LINER LTC5532

Final Electrical Specifications
LTC5532
300MHz to 7GHz
Precision RF Power Detector
with Gain and Offset Adjustment
U
FEATURES
■
■
■
■
■
■
■
■
■
DESCRIPTIO
Temperature Compensated Internal Schottky
Diode RF Detector
Wide Input Frequency Range: 300MHz to 7GHz
Wide Input Power Range: –32dBm to 8dBm
Buffered Detector Output with External Gain Control
Precision VOUT Offset Control
Low Offset Voltage: 120mV ±35mV for Gain = 2x
Wide VCC Range of 2.7V to 6V
Low Operating Current: 500µA
Available in a Low Profile (1mm) SOT-23 Package
■
■
■
■
■
The RF input voltage is peak detected using an on-chip
Schottky diode. The detected voltage is buffered and
supplied to the VOUT pin.
802.11a, 802.11b, 802.11g, 802.15
Multimode Mobile Phone Products
Optical Data Links
Wireless Data Modems
Wireless and Cable Infrastructure
RF Power Alarm
Envelope Detector
The LTC5532 operates with input power levels from
–32dBm to 8dBm.
, LTC and LT are registered trademarks of Linear Technology Corporation.
ThinSOT is a trademark of Linear Technology Corporation.
U
■
The LTC®5532 is an RF power detector for RF applications
operating in the 300MHz to 7GHz range. A temperature
compensated Schottky diode peak detector and buffer
amplifier are combined in a small ThinSOTTM package. The
supply voltage range is optimized for operation from a
single lithium-ion cell or 3xNiMH.
The LTC5532 output buffer gain is set via external resistors. The initial offset voltage of 120mV ±35mV can be
precisely adjusted using the VOS pin.
U
APPLICATIO S
■
August 2003
TYPICAL APPLICATIO
Output Voltage vs RF Input Power
3600
33pF
RF
INPUT
1
LTC5532
VCC 6
RFIN
VCC
100pF
2
VOS
REFERENCE
3
GND
VOUT
5
RA
VOS
VM
5532 TA01
4
RB
0.1µF
VOUT OUTPUT VOLTAGE (mV)
300MHz to 7GHz RF Power Detector
VCC = 3.6V
3200 TA = 25°C
GAIN = 2
2800 VOS = 0V
1000MHz
300MHz
2400
4000MHz
2000
1600
1200
800
2000MHz
3000MHz
400
5000MHz
6000MHz
7000MHz
0
–32 –27 –22 –17 –12 –7
–2
RF INPUT POWER (dBm)
3
8
5532 TA02
5532i
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
1
LTC5532
U
W W
W
ABSOLUTE
AXI U RATI GS
U
W
U
PACKAGE/ORDER I FOR ATIO
(Note 1)
VCC, VOUT, VM, VOS .......................................... –0.3V to 6.5V
RFIN Voltage .........................................(VCC ± 1V) to 7V
IVOUT ...................................................................... 5mA
Operating Temperature Range (Note 2) .. – 40°C to 85°C
Maximum Junction Temperature ......................... 125°C
Storage Temperature Range ................ – 65°C to 150°C
Lead Temperature (Soldering, 10 sec).................. 300°C
ORDER PART
NUMBER
TOP VIEW
RFIN 1
6 VCC
GND 2
5 VOUT
VOS 3
4 VM
LTC5532ES6
S6 PART
MARKING
S6 PACKAGE
6-LEAD PLASTIC TSOT-23
TJMAX = 125°C, θJA = 250°C/W
LTAFS
Consult LTC Marketing for parts specified with wider operating temperature ranges.
ELECTRICAL CHARACTERISTICS
The ● denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TA = 25°C. VCC = 3.6V, RF Input Signal is Off, RA = RB = 1k, VOS = 0V unless
otherwise noted.
