTPUT SWING (V) OUTPUT SWING (V) V+ VS = ±2.5V VS = ±1.5V –2 VS = ±2.5V –3 –4 –5 VS = ±5V RL TO GND 2 4 LOAD RESISTANCE (kΩ) 0 V – + 1.5 V – + 1.0 VS = ±5V VS = ±2.5V V – + 0.5 VS = ±1.5V V– 1 2 4 5 3 0 SOURCING OR SINKING LOAD CURRENT (mA) 6 PHASE –60 VS = ±2.5V VIN = 0.5VP-P –80 RL = 10kΩ 80 –100 –120 GAIN 40 –140 20 –160 0 –20 –40 10 PHASE (DEG) 60 100 1k 10k 100k FREQUENCY (Hz) 0 –2 –4 –6 –10 1000 1000 100 10 VS = 10V 20545 G07 7 8 9 10 11 4 5 6 TOTAL SUPPLY VOLTAGE, V + TO V – (V) VSUPPLY = ±2.5V TA = 125°C 100 TA = 85°C 10 TA = 70°C VS = 5V 1 1 –220 10M 3 Input Bias Current vs Input Common Mode Voltage 10000 TA = 25°C VS = 3V –200 1M ISOURCE VOUT = V – –8 10000 –180 CL = 30pF CL = 50pF CL = 100pF ISINK VOUT = V + 2 20545 G14 BIAS CURRENT (pA) 100 4 Input Bias Current vs Temperature BIAS CURRENT (pA) 120 6 20545 G06 20545 G04 Gain/Phase vs Frequency 1M Short-Circuit Output Current vs Supply Voltage VS = ±2.5V 3 1k 10k 100k FREQUENCY (Hz) 20545 G03 Output Swing vs Load Current 4 100 20545 G02 Output Voltage Swing vs Load Resistance 5 10 VCM (V) 20545 G01 GAIN (dB) 5 SHORT-CIRCUIT OUTPUT CURRENT, IOUT (mA) 10 1 –20 TA = 25°C 0.1 –40 –15 70 25 45 5 TEMPERATURE (°C) 85 TA = –40°C 0.1 125 20545 G08 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 COMMON MODE VOLTAGE (V) 20545 G09 sn20545 20545fas 5 LTC2054/LTC2055 U W TYPICAL PERFOR A CE CHARACTERISTICS Output Overload Recovery Output Overload Recovery INPUT (V) Transient Response OUTPUT (V) 2.5 0 –1 AV = 1 10µs/DIV RL = 100k CL = 50pF VS = ±2.5V VIN = 10kHz 2VP-P AV = –100 RL = 100k VS = ±2.5V –40°C ≤ TA = 125°C 9 8 7 6 5 4 3 20545 G11 250 250 225 225 200 200 175 150 125 100 75 125 75 1 25 0 0 0 9 10 11 1 2 3 4 5 6 7 8 TOTAL SUPPLY VOLTAGE (V) 9 LTC2055 Supply Current (Per Amplifier) vs Temperature 250 225 225 200 200 SUPPLY CURRENT (µA) 250 125 100 75 175 150 125 100 50 25 25 0 1 2 3 4 5 6 7 8 TOTAL SUPPLY VOLTAGE (V) 9 10 20545 G17 VS = ±5V VS = 5V VS = 3V 75 50 0 –15 70 25 45 5 TEMPERATURE (°C) 0 –40 –15 70 25 45 5 TEMPERATURE (°C) 85 125 20545 G18 85 125 20545 G16 INPUT REFFERED VOLTAGE NOISE DENSITY (nV/√Hz) LTC2055 Supply Current (Per Amplifier) vs Supply Voltage 150 0 –40 10 20545 G15 20545 G13 175 VS = 3V 100 50 3 4 5 6 7 8 SUPPLY VOLTAGE (V) VS = 5V 150 25 2 20545 G12 VS = ±5V 175 2 1 2ms/DIV LTC2054 Supply Current vs Temperature 50 0 SUPPLY CURRENT (µA) AV = –100 RL = 100k VS = ±2.5V 2ms/DIV LTC2054 Supply Current vs Supply Voltage SUPPLY CURRENT (µA) COMMON MODE RANGE (V) 10 –2.5 –0.2 Common Mode Input Range vs Supply Voltage 11 0 0 20545 G10 0 OUTPUT (V) INPUT (V) 0 SUPPLY CURRENT (µA) OUTPUT (V) 1 0.2 Noise Spectrum 100 90 80 70 60 50 40 30 20 10 AV = 100 VS = ±2.5V 0 100 10 1k FREQUENCY (Hz) 10k 20545 G19 sn20545 20545fas 6 LTC2054/LTC2055 TEST CIRCUITS Electrical Characteristics Test Circuit 100k OUTPUT V+ 10Ω – LTC2054/55 + RL V– 2054 TC01 DC-10Hz Noise Test Circuit 100k 10Ω – 475k 0.01µF 158k 316k 475k – LTC2054/55 + 0.1µF 0.01µF LT1012 TO X-Y RECORDER + FOR 1Hz NOISE BW INCREASE ALL THE CAPACITORS BY A FACTOR OF 10. 