LXP710 HDSL Framer/Mapper for 1168 kbps Applications Datasheet General Description The LXP710 is a complete HDSL framer/mapper that multiplexes and demultiplexes a framed or unframed 2.048 Mbps E1 data stream onto two 1168 kbps HDSL lines. The LXP710 also supports point-to-point and point-to-multipoint fractional E1 applications with 1, 2 or 3 HDSL lines. The LXP710 interfaces directly with the Level One SK70704/SK70707 1168 kbps HDSL data pump and industry standard E1 Framers or Line Interface ICs. The framer/mapper is controlled and monitored by an external microprocessor using an 8-bit Intel or Motorola compatible parallel interface. The framer/mapper provides both programmable and 6ms interrupts synchronized to the HDSL frame rate. The LXP710 provides fully programmable mapping between the E1 and HDSL interfaces on one or more loops. The LXP710 provides support for system performance monitoring with internal CRC, FEBE and BPV error counters and the capability to inject these errors. The framer/mapper automatically controls the synchronization between the HDSL loop timing and the E1 payload timing using a digital PLL for E1 timing recovery and a transmitter stuffing control circuit. Product Features ■ ■ ■ ■ ■ ■ ■ Compliant with ETSI ETR-152 requirements Interfaces with 1, 2 or 3 Level One HDSL Data Pumps and industry standard E1 Framers or Line Interface ICs 8-bit, Intel or Motorola compatible parallel processor interface with programmable and 6ms interrupts User definable 10 kbps overhead channel HDSL Overhead Management DPLL for E1 Timing Recovery HDSL Transmit Stuffing Control ■ ■ E1 to HDSL Loop Multiplexing/ Demultiplexing — Programmable time slot mapping — Accepts framed or unframed E1 data — IDLE Code Insertion provides channel blocking in mux and demux directions — DS0 Channel Grouping — Loopbacks toward E1 and HDSL interfaces Diagnostics/Performance Monitoring — QRSS Pattern Generation and Detection — CRC, BPV and FEBE counters and error generators As of January 15, 2001, this document replaces the Level One document known as HDSL Framer/Mapper for 1168 kbps Applications. Order Number: 249004-001 January 2001 Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The LXP710 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800548-4725 or by visiting Intel’s website at http://www.intel.com. Copyright © Intel Corporation, 2001 *Third-party brands and names are the property of their respective owners. Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Contents 1.0 Pin Assignments and Signal Descriptions ....................................................10 2.0 Functional Description...........................................................................................15 2.1 2.2 2.3 2.4 2.5 Multiplexer (MX) ..................................................................................................15 Demultiplexer (DX) ..............................................................................................17 Microprocessor Interface.....................................................................................18 E1 Interface .........................................................................................................19 HDSL Interface....................................................................................................20 3.0 Register Definitions.................................................................................................21 4.0 Application information .........................................................................................62 4.1 4.2 4.3 4.4 Target Applications..............................................................................................62 ETSI Compliant Operation ..................................................................................62 User Definable HDSL Overhead Bits ..................................................................63 System Software Guidelines ...............................................................................65 4.4.1 Board Initialization ..................................................................................66 4.4.2 Loop Activation.......................................................................................66 4.4.3 Normal Operation ...................................................................................66 4.4.4 Diagnostic Operation..............................................................................67 4.4.5 External Communication ........................................................................67 5.0 Test Specifications ..................................................................................................71 6.0 Mechanical Specifications....................................................................................83 Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Datasheet LXP710 Block Diagram ......................................................................................... 9 LXP710 Pinout Diagram......................................................................................10 MX Process .........................................................................................................16 DX Process .........................................................................................................18 E1 Interface with Loopback Switching.................................................................19 HDSL Interface....................................................................................................20 Two-Loop E1 HDSL System ..............................................................................63 Unframed Data Transport Operation...................................................................64 Point-to-Multipoint E1 HDSL System ..................................................................65 Frame Structure of Two Pair Point-to-Point System ...........................................70 E1 Interface Input Timing ....................................................................................72 E1 Interface Output Timing .................................................................................73 HDSL Interface Input Timing ...............................................................................73 HDSL Interface Output Timing ............................................................................74 Microprocessor Write Cycle—Motorola Mode.....................................................75 Microprocessor Read Cycle—Motorola Mode.....................................................76 Microprocessor Write Cycle—Intel Mode ............................................................77 Microprocessor Read Cycle—Intel Mode............................................................78 Peak Output Jitter Performance ..........................................................................79 3 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications 20 21 22 23 24 25 Output Wander Performance .............................................................................. 80 Typical Jitter Transfer Results............................................................................. 81 Jitter Transfer Measurement Setup..................................................................... 81 Typical Jitter Tolerance Results .......................................................................... 82 Jitter Tolerance Measurement Setup .................................................................. 82 Plastic Leaded Chip Carrier Package Specification............................................ 83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Pin Descriptions .................................................................................................. 11 Register Summary .............................................................................................. 21 Mux E1 Control Register ..................................................................................... 24 Demux E1 Control Register ................................................................................ 25 HDSL Loop Control Register............................................................................... 26 HDSL Loop 1 Overhead Control Register ........................................................... 26 HDSL Loop 2 Overhead Control Register ........................................................... 27 HDSL Loop 3 Overhead Control Register ........................................................... 28 Time Slot Grouping Table Control Register ........................................................ 28 Loop 1 Time Slot Control Byte 1 ......................................................................... 