PARAMETER
CONDITIONS
MIN
VCC Operating Voltage
●
TYP
2.7
MAX
6
UNITS
V
IVCC Operating Current
IVOUT = 0mA
●
0.5
0.7
mA
VOUT VOL (No RF Input)
RLOAD = 2k, VOS = 0V
●
85
100 to 140
155
mV
VOUT Output Current
VOUT = 1.75V, VCC = 2.7V, ∆VOUT < 10mV
●
2
4
mA
VOUT Bandwidth
CLOAD = 33pF, RLOAD = 2k (Note 4)
VOUT Load Capacitance
(Note 6)
2
VOUT Slew Rate
VRFIN = 1V Step, CLOAD = 33pF, Total RLOAD = 2k (Note 3)
3
V/µs
VOUT Noise
VCC = 3V, Noise BW = 1.5MHz, 50Ω RF Input Termination,
50Ω AC Output Termination
1
mVP-P
VOS Voltage Range
VOS Input Current
VOS = 1V
VM Voltage Range
VM Input Current
VM = 3.6V
RFIN Input Frequency Range
MHz
33
●
●
0
●
●
●
pF
1
V
–0.5
0.5
µA
0
VCC -1. 8
V
–0.5
0.5
µA
300 to 7000
MHz
–32 to 8
dBm
RFIN Input Power Range
RF Frequency = 300MHz to 7GHz (Note 5, 6) VCC = 2.7V to 6V
RFIN AC Input Resistance
F = 1000MHz, Pin = –25dBm
220
Ω
RFIN Input Shunt Capacitance
F = 1000MHz, Pin = –25dBm
0.65
pF
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: Specifications over the –40°C to 85°C operating temperature
range are assured by design, characterization and correlation with
statistical process controls.
Note 3: The rise time at VOUT is measured between 1.3V and 2.3V.
Note 4: Bandwidth is calculated based on the 10% to 90% rise time
equation: BW = 0.35/rise time.
Note 5: RF performance is tested at 1800MHz
Note 6: Guaranteed by design.
5532i
2
LTC5532
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Output Voltage vs Supply Voltage
(RF Input Signal Off)
(RLOAD = 20k)
Supply Current vs Supply Voltage
(RF Input Signal Off)
Output Delay vs RF Input Power
500
130
1000
VCC = 3.6V
TA = 25°C
VOS = 0V
GAIN = 2
TA = 25°C
120
TA = –40°C
115
800
480
TA = –40°C
460
OUTPUT DELAY (ns)
TA = 85°C
125
SUPPLY CURRENT (mA)
TA = 25°C
TA = 85°C
440
110
2.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
5.5
420
2.5
6.0
50% SWITCHING
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
3600
VCC = 3.6V
VOUT OUTPUT VOLTAGE (mV)
2800
TA = –40°C
2000
TA = 25°C
1600
1200
800
TA = 85°C
400
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
3600
2800
TA = –40°C
2400
2000
TA = 25°C
1600
1200
800
TA = 85°C
3600
VCC = 3.6V
3200
VOUT OUTPUT VOLTAGE (mV)
2000
1600
TA = 25°C
1200
800
400
TA = 85°C
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
4
8
5532 G04
TA = 25°C
1600
1200
800
TA = 85°C
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
8
3600
TA = –40°C
TA = 25°C
1200
800
VCC = 3.6V
3200
2000
1600
8
5532 G03
VCC = 3.6V
2800
2400
4
Typical Detector Characteristics,
5000MHz, Gain = 2, VOS = 0V
TA = 85°C
400
4
2000
400
3200
TA = –40°C
TA = –40°C
2400
Typical Detector Characteristics,
4000MHz, Gain = 2, VOS = 0V
Typical Detector Characteristics,
3000MHz, Gain = 2, VOS = 0V
2400
2800
5532 G02
5532 G01
2800
VCC = 3.6V
3200
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
8
10
Typical Detector Characteristics,
2000MHz, Gain = 2, VOS = 0V
VCC = 3.6V
400
4
0
–5
5
RF INPUT POWER (dBm)