2054 TC02 sn20545 20545fas 7 LTC2054/LTC2055 U W U U APPLICATIO S I FOR ATIO Clock Feedthrough, Input Bias Current The LTC2054 and LTC2055 use auto-zeroing circuitry to achieve an almost zero DC offset over temperature, common mode voltage, and power supply voltage. The frequency of the clock used for auto-zeroing is typically 1.0kHz. The term clock feedthrough is broadly used to indicate visibility of this clock frequency in the op amp output spectrum. There are typically two types of clock feedthrough in auto zeroed op amps like the LTC2054/ LTC2055. The first form of clock feedthrough is caused by the settling of the internal sampling capacitor and is input referred; that is, it is multiplied by the closed loop gain of the op amp. This form of clock feedthrough is independent of the magnitude of the input source resistance or the magnitude of the gain setting resistors. The LTC2054/ LTC2055 have a residue clock feedthrough of less then 0.2µVRMS input referred at 1.0kHz. The second form of clock feedthrough is caused by the small amount of charge injection occurring during the sampling and holding of the op amp’s input offset voltage. The current spikes are multiplied by the impedance seen at the input terminals of the op amp, appearing at the output multiplied by the closed loop gain of the op amp. To reduce this form of clock feedthrough, use smaller valued gain setting resistors and minimize the source resistance at the input. If the resistance seen at the inputs is less than 10k, this form of clock feedthrough is less than the amount of residue clock feedthrough from the first form described above. Placing a capacitor across the feedback resistor reduces either form of clock feedthrough by limiting the bandwidth of the closed loop gain. Input bias current is defined as the DC current into the input pins of the op amp. The same current spikes that LTC2054/LTC2055 DC to 1Hz Noise 0.4µV 2054 G16 10 SEC LTC2054/LTC2055 DC to 10Hz Noise 1µV 2054 G17 1 SEC sn20545 20545fas 8 LTC2054/LTC2055 U W U U APPLICATIO S I FOR ATIO Voltage Follower with Input Exceeding the Common Mode Range cause the second form of clock feedthrough described above, when averaged, dominate the DC input bias current of the op amp below 70°C. 2.5V At temperatures above 70°C, the leakage of the ESD protection diodes on the inputs increases the input bias currents of both inputs in the positive direction, while the current caused by the charge injection stays relatively constant. At elevated temperatures (above 