29 Loop 1 Time Slot Control Byte 2 ......................................................................... 29 Loop 1 Time Slot Control Byte 3 ......................................................................... 30 Loop 1 Time Slot Control Byte 4 ......................................................................... 30 Loop 2 Time Slot Control Byte 1 ......................................................................... 31 Loop 2 Time Slot Control Byte 2 ......................................................................... 31 Loop 2 Time Slot Control Byte 4 ......................................................................... 32 Loop 3 Time Slot Control Byte 1 ......................................................................... 32 Loop 3 Time Slot Control Byte 2 ......................................................................... 33 Loop 3 Time Slot Control Byte 3 ......................................................................... 33 Loop 3 Time Slot Control Byte 4 ......................................................................... 33 Programmable Idle Code Bytes .......................................................................... 33 QRSS Test Pattern Control Register .................................................................. 34 Frame Pulse Sync & PLL Control Register ......................................................... 34 Test Pattern Error Counter Status Register ........................................................ 35 Demux Power Status Register ............................................................................ 35 Demux HDSL Repeater Present Status Register ............................................... 36 Demux Loss of Signal Status Register................................................................ 36 Loop Reversal Status Register ........................................................................... 36 General Interrupt Enable Register ...................................................................... 37 General Interrupt Status Register ....................................................................... 37 6ms Interrupt Enable Register ............................................................................ 38 6ms Interrupt Status Register ............................................................................. 38 Indicator Bits & Triple Echo EOC Enable Register ............................................. 39 Indicator Bits & Triple EOC Status Register........................................................ 39 Global Control Register....................................................................................... 40 PLL Band Width Control (High Byte).................................................................. 40 PLL Band Width Control (Low Byte) .................................................................. 41 Demux Restart Counter ..................................................................................... 41 Mux Loop 1 Z Bits (LSB) ..................................................................................... 41 Mux Loop 1 Z Bits ............................................................................................... 41 Mux Loop 1 Z Bits ............................................................................................... 42 Tables 4 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 Datasheet Mux Loop 1 Z Bits ...............................................................................................42 Mux Loop 1 Z Bits ...............................................................................................42 Mux Loop 1 Z Bits (MSB) ....................................................................................42 Mux Loop 1 EOC Message (High Byte) ..............................................................42 Mux Loop 1 EOC Message (Low Byte) ...............................................................43 Mux Loop 1 UIB Bits............................................................................................43 Demux Loop 1 Z Bits (LSB).................................................................................43 Demux Loop 1 Z Bits...........................................................................................44 Demux Loop 1 Z Bits...........................................................................................44 Demux Loop 1 Z Bits...........................................................................................44 Demux Loop 1 Z Bits...........................................................................................44 Demux Loop 1 Z Bits (MSB)................................................................................44 Demux Loop 1 EOC Message (High Byte)..........................................................45 Demux Loop 1 EOC Message (Low byte)...........................................................45 Demux Loop 1 UIB Bits .......................................................................................45 Demux Loop 1 CRC Error Count.........................................................................46 Demux Loop 1 FEBE Error Count .......................................................................46 Demux Loop 1 BPV Error Count .........................................................................46 Loop 1 QRSS Test Pattern Error Counter (High byte) ........................................47 Loop 1 QRSS Test Pattern Error Counter (Low).................................................47 Loop 1 Mux Restart Counter ..............................................................................47 Mux Loop 2 Z Bits (LSB) .....................................................................................47 Mux Loop 2 Z Bits ...............................................................................................48 Mux Loop 2 Z Bits ...............................................................................................48 Mux Loop 2 Z Bits ...............................................................................................48 Mux Loop 2 Z Bits ...............................................................................................48 Mux Loop 2 Z Bits (MSB) ....................................................................................48 Mux Loop 2 EOC Message (High byte)...............................................................49 Mux Loop 2 EOC Message (Low byte) ...............................................................49 Mux Loop 2 UIB Bits............................................................................................49 Demux Loop 2 Z Bits (LSB).................................................................................50 Demux Loop 2 Z Bits...........................................................................................50 Demux Loop 2 Z Bits...........................................................................................50 Demux Loop 2 Z Bits...........................................................................................50 Demux Loop 2 Z Bits...........................................................................................50 Demux Loop 2 Z Bits (MSB)................................................................................51 Demux Loop 2 EOC Message (High byte) ..........................................................51 Demux Loop 2 EOC Message (Low byte)...........................................................51 Demux Loop 2 UIB Bits .......................................................................................51 Demux Loop 2 CRC Error Count.........................................................................52 Demux Loop 2 FEBE Error Count .......................................................................52 Demux Loop 2 BPV Error Count .........................................................................53 Loop 2 QRSS Test Pattern Error Counter (High byte) ........................................53 Loop 2 QRSS Test Pattern Error Counter (Low byte) .........................................53 Loop 2 Mux Restart Counter ..............................................................................53 Mux Loop 3 Z Bits (LSB) .....................................................................................54 Mux Loop 3 Z Bits ...............................................................................................54 Mux Loop 3 Z Bits ...............................................................................................54 Mux Loop 3 Z Bits ...............................................................................................54 Mux Loop 3 Z Bits ...............................................................................................55 5 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 6 Mux Loop 3 Z Bits (MSB) .................................................................................... 