5532 G23
3200
2400
–10
Typical Detector Characteristics,
1000MHz, Gain = 2, VOS = 0V
3200
3600
6.0
VOUT OUTPUT VOLTAGE (mV)
3600
5.5
5532 G2a
Typical Detector Characteristics,
300MHz, Gain = 2, VOS = 0V
VOUT OUTPUT VOLTAGE (mV)
90% SWITCHING
400
0
3.0
5532 G1a
VOUT OUTPUT VOLTAGE (mV)
600
200
VOUT OUTPUT VOLTAGE (mV)
VOUT OUTPUT VOLTAGE (mV)
VOS = 0V
GAIN = 2
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
2800
2400
2000
1600
8
5532 G05
TA = 25°C
1200
800
400
4
TA = –40°C
TA = 85°C
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
4
8
5532 G06
5532i
3
LTC5532
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Typical Detector Characteristics,
6000MHz, Gain = 2, VOS = 0V
Typical Detector Characteristics,
7000MHz, Gain = 2, VOS = 0V
3600
VCC = 3.6V
3600
VCC = 3.6V
2800
TA = –40°C
2400
2000
1600
TA = 25°C
1200
800
TA = 85°C
400
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
4
2800
2400
TA = –40°C
2000
1600
TA = 25°C
1200
800
400
3
5532 G07
2000
TA = 25°C
1200
800
TA = 85°C
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
2000
1600
800
VOS = 1V
VOS = 0.5V
4
8
5532 G12
5532 G11
2800
2400
2000
1600
1200
800
VOS = 1V
VOS = 0.5V
400
VOS = 0.2V
VOS = 0V
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
8
8
VCC = 3.6V
3200 TA = 25°C
2400
1200
4
3600
2800
400
4
TA = 85°C
800
VOUT vs RF Input Power and VOS,
1000MHz, Gain = 2
VOUT OUTPUT VOLTAGE (mV)
VOUT OUTPUT VOLTAGE (mV)
VOUT OUTPUT VOLTAGE (mV)
2400
400
1200
5532 G10
VCC = 3.6V
3200 TA = 25°C
TA = –40°C
TA = 25°C
1600
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
8
3600
3200
1600
2000
VOUT vs RF Input Power and VOS,
300MHz, Gain = 2
VCC = 3.6V
2800
2400
5532 G08
Typical Detector Characteristics,
1000MHz, Gain = 4, VOS = 0V
3600
TA = –40°C
2800
400
TA = 85°C
0
–32 –27 –22 –17 –12 –7
–2
RF INPUT POWER (dBm)
8
VCC = 3.6V
3200
3200
VOUT OUTPUT VOLTAGE (mV)
VOUT OUTPUT VOLTAGE (mV)
3200
Typical Detector Characteristics,
300MHz, Gain = 4, VOS = 0V
VOUT OUTPUT VOLTAGE (mV)
3600
(RLOAD = 20k)
VOS = 0.2V
VOS = 0V
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
4
8
5532 G13
VOUT vs RF Input Power, 300MHz
and 1000MHz, Gain = 2 and 4,
VOS = 0V
3600
VOUT OUTPUT VOLTAGE (mV)
VCC = 3.6V
3200 TA = 25°C
2800
300MHz
GAIN = 4
1000MHz
GAIN = 4
2400
2000
1600
1200
800
300MHz
GAIN = 2
400
1000MHz
GAIN = 2
0
–32 –28 –24 –20 –16 –12 –8 –4 0
RF INPUT POWER (dBm)
4
8
5532 G14
5532i
4
LTC5532
U W
TYPICAL PERFOR A CE CHARACTERISTICS
1000
VCC = 3.6V
GAIN = 2
VOS = 0V
VOUT SLOPE (mV/dB)
VOUT SLOPE (mV/dB)
1000
VOUT Slope vs RF Input Power
at 1GHz
100
TA = –40°C
TA = 85°C
10
1000
VCC = 3.6V
GAIN = 2
VOS = 0V
100
TA = –40°C
TA = 85°C
10
TA = 25°C
1
–30
–25
–20 –15 –10 –5
RF INPUT POWER (dBm)
1
–30
5
0
TA = 85°C
–25
TA = 25°C
–20 –15 –10 –5
RF INPUT POWER (dBm)
1
–30
5
0
TA = 85°C
–25
–20 –15 –10 –5
RF INPUT POWER (dBm)
VOUT Slope vs RF Input Power
at 5GHz
1000
VCC = 3.6V
GAIN = 2
VOS = 0V
100
TA = –40°C
TA = 85°C
10