70°C) the leakage current begins to dominate and both the negative and positive pins’ input bias currents are in the positive direction (into the pins). – LTC2054/55 1k OUTPUT + 100k ±3.75VP SINE WAVE –2.5V 2054 TA09 The LTC2054/LTC2055 input stage is designed to allow nearly rail-to-rail input common mode signals. In addition, signals that extend beyond the allowed input common mode range do not cause output phase inversion. INPUT VIN = 2V/DIV Extended Common Mode Range 0V OUTPUT VOUT = 2V/DIV LTC2054/LTC2055 Extended Common Mode Range 0V AV = 1 500µs/DIV RL = 100k VS = ±2.5V VIN = 500Hz 7.5VP-P 2054 G19 U TYPICAL APPLICATIO S Simple Differential Bridge Amplifier 5V 5V 0.1µF 1µF LT1790-2.5 499k 4 10kΩ BRIDGE – 5 LTC2054HV 3 0.1µF + 1 AV = 100 2 499k – 5V 20545 TA02 sn20545 20545fas 9 LTC2054/LTC2055 U TYPICAL APPLICATIO S Ground Referred Precision Current Sources LT1634-1.25 10k 4 5 – 1 LTC2054 3 + VOUT – 1.25V IOUT = ——— RSET 0 ≤ IOUT ≤ 100µA (V – ) + 1.5V ≤ VOUT ≤ –1V V+ + 3 2 RSET RSET 5 + 1 LTC2054 10k 4 – 2 1.25V IOUT = ——— RSET + V– VOUT – 0 ≤ IOUT ≤ 100µA 0.2V ≤ VOUT ≤ (V+) – 1.5V LT1634-1.25 20545 TA03 Instrumentation Amplifier with 100V Common Mode Input Voltage 1k 1M V+ 1M 2 + VIN 1M 3 – 8 – 1/2 LTC2055HV + 1 1k 6 4 5 V– 1k – 1/2 LTC2055HV 7 VOUT + OUTPUT OFFSET ≤ 3mV FOR 0.1% RESISTORS, CMRR = 54dB 2054 TA04 Gain of 1001 Single Supply Instrumentation Amplifier C1 0.1µF R2 1k R1 1M –VIN R4 1M V+ 2 3 – 8 1/2 LTC2055 + 1 R3 1k 4 +VIN OUTPUT DC OFFSET ≤ 6mV FOR 0.1% RESISTORS, CMRR = 54dB 6 5 – 1/2 LTC2055 7 VOUT + 20545 TA05 sn20545 20545fas 10 LTC2054/LTC2055 U PACKAGE DESCRIPTIO DD Package 8-Lead Plastic DFN (3mm × 3mm) (Reference LTC DWG # 05-08-1698) R = 0.115 TYP 5 0.675 ±0.05 3.5 ±0.05 1.65 ±0.05 2.15 ±0.05 (2 SIDES) 0.38 ± 0.10 8 1.65 ± 0.10 (2 SIDES) 3.00 ±0.10 (4 SIDES) PIN 1 PACKAGE OUTLINE TOP MARK (NOTE 6) 0.25 ± 0.05 4 0.25 ± 0.05 0.75 ±0.05 0.200 REF 0.50 BSC 2.38 ±0.05 (2 SIDES) 1 0.50 BSC 2.38 ±0.10 (2 SIDES) 0.00 – 0.05 NOTE: 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE BOTTOM VIEW—EXPOSED PAD RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS (DD8) DFN 1203 MS8 Package 8-Lead Plastic MSOP (Reference LTC DWG # 05-08-1660) 3.00 ± 0.102 (.118 ± .004) (NOTE 3) 0.889 ± 0.127 (.035 ± .005) 5.23 (.206) MIN 3.20 – 3.45 (.126 – .136) 0.254 (.010) 8 7 6 5 3.00 ± 0.102 (.118 ± .004) (NOTE 4) 4.90 ± 0.152 (.193 ± .006) DETAIL “A” 0.52 (.0205) REF 0° – 6° TYP GAUGE PLANE 0.65 (.0256) BSC 0.42 ± 0.038 (.0165 ± .0015) TYP 1 0.53 ± 0.152 (.021 ± .006) RECOMMENDED SOLDER PAD LAYOUT DETAIL “A” 2 3 4 1.10 (.043) MAX 0.86 (.034) REF 0.18 (.007) SEATING PLANE 0.22 – 0.38 (.009 – .015) TYP 0.65 (.0256) BSC NOTE: 1. DIMENSIONS IN MILLIMETER/(INCH) 2. DRAWING NOT TO SCALE 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX 0.127 ± 0.076 (.005 ± .003) MSOP (MS8) 0603 S5 Package 5-Lead Plastic TSOT-23 (Reference LTC DWG # 05-08-1635) 0.62 MAX 0.95 REF 2.80 – 3.10 (NOTE 4) 1.22 REF 1.4 MIN 3.85 MAX 2.62 REF 2.60 – 3.00 NOTE: 1. DIMENSIONS ARE IN MILLIMETERS 2. DRAWING NOT TO SCALE 3. DIMENSIONS ARE INCLUSIVE OF PLATING 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR 5. MOLD FLASH SHALL NOT EXCEED 0.254mm 6. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ) 1.50 – 1.75 (NOTE 4) PIN ONE RECOMMENDED SOLDER PAD LAYOUT PER IPC CALCULATOR 0.25 – 0.50 TYP 5 PLCS NOTE 3 0.95 BSC 0.90 – 1.30 0.09 – 0.20 (NOTE 3) 0.20 BSC ATTENTION: ORIGINAL SOT23-5L PACKAGE. MOST SOT23-5L PRODUCTS CONVERTED TO THIN SOT23 PACKAGE, DRAWING # 05-08-1635 AFTER APPROXIMATELY APRIL 2001 SHIP DATE 0.00 – 0.15 0.90 – 1.45 DATUM ‘A’ 0.35 – 0.55 REF 1.90 BSC S5 SOT-23 0502 sn20545 20545fas Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 11 LTC2054/LTC2055 U TYPICAL APPLICATIO S Low Power, Bidirectional 60V Precision Hi Side Current Sense POSITIVE SENSE 10mΩ 5 3 + – VSENSE BAT54 1 LTC1754-5 1N4686 3.9VZ 2 4 100Ω 0.1µF 6 10µF 10µF 3 PRECISION BIDIRECTIONAL GAIN OF 125 5 + 1 LTC2054 100Ω 4 1µF 0.1µF – 2 12.4k 33Ω 2 1 2N5401 ON 5V OFF 0V MPSA42 POWER SUPPLY (NOTE: POSITIVE CURRENT SENSE INCLUDES CIRCUIT SUPPLY CURRENT) 35.7k PRECISION BIDIRECTIONAL HIGH VOLTAGE LEVEL SHIFT AND GAIN OF 8 VS– 7 VS+ 8 5 LT1787HV VOUT = 2.5V +1000* VSENSE 4.7µF 6 2.5V REF 4 20545 TA06 Precision Low Drift Integrator OPEN t = tO S1 Ultra-Precision, Wide Dynamic Range 10Hz Bandwidth Photodiode Amplifier 100k 1Ω 0.15µF 10µF GAIN = 0.1V/µA ~10pA RESOLUTION 50µA FULL SCALE 5V VIN 1MΩ 4 4 5 – LTC2054HV 3 5V 1k + t V (t) IN dt tO 10sec 1 ∫ ANY PHOTODIODE – LTC2054 3 + 2 –5V 5 2 1 2k 0.01µF –5V 20545 TA08 20545 TA07 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC1049 Low Power Zero-Drift Op Amp Low Supply Current 200µA LTC1050 Precision Zero-Drift Op Amp Single Supply Operation 4.75V to 16V, Noise Tested and Guaranteed LTC1051/LTC1053 Precision Zero-Drift Op Amp Dual/Quad Version of the LTC1050 LTC1150 High Voltage Operation ±18V ±15V Zero-Drift Op Amp LTC1152 Rail-to-Rail Input and Output Zero-Drift Op Amp Single Zero-Drift Op Amp with Rail-to-Rail Input and Output and Shutdown LT1677 Low Noise Rail-to-Rail Input and Ouptput Precision Op Amp VOS = 90µV, VS = 2.7V to 44V LT1884/LT1885 Rail-to-Rail Output Precision Op Amp VOS = 50µV, IB = 400pA, VS = 2.7V to 40V LTC2050 Zero-Drift Op Amp Enhanced Output Drive Capability LTC2051/LTC2052 Dual/Quad Zero-Drift Op Amp Dual/Quad Version of the LTC2050 in MS8/GN16 Package LTC2053 Rail-to-Rail Input Zero-Drift Instrumentation Amp sn20545 20545fas 12 Linear Technology Corporation LT/TP 0404 1K REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 2004