55 Mux Loop 3 EOC Message (High byte) .............................................................. 55 Mux Loop 3 EOC Message (Low byte) ............................................................... 55 Mux Loop 3 UIB Bits ........................................................................................... 56 Demux Loop 3 Z Bits (LSB) ................................................................................ 56 Demux Loop 3 Z Bits........................................................................................... 56 Demux Loop 3 Z Bits........................................................................................... 56 Demux Loop 3 Z Bits........................................................................................... 57 Demux Loop 3 Z Bits........................................................................................... 57 Demux Loop 3 Z Bits........................................................................................... 57 Demux Loop 3 EOC Message (High byte).......................................................... 57 Demux Loop 3 EOC Message (Low byte)........................................................... 58 Demux Loop 3 UIB Bits....................................................................................... 58 Demux Loop 3 CRC Error Count ........................................................................ 58 Demux Loop 3 FEBE Error Count....................................................................... 59 Demux Loop 3 BPV Error Count ......................................................................... 59 Loop 3 QRSS Test Pattern Error Counter (High byte) ........................................ 59 Loop 3 QRSS Test Pattern Error Counter (Low byte) ......................................... 59 Loop 3 Mux Restart Counter .............................................................................. 60 HFMA Version Number ....................................................................................... 60 Microprocessor Mode Testing Register for Mux ................................................. 60 Microprocessor Mode Testing Register for Demux ............................................. 61 HDSL Frame Structure for Two Pair Point-to-Point System ............................... 68 Absolute Maximum Ratings ................................................................................ 71 Recommended Operating Conditions ................................................................. 71 DC Electrical Characteristics.............................................................................. 71 E1 Interface Input Timing Specifications (Figure 11 ).......................................... 71 E1 Interface Output Timing Specifications (Figure 12) ....................................... 72 HDSL Interface Input Timing Specifications (Figure 13) ..................................... 73 HDSL Interface Output Timing Specifications (Figure 14) .................................. 73 Microprocessor Write Cycle Specifications—Motorola Mode (Table 15) ............ 74 Microprocessor Read Cycle Specifications—Motorola Mode (Figure 16)........... 75 Microprocessor Write Cycle Specifications—Intel Mode (Figure 17) .................. 76 Microprocessor Read Cycle Specifications—Intel Mode (Figure 18) .................. 77 ETSI Maximum Wander Values .......................................................................... 80 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Revision History Revision Datasheet Date Description 7 HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Figure 1. LXP710 Block Diagram FRCMXAIS DATA PUMP INTERFACE LOSDI BPVI E1FRMI E1 INTERFACE E1DATI E1CLK1 L O O P B A C K S E1FRMO LPxDTO MULTIPLEX MAPPER & ELASTIC STORE DPLL TFPx L O O P B A C K S LTU LOSWx RFPx ICLKx E1DATO LPxDTI E1CLKO 1 DEMULTIPLEX MAPPER & ELASTIC STORE 2 3 CLK32M FMOUT MISCELLANEOUS EXPLLI OVERHEAD REGISTERS MICROPROCESSOR INTERFACE DATA <7:0> ADDR <6:0> TIMING & CONTROLS Datasheet 9 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications 1.0 Pin Assignments and Signal Descriptions MBSE INTGEN INT6MS DS (RD) RESET E1FRMI E1DATI FT16 GND1 E1CLKI VCC1 FT15 E1CLKO FT14 E1DATO E1FRMO FRCMXAIS LOSDI BPVI FT13 FT12 Figure 2. LXP710 Pinout Diagram 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 TSTEN 12 74 FT11 TSTMD1 13 73 GND6 D7 14 72 ICLK3 D6 15 71 VCC6 D5 16 70 RFP3 D4 17 69 LP3DTI D3 18 68 LOSW3 D2 19 67 TFP3 D1 20 66 LP3DTO D0 21 65 LTU VCC2 22 64 GND5 FT1 23 63 FT10 GND2 24 62 VCC5 TSTMD2 25 61 REFCLK A6 26 60 ICLK2 A5 27 59 A4 28 58 FT8 RFP2 A3 29 57 LP2DTI A2 30 56 LOSW2 A1 A0 31 32 55 54 TFP2 LP2DTO Part # LOT # FPO # LXP710PE XX XXXXXX XXXXXXXX Rev # CS R/W (WR) VCC3 CLK32M GND3 FT2 FMOUT NME1CKO VCC4 EXPLLI GND4 LP1DTO TFP1 LOSW1 LP1DTI RFP1 FT4 ICLK1 FT5 FT6 FT7 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 NOTE: 1. Intel compatible parallel interface signal names are shown in ( ). 10 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Package Topside Markings Marking Definition Part # Unique identifier for this product family. Rev # Identifies the particular silicon “stepping” — refer to the specification update for additional stepping information. Lot # Identifies the batch. FPO # Identifies the Finish Process Order. Table 1. Pin Descriptions Pin Symbol I/O1 1 VCC1 - 2 E1CLKI DI 3 GND1 - Ground. Factory Test. This pin should not be connected and is reserved for factory test. Description +5 Volt Supply. E1 Clock Input. This input clock samples mux E1 data and frame mark inputs. The sampling edge of this clock can be inverted by the INVMCK control bit. The nominal frequency of this clock is 2.048 MHz. 4 FT16 - 5 E1DATI DI E1 Data Input. This input accepts mux E1 data in serial NRZ format. 6 E1FRMI DI E1 Frame Sync Input. This input identifies the first frame bit position of the mux E1 data. The signal must be High for one E1CLKI period. 7 RESET DI Reset (Active Low). Resets the internal circuits and control registers to their default state when driven Low. 8 DS (RD) DI Data Strobe or Read Enable. In Intel mode, enables a read cycle when Low. In Motorola mode, this signal functions as the data strobe. The LXP710 drives the D<7:0> bus with the contents of the addressed register when RD and CS are Low. 9 INT6MS DO 6ms Interrupt. Can be enabled to go Low for a Mux EOC/Overhead bits Ready, a Demux EOC/Overhead bits Ready, or a Triple-Echo Message Compare. 10 INTGEN DO General Purpose Interrupt (Active Low). This output can be enabled to go Low when one or more of the internal general purpose interrupt conditions have been met. 11 MBSE DI Motorola Bus Enable. When MBSE is High, the LXP710 is configured for Motorola bus mode. When MBSE is Low, the LXP710 is configured for Intel mode. This enable signal configures the WR input to function as R/W and the RD signal to function as DS. 12 TSTEN DI Test Mode Enable. This input should be tied Low to disable factory test modes. 13 TSTMD1 DI Test Mode 1. This input should be tied Low and is reserved for factory test modes. 14 D7 DI/O 15 D6 DI/O 16 D5 DI/O 17 D4 DI/O 18 D3 DI/O 19 D2 DI/O 20 D1 DI/O 21 D0 DI/O 22 VCC2 - +5 Volt Supply. Microprocessor Data Bus. This 8-bit, bidirectional, tri-state bus is the general purpose data path that can transfer data between the LXP710 and the microprocessor. 23 FT1 - Factory Test. This pin should not be connected and is reserved for factory test. 24 GND2 - Ground. 1. DI = digital input; DO = digital output, DI/O = digital input and output; AI = analog input, AO = analog output. Datasheet 11 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 1. Pin Descriptions (Continued) Pin Symbol I/O1 Description 25 TSTMD2 DI 26 A6 DI Test Mode 2. This Input should be tied Low and is reserved for factory test modes. 27 A5 DI 28 A4 DI 29 A3 DI 30 A2 DI 31 A1 DI 32 A0 DI 33 CS DI Chip Select (Active Low). This input must be Low to enable read or write access to the LXP710. 34 R/W (WR) DI Read/Write or Write Enable. In Intel mode, enables a write cycle when Low. In Motorola mode, this signal functions as the Read/Write control. The D<7:0> bus contents are latched into the addressed register when WR and CS are Low. 35 VCC3 - 36 CLK32M DI 37 GND3 - Ground. 38 FT2 - Factory Test. This pin should not be connected and is reserved for factory test. 39 FMOUT DO Frame Pulse Output. This output pin provides an 6 ms, active High, frame pulse selected from one of RFP1, RFP2, or RFP3 for an external PLL circuit. 