VCC = 3.6V
GAIN = 2
VOS = 0V
100
TA = –40°C
TA = 85°C
10
TA = 25°C
TA = 25°C
–20 –15 –10 –5
RF INPUT POWER (dBm)
1
–30
5
0
–25
TA = 25°C
–20 –15 –10 –5
RF INPUT POWER (dBm)
5
0
5532 G18
1000
VOUT SLOPE (mV/dB)
100
TA = –40°C
TA = 85°C
–25
–20 –15 –10 –5
RF INPUT POWER (dBm)
–20 –15 –10 –5
RF INPUT POWER (dBm)
0
5
5532 G20
VCC = 3.6V
GAIN = 2
VOS= 0V
100
TA = –40°C
10
TA = 85°C
TA = 25°C
TA = 25°C
1
–30
–25
VOUT Slope vs RF Input Power
at 7GHz
VCC = 3.6V
GAIN = 2
VOS = 0V
10
1
–30
5532 G19
VOUT Slope vs RF Input Power
at 6GHz
1000
5
0
5532 G17
VOUT SLOPE (mV/dB)
VOUT SLOPE (mV/dB)
TA = –40°C
VOUT SLOPE (mV/dB)
VOUT SLOPE (mV/dB)
1000
100
–25
TA = –40°C
10
VOUT Slope vs RF Input Power
at 4GHz
VCC = 3.6V
GAIN = 2
VOS = 0V
1
–30
100
5532 G16
VOUT Slope vs RF Input Power
at 3GHz
10
VCC = 3.6V
GAIN = 2
VOS = 0V
TA = 25°C
5532 G15
1000
VOUT Slope vs RF Input Power
at 2GHz
VOUT SLOPE (mV/dB)
VOUT Slope vs RF Input Power
at 300MHz
(RLOAD = 20k)
0
5
5532 G21
1
–30
–25
–20 –15 –10 –5
RF INPUT POWER (dBm)
0
5
5532 G22
5532i
5
LTC5532
U W
TYPICAL PERFOR A CE CHARACTERISTICS
RFIN Input Impedance (Pin = 0dBm, VCC = 3.6V, TA = 25°C)
FREQUENCY
(GHz)
RESISTANCE
(Ω)
REACTANCE
(Ω)
0.30
290.45
–136.22
0.50
234.41
–162.54
0.70
178.25
–170.53
0.90
137.31
–159.89
1.10
109.17
–147.57
1.30
86.30
–136.18
1.50
68.65
–121.74
1.70
57.48
–107.60
1.90
49.79
– 96.72
2.10
43.56
– 86.70
2.30
38.67
–77.91
2.50
34.82
–70.13
2.70
31.68
– 62.86
2.90
29.13
– 56.01
3.10
27.17
– 49.83
3.30
25.73
– 44.24
3.50
24.56
– 39.74
3.70
23.18
– 35.35
3.90
22.31
– 30.62
4.10
20.73
–26.88
4.30
19.88
–22.31
4.50
19.40
–18.23
4.70
19.05
–14.25
4.90
19.08
–10.21
5.10
19.55
– 6.30
5.30
20.85
– 2.84
5.50
21.94
–1.49
5.70
20.60
– 0.07
5.90
19.29
2.99
6.10
18.69
6.61
6.30
18.53
10.39
6.50
18.74
14.35
6.70
19.79
17.91
6.90
19.75
20.77
7.00
19.99
22.47
S11 Forward Reflection
Impedance
0.3000GHz-7.000GHz
5508 TA03
5532i
6
LTC5532
U W
TYPICAL PERFOR A CE CHARACTERISTICS
RFIN Input Impedance (Pin = –25dBm, VCC = 3.6V, TA = 25°C)
FREQUENCY
(GHz)
RESISTANCE
(Ω)
REACTANCE
(Ω)
0.30
216.45
–76.47
0.50
190.63
–98.28
0.70
161.98
–112.03
0.90
133.17
–111.53
1.10
113.08
–109.05
1.30
94.55
–107.08
1.50
75.33
– 98.50
1.70
63.52
– 88.19
1.90
55.19
– 80.05
2.10
48.64
–72.23
2.30
43.73
– 64.81
2.50
39.71
– 58.31
2.70
36.47
– 52.27
2.90
33.69
– 46.77
3.10
31.61
– 41.25
3.30
29.78
–36.61
3.50
28.27
–32.39
3.70
26.63
–28.12
3.90
26.12
–23.97
4.10
24.20
–20.75
4.30
23.28
–16.69
4.50
22.60
–12.77
4.70
22.21
– 9.08
4.90
22.15
–5.24
5.10
22.61
–1.58
5.30
23.90
1.53
5.50
24.97
2.62
5.70
23.51
4.00
5.90
22.25
6.94
6.10
21.57
10.62
6.30
21.43
14.02
6.50
21.69
17.77
6.70
22.68
21.24
6.90
22.81
24.21
7.00
23.07
25.56
S11 Forward Reflection
Impedance
0.3000GHz-7.000GHz
5508 TA04
5532i
7
LTC5532
U
U
U
PI FU CTIO S
RFIN (Pin 1): RF Input Voltage. Referenced to VCC. A
coupling capacitor must be used to connect to the RF
signal source. The frequency range is 300MHz to 7GHz.