40 NME1CKO DO External Reference Clock. 2.048 Mhz reference for E1 framer and LIU when E1 input has no clock. 41 VCC4 - 42 EXPLLI DI 43 GND4 - 44 LP1DTO DO Loop 1 Data Output. This pin outputs mux data, which is updated on falling edge of ICLK1, to the Loop 1 transceiver. The nominal bit rate of this signal is 1168 kbps. 45 TFP1 DO Loop 1 Transmit Frame Pulse (Active Low). A Low level on this signal indicates the last bit position of each mux HDSL frame for Loop 1. The position of this pulse is at bit 7006 when no stuffing is added, or bit 7010 when stuffing is added. This pulse nominally occurs every 6 milliseconds ± 1/584 milliseconds. Microprocessor Address Bus. This 7-bit input bus is used by the microprocessor to select LXP710 registers for read/write data transfer. +5 Volt Supply. External Reference Clock. Requires a 32.768 MHz ±50 ppm input for internal PLL. +5 Volt Supply. External PLL Input. This input clock pin accepts a 2.048 MHz phase locked clock from an external PLL circuit. Ground. 46 LOSW1 DI Loop 1 Loss of Sync Word Status. This pin inputs the LOSW status from the Loop 1 transceiver. This pin provides hardware override for the demux TMGSRC control bits, disables Loop 1 error counters, and can force demux E1 Partial-AIS. (If EXTDXAIS bit enabled). It has an internal pull up resistor, and is active High. 47 LP1DTI DI Loop 1 Data In. This signal inputs demux data, which is sampled on rising edge of ICLK1, from the Loop 1 transceiver. The nominal bit rate of this signal is 1168 kbps. 48 RFP1 DI Loop 1 Receive Frame Pulse (Active Low). A Low level on this signal indicates the last bit position of each demux HDSL frame for Loop 1. The position of this pulse is at bit 7006 when no stuffing is added, or bit 7010 when stuffing is added. This pulse nominally occurs every 6 milliseconds ± 1/584 milliseconds. 49 FT4 - 50 ICLK1 DI Factory Test. This pin should not be connected and is reserved for factory test. Loop 1 Transceiver Interface Clock. This clock input synchronizes the transfer of HDSL data and frame mark to/from the Loop 1 transceiver. This clock samples the LP1DTI and RFP1 inputs on rising edge, and outputs the LP1DTO and TFP1 outputs on the falling edge. The nominal frequency of this clock signal is 1168 kHz. 1. DI = digital input; DO = digital output, DI/O = digital input and output; AI = analog input, AO = analog output. 12 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 1. Pin Descriptions (Continued) Pin Symbol I/O1 51 FT5 - Factory Test. This pin should not be connected and is reserved for factory test. 52 FT6 - Factory Test. This pin should not be connected and is reserved for factory test. 53 FT7 - Factory Test. This pin should not be connected and is reserved for factory test. 54 LP2DTO DO Loop 2 Data Output. This pin outputs mux data, which is updated on falling edge of ICLK2, to the Loop 2 transceiver. The nominal bit rate of this signal is 1168 kbps. 55 TFP2 DO Loop 2 Transmit Frame Pulse (Active Low). A Low level on this signal indicates the last bit position of each mux HDSL frame for Loop 2. This position of this pulse is at bit 7006 when no stuffing is added, or bit 7010 when stuffing is added. This pulse nominally occurs every 6 milliseconds ± 1/584 milliseconds. Description 56 LOSW2 DI Loop 2 Loss of Sync Word Status. This pin inputs the LOSW status from the Loop 2 transceiver. This pin provides hardware override for the demux TMGSRC control bits, disables Loop 2 error counters, and can demux E1 Partial-AIS. It has an internal pull up resistor. 57 LP2DTI DI Loop 2 Data In. This signal inputs demux data, which is sampled on rising edge of ICLK1, from the Loop 2 transceiver. The nominal bit rate of this signal is 1168 kbps. 58 RFP2 DI Loop 2 Receive Frame Pulse (Active Low). A Low level on this signal indicates the last bit position of each demux HDSL frame for Loop 2. The position of this pulse is at bit 7006 when no stuffing is added, or bit 7010 when stuffing is added. This pulse nominally occurs every 6 milliseconds ± 1/584 milliseconds. 59 FT8 - 60 ICLK2 DI Loop 2 Transceiver Interface Clock. This clock input synchronizes the transfer of HDSL data and frame mark to/from the Loop 2 transceiver. This clock samples the LP2DTI and RFP2 inputs on rising edge, and outputs the LP2DTO and TFP2 outputs on the falling edge. The nominal frequency of this clock signal is 1168 kHz. 61 REFCLK DI Reference Clock. Provides 18.688 MHz reference clock for HDSL Loopback test. 62 VCC5 - +5 Volt Supply. 63 FT10 - Factory Test. This pin should not be connected and is reserved for factory test. 64 GND5 - Ground. 65 LTU DI LTU Mode Enable. When this input is High, the LTU mode is selected otherwise, the NTU mode is selected. 66 LP3DTO DO Loop 3 Data Output. This pin outputs mux data, which is updated on falling edge of ICLK3, to the Loop 3 transceiver. The nominal bit rate of this signal is 1168 kbps. 67 TFP3 DO Loop 3 Transmit Frame Pulse (Active Low). A Low level on this signal indicates the last bit position of each mux HDSL frame for Loop 3. This position of this pulse is at bit 7006 when no stuffing is added, or bit 7010 when stuffing is added. This pulse nominally occurs every 6 milliseconds ± 1/584 milliseconds. 68 LOSW3 DI Loop 3 Loss of Sync Word Status. This pin inputs the LOSW status from the Loop 3 transceiver. This pin provides hardware override for the demux TMGSRC control bits, disables Loop 3 error counters, and can force demux E1 Partial-AIS. It has an internal pull up resistor. 69 LP3DTI DI Loop 3 Data In. This signal inputs demux data, which is sampled on rising edge of ICLK1, from the Loop 3 transceiver. The nominal bit rate of this signal is 1168 kbps. 70 RFP3 DI Loop 3 Receive Frame Pulse (Active Low). A Low level on this signal indicates the last bit position of each demux HDSL frame for Loop 3. The position of this pulse is at bit 7006 when no stuffing is added, or bit 7010 when stuffing is added. This pulse nominally occurs every 6 milliseconds ± 1/584 milliseconds. 71 VCC6 - Factory Test. This pin should not be connected and is reserved for factory test. +5 Volt Supply. 1. DI = digital input; DO = digital output, DI/O = digital input and output; AI = analog input, AO = analog output. Datasheet 13 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 1. Pin Descriptions (Continued) Pin Symbol I/O1 Description 72 ICLK3 DI Loop 3 Transceiver Interface Clock. This clock input synchronizes the transfer of HDSL data and frame mark to/from the Loop 3 transceiver. This clock samples the LP3DTI and RFP3 inputs on rising edge, and outputs the LP3DTO and TFP3 outputs on the falling edge. The nominal frequency of this clock signal is 1168 kHz. 73 GND6 - Ground. 74 FT11 - Factory Test. This pin should not be connected and is reserved for factory test. 75 FT12 - Factory Test. This pin should not be connected and is reserved for factory test. 76 FT13 - Factory Test. This pin should not be connected and is reserved for factory test. 77 BPVI DI BPV Indicator Input. This pin provides hardware access to the mux HDSL BPV overhead bit on each loop. An active High pulse on this pin activates the BPV indicator bit on each loop in the next frame. This signal is ORed with separate software control bits for each loop that can also activate the BPV bits. 78 LOSDI DI Loss of E1 Signal. This pin provides hardware access to the mux HDSL LOSD overhead bit on each loop. An active High pulse on this pin activates the LOSD indicator bit on all loops in the next frame. This signal is ORed with separate software control bits for each loop that can also activate the LOSD bits. 79 FRCMXAIS DI Force Mux AIS. When enabled by the EXTMXAIS control bit, a High on this bit forces the mux E1 to insert AIS. 80 E1FRMO DO E1 Frame Sync Output. This output identifies the first frame bit position of the demux E1 data. The signal must be High for one E1CLKO period. The nominal frequency of this signal is 8 kHz. 81 E1DATO DO E1 Data Output. This output signal provides the data to the external E1 framer. 82 FT14 - Factory Test. This pin should not be connected and is reserved for factory test. 83 E1CLKO DO 84 FT15 - E1 Clock Output. This output is used to synchronize the transfer of E1 frame mark and data. The output edge of this clock can be inverted by the INVDXCK control bit. The nominal frequency of this clock is 2.048 MHz. Factory Test. This pin should not be connected and is reserved for factory test. 1. DI = digital input; DO = digital output, DI/O = digital input and output; AI = analog input, AO = analog output. 14 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 2.0 Functional Description The framer is separated into the following blocks of logic: the multiplexer, demultiplexer, microprocessor interface, E1 interface, and HDSL interface. The following subsections describe each logic function. The ETSI Technical Report ETR 152 will yield a better understanding of the ETSI HDSL system. Framer related sections include, but are not limited to, the HDSL core specifications, frame structure and Application specific requirements. It is beyond the scope of this document to completely explain all of the details in ETR 152, but some of the directly related HFMA functionality will be covered. 2.1 Multiplexer (MX) The function of the MX block is to split the E1 payload into 2 or 3 parts and then multiplex each part with HDSL overhead (HOH) bits, including CRC6, eoc and Z-bits to be passed on to the individual HDSL data pumps. The MX block controls stuffing into the HDSL data stream. The MX block configuration registers are programmed by the microprocessor. The microprocessor also sets the eoc and Z-bits. Individual loop testing is supported by generating test and error patterns in the MX block. Sync word generation and data scrambling, as defined by ETR 152, are done by the SK70707 digital transceiver, and therefore are not performed by the HFMA. Figure 3 shows a simplified logic block of the MX process. The MX_E1_CTL block uses the selected E1 clock to load the E1 data from the E1 Interface into the FIFOs. The E1 clock may be either the derived clock from the E1 data stream, E1CLKI, or an internal nominal clock (E1_NMCK). The MXE1CTL register ( Table 3 on page 24) controls which E1 clock is selected as well as selecting whether E1 data or AIS (all 1s) is clocked into the FIFOs. The NMFMEN bit of the MXE1CTL register, when 0, selects the E1FRMI pin, otherwise an internally generated frame pulse is used. The Loop n Time Slot Control Byte registers, LnTSCTLx, listed in Table 10 through Table 20, control which time slots of the E1 data stream are assigned to which HDSL loop. The values loaded in these registers become valid only after setting the LDTABLE bit in the TSCTL register (Table 9 on page 28). The MX Process HDSL loop data is routed to the HDSL Interface. HDSL loops 2 and 3 are aligned to loop 1. The HDSL_MX block multiplexes the HOH bits with the payload data as shown in Table 114 on page 68. The HOH bits consist of 19 indicator bits, 13 eoc bits, 14-bit sync word, and 4 stuffing bits (when necessary). Each loop has its own multiplexer. A CRC6 is calculated per frame for each loop excluding the CRC bits, 14-bit sync word and the 4 stuffing bits. The result is stored and transmitted in the following frame. The other indicator bits are febe, losd, bpv, ps1, ps2, hrp, rrbe, rcbe, rega, rta, indc/indr and uib. The febe bit is generated from the DX process and is sent out to the far end HDSL device to indicate that a CRC error occurred in the local received data. The losd bit is from the LOSDI pin for loss of signal at the E1 interface. The bpv bit is from the BPVI pin for a bipolar violation in the E1 data. The bits ps1 and ps2 are Power Status bits from NTU (HTU-R) -> LTU (HTU-C) only. The hrp is the HDSL Repeater Present bit (repeater only). The rrbe, rcbe and rega bits are used for the regenerator/repeater status. The rta is for the remote (NTU) alarm. The 2 uib bits are the Unspecified Indicator Bits. Datasheet 15 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Several bits can be set for error injection testing on a per loop basis. The outgoing febe and bpv bits can be injected as single bit errors. The CRC can be set for continuous error generation. Registers LnOHCTL, listed in Table 6 through Table 8, control this activity. The transmitted Z-bits and eoc bits are set by the microprocessor interface. The Z-bit transmit registers are MXL1Zx in Table 39 through Table 62, MXL2Zx in Table 63 through Table 86, MXL3Zx in Table 87 through Table 110. The eoc transmit registers are MXL1EOC in Table 45 and Table 46, MXL2EOC in Table 69 and Table 70, MXL3EOC in Table 93 and Table 94. In general applications, the eoc is used by the HTU-C to transmit a command continuously to the HTU-R unit until the HTU-R echoes the same command back to the HTU-C three times. ETR 152 recommends some common commands that might be used, but it is up to each vendor to specify detailed implementation. The only defined Z-bits are the first three used for loop identification. Other Z-bits are reserved for vendor use. The PAT_GEN block generates a QRSS pattern and can be set to generate an error in that pattern. The QRSS is put in place of the E1 data for testing purposes. The QRSS signal is on a per loop basis and is controlled by the PATCTL register as described in Table 22 on page 34. Figure 3. MX Process LOSD, BPV, febe CRC6 E1 Data FIFO AIS LPx_DATA HDSL_MX E1_NMCK PAT_GEN E1 CLKI MX_E1_CTL E1FRMI FRCMXAIS 16 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 2.2 Demultiplexer (DX) The DX performs the reverse function of the MX by de-multiplexing the HDSL bits into HOH bits and payload data and then combining the 2/3 HDSL payloads into an E1 payload. The HOH bits, eoc and Z-bits, are separated out from the payload, stored into registers for the microprocessor to read. The DX checks the received CRC6 against the data and sets a flag in case of an error condition. The DX also provides the E1 clock based upon an internal PLL. Figure 4 shows a simplified logic diagram of the DX Process. Each individual loop data is clocked into a separate FIFO. The DX_E1_CTL block controls the Write Enable to the FIFOs by blocking the HOH bits from being loaded into the FIFOs. The DX_E1_CTL selects from which FIFO to load data. The ordering of the time slots is based on the values programmed into the LnTSCTLx registers as described in Table 10 through Table 20. The values loaded in these registers become valid only after setting the LDTABLE bit in the TSCTL register, Table 9. The data is passed through a mux to DX_E1_DATA. The other selection of the mux is AIS. The use of AIS for the outgoing E1 data is controlled by the 4 LSBs of DXE1CTL register ( Table 4). The DX_E1_CTL block generates a 1168KHz gapped clock as a reference for the E1_TMG_GEN block. The DX_E1_CTL uses the DX_E1_CK from the E1_TMG_GEN to track the current position in the outgoing E1 data stream and to generate the DX_E1_FM, E1 framing pulse. The E1_TMG_GEN uses the DX_GAP_CK as the reference for the DX_E1_CK. The DX_E1_NMCK is a nominal E1 clock used for E1 AIS, E1 loopback and as the source for the NME1CKO pin to sync an E1 framer when it has no clock. The OH_PROC, overhead processor, looks for all of the HOH bits in the incoming HDSL frames. There is a OH_PROC block for each HDSL loop. The received Z-bits, eoc bits and overhead bits are latched into their respective registers in the UP_IF. A CRC is calculated on the received data and the result is stored for comparison against the CRC bits in the following frame. A CRC error generates the febe bit to the MX Process. The OH_PROC increments the associated error counters for CRC, febe and bpv. These counters are in the µP_IF section. The sync word bits and stuffing bits are discarded. The OH_PROC compares the loop ID received from each loop and generates a report to the µP_IF, LPRSTAT register in Table 28, and sends the loop correction bits to the HDSL Interface. The PAT_DET block, one per loop, generates a Pattern Sync Lost indication bit, PATLOS bit in PATSTAT register (see Table 24 on page 35), when the sync is not present. The PAT_DET increments the appropriate LnPATECL ( Table 60, Table 84, and Table 109) counter for each instance of a QRSS pattern bit failure. Overflows of these counters are indicated in PATSTAT register OVERFLOW bits ( Table 24). Overflows may also be set to trigger an interrupt via the µP_IF registers GENINTEN and GENINTSTAT (Table 29 and Table 30). Datasheet 17 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Figure 4. DX Process DX_LPx_CK DX_E1_DATA WRx_EN LOOP DATA FIFO DX_LPx_CK DX_E1_FM DX_E1_CTL MODE DX_GAP_CK PAT_DET µ P_IF LPREVx febex OH_PROC MODE_SELECT DX_E1_CK LOSWx E1_TMG_GEN EXPLLI DX_E1_NMCK CLK32M 2.3 Microprocessor Interface The microprocessor interface provides access to all of LXP710’s registers and routes the interrupt signals to external pins. The MBSE pin configures the LXP710 microprocessor interface for either the Intel or Motorola bus timing. The LXP710 registers are described in 2Table 2 through Table 113. 