This pin has an internal 500Ω termination, an internal
Schottky diode detector and a peak detector capacitor.
VOS (Pin 3): VOUT Offset Voltage Adjustment. From 0V to
120mV, VOUT does not change. Above 120mV, VOUT will
track VOS.
VM (Pin 4): Negative Input to Buffer Amplifier.
VOUT (Pin 5): Detector Output.
GND (Pin 2): Ground.
VCC (Pin 6): Power Supply Voltage, 2.7V to 6V. VCC should
be bypassed appropriately with ceramic capacitors.
W
BLOCK DIAGRA
RFSOURCE
12pF TO 200pF
(DEPENDING ON
APPLICATION)
VCC
6
+
BUFFER
500Ω
RFIN
5
VOUT
4
VM
3
VOS
–
1
500Ω
BIAS
31k
25pF
24k
50µA
GND 2
50µA
+
RF DET
+
80k
–
–
80k
120mV
+
5532 BD
5532i
8
LTC5532
U
W
U
U
APPLICATIO S I FOR ATIO
reference voltage. When the internal detector output voltage (which is connected to the positive input of the buffer
amplifier) exceeds the external voltage on VM, VOUT will
switch high.
Operation
The LTC5532 RF detector integrates several functions to
provide RF power detection over frequencies ranging from
300MHz to 7GHz. These functions include an internal frequency compensated buffer amplifier, an RF Schottky diode peak detector and a level shift amplifier to convert the
RF input signal to DC. The LTC5532 has both gain setting
and voltage offset adjustment capabilities.
The VOS input controls the DC input voltage to the buffer
amplifier. VOS must be connected to ground if the DC
output voltage is not to be changed. The buffer is initially
trimmed to 120mV (Gain = 2x) with VOS connected to
ground.
Buffer Amplifier
The VOS pin is used to change the initial VOUT starting
voltage. This function, in combination with gain adjustment enables the LTC5532 output to span the input range
of a variety of analog-to-digital converters. VOUT will not
change until VOS exceeds 120mV. The starting voltage at
VOUT for VOS >120mV is:
The output buffer amplifier is capable of supplying typically 4mA into a load. The negative terminal VM is brought
out to a pin for gain selection. External resistors connected
between VOUT and VM (RA) and VM to ground (RB) will set
the gain of this amplifier.
Gain = 1 + RA/RB
VOUT = 0.5 • VOS • Gain
The amplifier is unity gain stable; however a minimum
gain of two is recommended to improve low output
voltage accuracy. The amplifier has a bandwidth of 2MHz
with a gain of 2. For increased gain applications, the
bandwidth is reduced according to the formula:
where gain is the output buffer gain. For a buffer gain of 2x,
VOUT will exactly track VOS above 120mV.
RF Detector
The internal RF Schottky diode peak detector and level
shift amplifier converts the RF input signal to a low
frequency signal. The detector demonstrates excellent
efficiency and linearity over a wide range of input power.
The Schottky diode is biased at about 55µA and drives a
25pF internal peak detector capacitor.
Bandwidth = 4MHz/(Gain) = 4MHz • RB/(RA + RB)
A capacitor can be placed across the feedback resistor RA
to shape the frequency response. In addition, the amplifier
can be used as a comparator. VM can be connected to a
Demo Board Schematic
VCC
2.7V TO 6V
RFIN
C4
39pF
1
R1
(OPT)
2
3
OFFSET
ADJUSTMENT
C1
0.1µF
LTC5532ES6
RFIN
VCC
GND VOUT
VOS
VM
6
C2
100pF
5
4
C3
(OPT)
VOUT
R2
10k
1%
R3
10k
1%
GND
5532 DB
5532i
9
LTC5532
U
W
U U
APPLICATIO S I FOR ATIO
Applications
control, using the LTC5532 with a capacitive tap to the
power amplifier. A 0.5pF capacitor (C1) followed by a
200Ω resistor (R1) form a coupling circuit with about
20dB loss at 900MHz referenced to the LTC5532 RF input
pin. In the actual product implementation, component
values for the capacitive tap may be different depending on
parts placement, PCB parasitics and parameters of the
antenna.
The LTC5532 can be used as a self-standing signal strength
measuring receiver for a wide range of input signals from
–32dBm to 8dBm for frequencies from 300MHz to 7GHz.
The LTC5532 can be used as a demodulator for AM and
ASK modulated signals with data rates up to 2MHz.