18 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 In the Motorola Mode (MBSE pin set High), the data bus D<0:7>, address bus A<0:6>, CS, DS and R/W are used to read or write to the LXP710’s internal registers. In the Intel Mode (MBSE pin set Low), the data bus D<0:7>, address bus A<0:6>, CS, RD and WR are used to read or write to the LXP710’s internal registers. The board design must include a latch, using ALE, for the address from the Intel multiplexed AD bus. This latch could be shared with the data pumps and other devices on board that have non-multiplexed address pins. To optimize code execution, Two external interrupt pins, INTGEN and INT6MS, are provided. The INTGEN pin is for general purpose interrupts as listed in the GENINTEN and GENINTSTAT registers in Table 29 and Table 30. The INDCR bits in the IND_3EOCINTEN and IND_3EOCINTSTAT registers in Table 33 and Table 34 are also tied to the INTGEN pin. The INT6MS pin is for the 6 ms timing related functions such as when the MX eoc and Z-bits are ready to be loaded to transmit and when the DX eoc and Z-bits have been received. Additionally the EOC Triple-Echo Message Compare Detected bits in the IND_3EOCINTEN and IND_3EOCINTSTAT registers (Table 33 and Table 34) are also tied to the INT6MS pin. This feature reduces software processing needed to detect that a message has been received three times. 2.4 E1 Interface The E1 interface connects to an E1 framer device. As shown in Figure 5, the incoming E1 data is routed to the MX and is controlled by signals from the E1 framer. The E1 interface takes E1 data from the DX and provides control signals for the E1 framer. Two loopbacks are available. The first loopback is for E1 input data to E1 output data. The other is the loopback for the internal DX E1 payload back to the MX block. As shown in the diagram, the two loopbacks are tied together. The loopback is achieved by setting the E1LB bit in the DXE1CTL register as described in Table 4. Figure 5. E1 Interface with Loopback Switching E1CLKI MX_E1_CK E1FRMI MX_E1_FM E1DATI MX_E1_DT E1DAT0 DX_E1_DT E1FRM0 DX_E1_FM E1CLK0 DX_E1_CK Datasheet 19 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications 2.5 HDSL Interface The HDSL interface block connects the HDSL loops to the MX and DX blocks. The block can provide loop switching, as well as loopback for each external incoming loop and a loopback for the internal MX signals to the DX block. Figure 6 shows the possible signal routings. When the HDSLLB bit in the LPCTL register ( Table 5) is set, all HDSL Interface loopbacks are set. The LOOP_REV block shows how any loop swap combination can be set by the DX Process in Figure 2.3. The status of the loop connections can be monitored by reading the LPREV bits in the LPRSTAT register. See Table 28. Figure 6. HDSL Interface MX_LP1 DX_LP1 LP1O LP1I MX_LP2 LP2O DX_LP2 LP2I MX_LP3 LP3O DX_LP3 LP3I MUX_LB 20 LOOP_REV HDSL_LB Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 3.0 Register Definitions Table 2 provides a summary of the LXP710 registers. Table 3 through Table 113 provide detailed descriptions of each of the LXP710 register bits. The specified default values are set when the LXP710 is reset by pin 7. Table 2. Register Summary Hex Address Decimal Address Symbol Type 00 0 MXE1CTL R/W Mux E1 control register 01 1 DXE1CTL R/W Demux E1 control register 02 2 LPCTL R/W HDSL loop control register 03 3 L1OHCTL R/W HDSL Loop 1 overhead control register 04 4 L2OHCTL R/W HDSL Loop 2 overhead control register 05 5 L3OHCTL R/W HDSL Loop 3 overhead control register 06 6 TSCTL R/W Time slot grouping table control register 07 7 L1TSCTL1 R/W Loop 1 time slot control byte 1 08 8 L1TSCTL2 R/W Loop 1 time slot control byte 2 Description 09 9 L1TSCTL3 R/W Loop 1 time slot control byte 3 0A 10 L1TSCTL4 R/W Loop 1 time slot control byte 4 0B 11 L2TSCTL1 R/W Loop 2 time slot control byte 1 0C 12 L2TSCTL2 R/W Loop 2 time slot control byte 2 0D 13 L2TSCTL3 R/W Loop 2 time slot control byte 3 0E 14 L2TSCTL4 R/W Loop 2 time slot control byte 4 0F 15 L3TSCTL1 R/W Loop 3 time slot control byte 1 10 16 L3TSCTL2 R/W Loop 3 time slot control byte 2 11 17 L3TSCTL3 R/W Loop 3 time slot control byte 3 12 18 L3TSCTL4 R/W Loop 3 time slot control byte 4 13 19 IDLECODE R/W Programmable idle code bytes 14 20 PATCTL R/W QRSS test pattern control register 15 21 FMSYNC_PLLCTL R/W Frame pulse sync & PLL control register 16 22 PATSTAT R/W Test pattern error counter status register 17 23 DXPSSTAT R/W Demux power status register 18 24 DXHRPSTAT R/W Demux HDSL repeater present status register 19 25 DXLOSDSTAT R/W Demux loss of signal status register 1A 26 LPRSTAT R/W Loop reversal status register 1B 27 GENINTEN R/W General interrupt enable register 1C 28 GENINTSTAT R/W General interrupt status register 1D 29 6MSINTEN R/W 6 ms interrupt enable register 1E 30 6MSINTSTAT R/W 6 ms interrupt status register Datasheet 21 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 2. 22 Register Summary (Continued) Hex Address Decimal Address Symbol Type 1F 31 IND_3EOCINTEN R/W Indicator bits & triple echo EOC enable register 20 32 IND_3EOCINTSTAT R/W Indicator bits & triple echo EOC status register 21 33 GLBCTL R/W Global control register 22 34 PLL_BWH R/W PLL band width control (high byte) 23 35 PLL_BWL R/W PLL band width control (low byte) 24 36 DXRSCNTR R 25 37 MXL1Z1 R/W Mux loop 1 Z bits (LSB) 26 38 MXL1Z2 R/W Mux loop 1 Z bits 27 39 MXL1Z3 R/W Mux loop 1 Z bits 28 40 MXL1Z4 R/W Mux loop 1 Z bits 29 41 MXL1Z5 R/W Mux loop 1 Z bits 2A 42 MXL1Z6 R/W Mux loop 1 Z bits (MSB) 2B 43 MXL1EOCH R/W Mux loop 1 EOC message (high byte) 2C 44 MXL1EOCL R/W Mux loop 1 EOC message (low byte) 2D 45 MXL1UIB R/W Mux loop 1 UIB bits 2E 46 DXL1Z1 R Demux loop 1 Z bits (LSB) 2F 47 DXL1Z2 R Demux loop 1 Z bits 30 48 DXL1Z3 R Demux loop 1 Z bits 31 49 DXL1Z4 R Demux loop 1 Z bits 32 50 DXL1Z5 R Demux loop 1 Z bits 33 51 DXL1Z6 R Demux loop 1 Z bits (MSB) 34 52 DXL1EOCH R Demux loop 1 EOC message (high byte) 35 53 DXL1EOCL R Demux loop 1 EOC message (low byte) 36 54 DXL1UIB R Demux loop 1 UIB bits 37 55 DXL1CRCEC R Demux loop 1 CRC error count 38 56 DXL1FEBEEC R Demux loop 1 FEBE error count 39 57 DXL1BPVEC R Demux loop 1 BPV error count 3A 58 L1PATECH R Loop 1 QRSS test pattern error counter (High) 3B 59 L1PATECL R Loop 1 QRSS test pattern error counter (Low) Description Demux loops restart counter 3C 60 MX1RSCNTR R Loop 1 mux restart counter 3D-3F 61-63 – – Unused 40-44 64-68 – – Unused 45 69 MXL2Z1 R/W Mux loop 2 Z bits (LSB) 46 70 MXL2Z2 R/W Mux loop 2 Z bits 47 71 MXL2Z3 R/W Mux loop 2 Z bits 48 72 MXL2Z4 R/W Mux loop 2 Z bits 49 73 MXL2Z5 R/W Mux loop 2 Z bits Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 2. Register Summary (Continued) Hex Address Decimal Address Symbol Type 4A 74 MXL2Z6 R/W Description Mux loop 2 Z bits (MSB) 4B 75 MXL2EOCH R/W Mux loop 2 EOC message (High byte) 4C 76 MXL2EOCL R/W Mux loop 2 EOC message (Low byte) 4D 77 MXL2UIB R/W Mux loop 2 UIB bits 4E 78 DXL2Z1 R Demux loop 2 Z bits (LSB) 4F 79 DXL2Z2 R Demux loop 2 Z bits 50 80 DXL2Z3 R Demux loop 2 Z bits 51 81 DXL2Z4 R Demux loop 2 Z bits 52 82 DXL2Z5 R Demux loop 2 Z bits 53 83 DXL2Z6 R Demux loop 2 Z bits (MSB) 54 84 DXL2EOCH R Demux loop 2 EOC message (High byte) 55 85 DXL2EOCL R Demux loop 2 EOC message (Low byte) 56 86 DXL2UIB R Demux loop 2 UIB bits 57 87 DXL2CRCEC R Demux loop 2 CRC error count 58 88 DXL2FEBEEC R Demux loop 2 FEBE error count 59 89 DXL2BPVEC R Demux loop 2 BPV error counter 5A 90 L2PATECH R Loop 2 QRSS test pattern error counter (High byte) 5B 91 L2PATECL R Loop 2 QRSS test pattern error counter (Low byte) 5C 92 MX2RSCNTR R Loop 2 mux restart counter 5D-5F 93-95 – – Unused 60-64 96-100 – – Unused 65 101 MXL3Z1 R/W Mux loop 3 Z bits (LSB) 66 102 MXL3Z2 R/W Mux loop 3 Z bits 67 103 MXL3Z3 R/W Mux loop 3 Z bits 68 104 MXL3Z4 R/W Mux loop 3 Z bits 69 105 MXL3Z5 R/W Mux loop 3 Z bits 6A 106 MXL3Z6 R/W Mux loop 3 Z bits (MSB) 6B 107 MXL3EOCH R/W Mux loop 3 EOC message (High byte) 6C 108 MXL3EOCL R/W Mux loop 3 EOC message (Low byte) 6D 109 MXL3UIB R/W 6E 110 DXL3Z1 R Demux loop 3 Z bits (LSB) 6F 111 DXL3Z2 R Demux loop 3 Z bits 70 112 DXL3Z3 R Demux loop 3 Z bits 71 113 DXL3Z4 R Demux loop 3 Z bits 72 114 DXL3Z5 R Demux loop 3 Z bits 73 115 DXL3Z6 R Demux loop 3 Z bits (MSB) 74 116 DXL3EOCH R Demux loop 3 EOC message (High byte) Datasheet Mux loop 3 UIB bits 23 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 2. Register Summary (Continued) Hex Address Decimal Address Symbol Type 75 117 DXL3EOCL R 76 118 DXL3UIB R Demux loop 3 UIB bits 77 119 DXL3CRCEC R Demux loop 3 CRC error count 78 120 DXL3FEBEEC R Demux loop 3 FEBE error count 79 121 DXL3BPVEC R Demux loop 3 BPV error count 7A 122 L3PATECH R Loop 3 QRSS test pattern error counter (High byte) 7B 123 L3PATECL R Loop 3 QRSS test pattern error counter (Low byte) 7C 124 MX3RSCNTR R Loop 3 mux restart counter 7D 125 VER R HFMA version number 7E 126 MXTEST R/W µP mode testing register for mux 7F 127 DXTEST R/W µP mode testing register for demux Description Demux loop 3 EOC message (Low byte) Mux E1 Control Register Address: 00 Abbreviation: MXE1CTL Read/Write 24 Table 3. Mux E1 Control Register Bit Name Default 7 n/a 0 Not used; Always read Low. 6 n/a 0 Not used; Always read Low. 5 INVMXCK 0 Invert Mux E1 Input Clock. When High, the rising edge of E1CLKI samples the mux E1 data and frame mark. When this bit is Low, the falling edge samples the data and frame mark. 4 NMCKEN 0 Nominal Clock Enable. When High, nominal clock is selected to input the MX_PROCESS block. When Low, E1 recovered clock is selected to input the MX_PROCESS block. 3 NMFMEN 0 Nominal Frame Pulse Enable. When High, nominal frame pulse is selected to input the MX_PROCESS block. When Low, Demux E1 frame pulse is selected to input the MX_PROCESS block. 2 MXSLIDEN 1 MUx Sliding Enable. When High, sliding mode is selected. When Low, jerking mode is selected. 1 SNDMXAIS 0 Send Mux E1 AIS. When High, E1 AIS is inserted into the mux HDSL payload of two/three loops. When Low, the incoming E1 is inserted. This control bit is ORed with the FRCMAIS input pin (when enabled) to control mux AIS. 0 EXTMAIS 0 External Mux AIS Enable. When High, the FRCMAIS input pin is enabled to insert mux E1 AIS. When Low, mux AIS insert is controlled solely by the SNDMAIS control bit. Description Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 NOTE: Usage of NMCKEN and NMFMEN are: Operation NMCKEN NMFMEN Framed service 0 0 Unframed service 0 1 E1 loopback 1 1 E1 loss of signal (LOS) 1 1 (where E1 framer doesn’t provide clock in LOS) Demux E1 Control Register Address: 01 Abbreviation: DXE1CTL Read/Write Table 4. Demux E1 Control Register Bit Name Default Description 7 INVDXCK 0 Invert Demux E1 Output Clock. When High, the demux E1 data and frame mark signals are updated on the falling edge of E1CLKO. When this bit is Low, the data and frame mark are updated on the rising edge. 6 E1LB 0 E1 Loopback. When High, both directions of the E1 NRZ clock, data, and frame mark are looped back. When Low, normal operation is enabled. 5 TMGSRC1 0 4 TMGSRC0 0 Demux E1 Timing Source Select. These two bits can select the ADPLL output or nominal clock as E1CLK0. 00: dependent on the status of input pins LOSWx and software setting in LPCTL register. The loop with first inactive LOSW status will be selected. If all LOSWx are active, force to nominal clock. 01: force to loop 1 10: force to loop 2 11: force to loop 3 3 DXAIS3 0 Demux Loop 3 AIS Enable. When High, the demux Loop 3 payload is forced to all ones. When Low, normal operation is enabled. 2 DXAIS2 0 Demux Loop 2 AIS Enable. When High, the demux Loop 2 payload is forced to all ones. When Low, normal operation is enabled. 1 DXAIS1 0 Demux Loop 1 AIS Enable. When High, the demux Loop 1 payload is forced to all ones. When Low, normal operation is enabled. 1 External Demux AIS Enable. When High, the LOSW1 input pin is enabled to force the demux Loop 1 payload to all ones, LOSW2 input pin is enabled to force the demux Loop 2 payload to all ones, and LOSW3 input pin is enabled to force the demux Loop 3 payload to all ones. When EXTDAIS is Low, external demux AIS insertion is disabled. 0 Datasheet EXTDAIS 25 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications HDSL Loop Control Register Address: 02 Abbreviation: LPCTL Read/Write Table 5. HDSL Loop Control Register Bit Name Default 7 n/a 0 Not used; Always read Low. 6 HDSLLB 0 HDSL Loopback Enable. When High, both directions of the Loop 1, Loop 2 and Loop 3 frame mark and data signals are looped back. When Low, all HDSL loopbacks are disabled. 5 LOSW3C1 0 LOSW3 S/W Control Description Normal Operation: 0x 4 LOSW3C0 0 Force to Active: 10 Force to Inactive: 11 3 LOSW2C1 0 2 LOSW2C0 0 LOSW2 S/W Control Normal Operation: 0x Force to Active: 10 Force to Inactive: 11 1 LOSW1C1 0 0 LOSW1C0 0 LOSW1 S/W Control Normal Operation: 0x Force to Active: 10 Force to Inactive: 11 HDSL Loop 1 Overhead Control Register Address: 03 Abbreviation: L1OHCTL Read/Write Table 6. 26 HDSL Loop 1 Overhead Control Register Bit Name Default Description 7 n/a 0 Not used; Always read Low. 6 L1FEBE 0 Mux Loop 1 FEBE Inject (Single-bit). A Low-to-High transition on this bit causes the mux Loop 1 FEBE overhead bit to be activated for one frame. After the FEBE bit has been inserted, this control bit is automatically cleared. The FEBE bit is also activated each time a demux CRC error is detected (on either loop). 5 L1BPV 0 Mux Loop 1 BPV Error Inject (Single-bit). A Low-to-High transition on this bit causes the mux Loop 1 BPV overhead bit to be activated for one frame. After the BPV bit has been transmitted, this control bit is automatically cleared. The mux BPV indicator bit can also be activated by the BPV input pin. 4 L1CRCE 0 Mux Loop 1 CRC Error Inject (Continuous). When High, a continuous error is injected in the mux Loop 1 CRC code until this bit is cleared by the microprocessor. Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 6. HDSL Loop 1 Overhead Control Register (Continued) Bit Name Default 3 L1LOSD 0 Mux Loop 1 LOSD Alarm Activate. When High, the mux Loop 1 LOSD alarm overhead bit is activated until this bit is reset by the microprocessor. When Low, the LOSD alarm bits are still sent when LOSD input pin is active. 2 L1HRP 0 Mux Loop 1 HDSL Repeater Present Control. When High, the mux Loop 1 HRP overhead bit is activated until this bit is reset by the microprocessor. 1 L1PS1 0 Mux Loop 1 Power Status Bit #1 Control. When High, the mux Loop 1 PS1 overhead bit is activated until this bit is reset by the microprocessor. 0 L1PS2 0 Mux Loop 1 Power Status Bit #2 Control. When High, the mux Loop 1 PS2 overhead bit is activated until this bit is reset by the microprocessor. Note: Description Although the HDSL overhead indicator bits are active Low on the HDSL data stream, all control bits in this register are active High, i.e., the overhead control bits are inverted before they are transmitted on the loop. HDSL Loop 2 Overhead Control Register Address: 04 Abbreviation: L2OHCTL Read/Write Table 7. HDSL Loop 2 Overhead Control Register Bit Name Default 7 n/a 0 Not used; Always read Low. 6 L2FEBE 0 Mux Loop 2 FEBE Inject (Single-bit). A Low-to-High transition on this bit causes the mux Loop 2 FEBE overhead bit to be activated for one frame. After the FEBE bit has been inserted, this control bit is automatically cleared. The FEBE bit is also activated each time a demux CRC error is detected (on either loop). Description 5 L2BPV 0 Mux Loop 2 BPV Error Inject (Single-bit). A Low-to-High transition on this bit causes the mux Loop 2 BPV overhead bit to be activated for one frame. After the BPV bit has been transmitted, this control bit is automatically cleared. The BPV indicator can also be activated by the microprocessor. 4 L2CRCE 0 Mux Loop 2 CRC Error Inject (Continuous). When High, a continuous error is injected in the mux Loop 1 CRC code until this bit is cleared by the microprocessor. 3 L2LOSD 0 Mux Loop 2 LOSD Alarm Activate. When High, the mux Loop 2 LOSD alarm overhead bit is activated until this bit is reset by the microprocessor. When Low, the LOSD alarm is sent if the LOSD input pin is active. 2 L2HRP 0 Mux Loop 2 HDSL Repeater Present Control. When High, the mux Loop 2 HRP overhead bit is activated until this bit is reset by the microprocessor. 1 L2PS1 0 Mux Loop 2 Power Status Bit #1 Control. When High, the mux Loop 2 PS1 overhead bit is activated until this bit is reset by the microprocessor. 0 L2PS2 0 Mux Loop 2 Power Status Bit #2 Control. When High, the mux Loop 2 PS2 overhead bit is activated until this bit is reset by the microprocessor. Note: Datasheet Although the HDSL overhead indicator bits are active Low on the HDSL data stream, all control bits in this register are active High, i.e., the overhead control bits are inverted before they are transmitted on the loop. 27 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications HDSL Loop 3 Overhead Control Register Address: 05 Abbreviation: L3OHCTL Read/Write Table 8. HDSL Loop 3 Overhead Control Register Bit Name Default 7 n/a 0 Not used; Always read Low. 6 L3FEBE 0 Mux Loop 3 FEBE Inject (Single-bit). A Low-to-High transition on this bit causes the mux Loop 3 FEVE overhead bit to be activated for one frame. After the FEBE bit has been inserted, this control bit is automatically cleared. The FEBE bit is also activated each time a demux CRC error is detected (on either loop). 5 L3BPV 0 Mux Loop 3 BPV Error Inject (Single-bit). A Low-to-High transition on this bit causes the mux Loop 3 BPV overhead bit to be activated for one frame. After the BPV bit has been transmitted, this control bit is automatically cleared. The BPV indicator can also be activated by the microprocessor. 