Depending on specific application needs, the RSSI output
can be split between two branches, providing AC-coupled
data (or audio) output and DC-coupled RSSI output for
signal strength measurements and AGC.
The LTC5532 can be configured as a comparator for RF
power detection and RF power alarms. The characterization data includes a plot of the LTC5532 output delay in
response to a positive input step of varying RF level.
The LTC5532 can be used for RF power detection and
control. Figure 1 is an example of a transmitter power
0.1µF
LTC5532ES6
1
2
OFFSET
ADJUSTMENT
3
RFIN
VCC
GND VOUT
VOS
VM
Li-Ion
TX PA
MODULE
R1
200Ω
1%
C1
0.5pF
5%
CELL BAND
6
DIPLEXER
5
4
PCS BAND
R2
R3
MOBILE
PHONE
DSP
VPC
BSE
5532 F01
Figure 1. Mobile Phone TX Power Control Application Diagram with a Capacitive Tap
5532i
10
LTC5532
U
PACKAGE DESCRIPTIO
S6 Package
6-Lead Plastic TSOT-23
(Reference LTC DWG # 05-08-1636)
0.62
MAX
2.90 BSC
(NOTE 4)
0.95
REF
1.22 REF
3.85 MAX 2.62 REF
1.4 MIN
2.80 BSC
1.50 – 1.75
(NOTE 4)
PIN ONE ID
RECOMMENDED SOLDER PAD LAYOUT
PER IPC CALCULATOR
0.30 – 0.45
6 PLCS (NOTE 3)
0.95 BSC
0.80 – 0.90
0.20 BSC
0.01 – 0.10
1.00 MAX
DATUM ‘A’
0.30 – 0.50 REF
0.09 – 0.20
(NOTE 3)
1.90 BSC
S6 TSOT-23 0302
NOTE:
1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254mm
6. JEDEC PACKAGE REFERENCE IS MO-193
5532i
11
LTC5532
RELATED PARTS
PART NUMBER
DESCRIPTION
COMMENTS
LTC1757A
RF Power Controller
Single/Dual Band GSM/DCS/GPRS Mobile Phones
LTC1758
RF Power Controller
Single/Dual Band GSM/DCS/GPRS Mobile Phones
LTC1957
RF Power Controller
Single/Dual Band GSM/DCS/GPRS Mobile Phones
LTC4400
RF Power Controller in SOT-23 Package
Single/Dual Band GSM/DCS/GPRS Phones, 45dB Dynamic Range, 450kHz Loop BW
LTC4401
RF Power Controller in SOT-23 Package
Single/Dual Band GSM/DCS/GPRS Phones, 45dB Dynamic Range, 250kHz Loop BW
LTC4403
RF Power Controller for EDGE/TDMA
Multiband GSM/GPRS/EDGE Mobile Phones
LT5500
1.8GHz to 2.7GHz RF Front End
Dual LNA gain Setting +13.5dB/–14dB at 2.5GHz, Double-Balanced Mixer,
1.8V ≤ VSUPPLY ≤ 5.25V
LT5502
400MHz Quadrature Demodulator with RSSI
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain, 90dB RSSI Range
LT5503
1.2GHz to 2.7GHz Direct IQ Modulator and
Up Converting Mixer
1.8V to 5.25V Supply, Four-Step RF Power Control, 120MHz Modulation Bandwidth
LT5504
800MHz to 2.7GHz RF Measuring Receiver
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.5V Supply
LTC5505
300MHz to 3.5GHz RF Power Detector
>40dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply
LT5506
500MHz Quadrature IF Demodulator with VGA
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB Linear Power Gain
LTC5507
100kHz to 1GHz RF Power Detector
48dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply
LTC5508
300MHz to 7GHz RF Power Detector
SC70 Package
LTC5509
300MHz to 3GHz RF Power Detector
SC70 Package
LT5511
High Signal Level Up Converting Mixer
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer
LT5512
High Signal Level Down Converting Mixer
DC-3GHz, 20dBm IIP3, Integrated LO Buffer
LTC5515
1.5GHz to 2.5GHz Direct Conversion
Quadrature Demodulator
20dBm IIP3, Integrated LO Quadrature Generator
LTC5516
0.8GHz to 1.5GHz Direct Conversion
Quadrature Demodulator
21.5dBm IIP3, Integrated LO Quadrature Generator
5532i
12
Linear Technology Corporation
LT/TP 0803 1K • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com
 LINEAR TECHNOLOGY CORPORATION 2003