4 L3CRCE 0 Mux Loop 3 CRC Error Inject (Continuous). When High, a continuous error is injected in the mux Loop 1 CRC code until this bit is cleared by the microprocessor. 3 L3LOSD 0 Mux Loop 3 LOSD Alarm Activate. When High, the mux Loop 3 LOSD alarm overhead bit is activated until this bit is reset by the microprocessor. When Low, the LOSD alarm is sent if the LOSD input pin is active. 2 L3HRP 0 Mux Loop 3 HDSL Repeater Present Control. When High, the mux Loop 3 HRP overhead bit is activated until this bit is reset by the microprocessor. 1 L3PS1 0 Mux Loop 3 Power Status Bit #1 Control. When High, the mux Loop 3 PS1 overhead bit is activated until this bit is reset by the microprocessor. 0 L3PS2 0 Mux Loop 3 Power Status Bit #2 Control. When High, the mux Loop 3 PS2 overhead bit is activated until this bit is reset by the microprocessor. Note: Description Although the HDSL overhead indicator bits are active Low on the HDSL data stream, all control bits in this register are active High, i.e., the overhead control bits are inverted before they are transmitted on the loop. Time Slot Grouping Table Control Register Address: 06 Abbreviation: TSCTL Read/Write 28 Table 9. Time Slot Grouping Table Control Register Bit Name Default 7,6 n/a 0 Not used; Always read Low. 5 LPREN3 0 Loop Reversal Detection Enable. When High, enables loop 3 ID detection operation. 4 LPREN2 0 Loop Reversal Detection Enable. When High, enables loop 2 ID detection operation. 3 LPREN1 0 Loop Reversal Detection Enable. When High, enables loop 1 ID detection operation. Description Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 9. Time Slot Grouping Table Control Register (Continued) Bit Name Default Description 2 SWAPEN 0 Preferred Loop Enable. When High, time slot tables of Loop 1 and Loop 2 are swapped. 1 LDTABLE 0 Load Time Slot Grouping Table. When High, time slot grouping tables are loaded into Mux and Demux blocks and the bit is cleared automatically. 0 FULLE1 0 Full E1/Fractional E1 Control. When High, fractional E1 application is selected. When Low, full E1 is selected. HDSL Loop 1 Time Slot Control Byte (12 bytes) Address: 07 Abbreviation: L1TSCTL1 Read/Write Table 10. Loop 1 Time Slot Control Byte 1 Bit Name Default 7 TSG0 1 6 TSG1 1 5 TSG2 0 4 TSG3 1 3 TSG4 0 2 TSG5 1 1 TSG6 0 0 TSG7 1 Description Loop 1 Time Slot Grouping (Byte 1). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 08 Abbreviation: L1TSCTL2 Read/Write Table 11. Loop 1 Time Slot Control Byte 2 Bit Name Default 7 TSG8 0 6 TSG9 1 5 TSG10 0 4 TSG11 1 3 TSG12 0 2 TSG13 1 1 TSG14 0 0 TSG15 1 Datasheet Description Loop 1 Time Slot Grouping (Byte 2). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. 29 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Address: 09 Abbreviation: L1TSCTL3 Read/Write Table 12. Loop 1 Time Slot Control Byte 3 Bit Name Default 7 TSG16 1 6 TSG17 0 5 TSG18 1 4 TSG19 0 3 TSG20 1 2 TSG21 0 1 TSG22 1 0 TSG23 0 Description Loop 1 Time Slot Grouping (Byte 3). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 0A Abbreviation: L1TSCTL4 Read/Write Table 13. Loop 1 Time Slot Control Byte 4 Bit Name Default 7 TSG24 1 6 TSG25 0 5 TSG26 1 4 TSG27 0 3 TSG28 1 2 TSG29 0 1 TSG30 1 0 TSG31 0 Description Loop 1 Time Slot Grouping (Byte 4). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 0B Abbreviation: L2TSCTL1 Read/Write 30 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 14. Loop 2 Time Slot Control Byte 1 Bit Name Default 7 TSG0 1 6 TSG1 0 5 TSG2 1 4 TSG3 0 3 TSG4 1 2 TSG5 0 1 TSG6 1 0 TSG7 0 Description Loop 2 Time Slot Grouping (Byte 1). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 0C Abbreviation: L2TSCTL2 Read/Write Table 15. Loop 2 Time Slot Control Byte 2 Bit Name Default 7 TSG8 1 6 TSG9 0 5 TSG10 1 4 TSG11 0 3 TSG12 1 2 TSG13 0 1 TSG14 1 0 TSG15 0 Description Loop 2 Time Slot Grouping (Byte 2). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 0D Abbreviation: L2TSCTL3 Read/Write Datasheet 31 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Bit Name Default 7 TSG16 1 6 TSG17 1 5 TSG18 0 4 TSG19 1 3 TSG20 0 2 TSG21 1 1 TSG22 0 0 TSG23 1 Description Loop 2 Time Slot Grouping (Byte 3). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 0E Abbreviation: L2TSCTL4 Read/Write Table 16. Loop 2 Time Slot Control Byte 4 Bit Name Default 7 TSG24 0 6 TSG25 1 5 TSG26 0 4 TSG27 1 3 TSG28 0 2 TSG29 1 1 TSG30 0 0 TSG31 1 Description Loop 2 Time Slot Grouping (Byte 4). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 0F Abbreviation: L3TSCTL1 Read/Write Table 17. Loop 3 Time Slot Control Byte 1 Bit <7:0> Name TSG<0:7> Default 0 Description Loop 3 Time Slot Grouping (Byte 1). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 10 Abbreviation: L3TSCTL2 Read/Write 32 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 18. Loop 3 Time Slot Control Byte 2 Bit Name Default Description <7:0> TSG<8:15> 0 Loop 3 Time Slot Grouping (Byte 2). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 11 Abbreviation: L3TSCTL3 Read/Write Table 19. Loop 3 Time Slot Control Byte 3 Bit Name Default Description <7:0> TSG<16:23> 0 Loop 3 Time Slot Grouping (Byte 3). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Address: 12 Abbreviation: L3TSCTL4 Read/Write Table 20. Loop 3 Time Slot Control Byte 4 Bit Name Default Description <7:0> TSG<24:31> 0 Loop 3 Time Slot Grouping (Byte 4). Each bit that is set Low blocks transmission of the corresponding DS0 channel in the mux E1 by forcing its bits to idle code. Programmable Idle Code Byte Address: 13 Abbreviation: IDLECODE Read/Write Table 21. Programmable Idle Code Bytes Bit Name Default <7:0> IDLE<7:0> FFh Description Programmable Idle Code. This 8 bit code contains the byte used for channel blocking. IDLE7 is the MSB and the first bit of E1 channel shifted out. QRSS Test Pattern Control Address: 14 Abbreviation: PATCTL Read/Write Datasheet 33 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 22. QRSS Test Pattern Control Register Bit Name Default Description 7, 6 n/a 0 Not used; Always read Low. 5 PATEN3 0 Loop 3 Test Pattern Generation/Detection Enable. When High, the internal pattern is inserted into the mux HDSL payload. When Low, the incoming mux E1 is inserted. 4 PATEN2 0 Loop 2 Test Pattern Generation/Detection Enable. When High, the internal pattern is inserted into the mux HDSL payload. When Low, the incoming mux E1 is inserted. 3 PATEN1 0 Loop 1 Test Pattern Generation/Detection Enable. When High, the internal pattern is inserted into the mux HDSL payload. When Low, the incoming mux E1 is inserted. 2 PATERRI3 0 Loop 3 Test Pattern Error Injection. When High, one bit error is injected into loop payload. When Low, error injection is disabled. After two frame pulses occurs, this bit is cleared. 1 PATERRI2 0 Loop 2 Test Pattern Error Injection. When High, one bit error is injected into loop payload. When Low, error injection is disabled. After two frame pulses occurs, this bit is cleared. 0 PATERRI1 0 Loop 1 Test Pattern Error Injection. When High, one bit error is injected into loop payload. When Low, error injection is disabled. After two frame pulses occurs, this bit is cleared. Frame Pulse Sync & PLL Control Register Address: 15 Abbreviation: FMSYNC_PLLCTL Read/Write Table 23. Frame Pulse Sync & PLL Control Register Bit Name Default Description <7:5> n/a 0 Not used; Always read Low. 4 SYNCEN 1 Loops Alignment Enable. When High, this bit enables synchronization of the HDSL frames. Frame Pulse Synchronization Select: 00: No frame synchronization 3 SYNCFM[1] 0 01: Sync with Loop 1 frame pulse 10: Sync with Loop 2 frame pulse 11: Sync with Loop 3 frame pulse 34 2 SYNCFM[0] 1 1 E1CLKSRC 0 E1 Clock Source Select; 1 = External Timing Source; 0 = Internal Timing Source. 0 LOCKSEL 0 PLL Locking Time Select; 1 = Slow locking time; 0 = Fast locking time. Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Test Pattern Error Counter Status Register All of the HDSL overhead status bits in this register are latched active High when detected, and remain High until a write is done by the microprocessor. Address: 16 Abbreviation: PATSTAT Read/Write Table 24. Test Pattern Error Counter Status Register Bit Name Default Description <7:6> n/a 0 Not used; Always read Low. <5:3> OVERFLOW<3:1> 0 Loop <3:1> Test Pattern Error Counter Status. When High, Pattern Error Counter has overflowed. <2:0> PATLOS<3:1> 0 Loop <3:1> Sync Pattern Detector Status. When High, Pattern Sync is lost. Demux Power Status Register Address: 17 Abbreviation: DXPSSTAT Read/Write Table 25. Demux Power Status Register Bit Name Default Description <7:6> n/a 0 Not used; Always read Low. 5 DL3PS1 0 Demux Loop3 power status bit #1. 4 DL3PS2 0 Demux Loop3 power status bit #2. 3 DL2PS1 0 Demux Loop2 power status bit #1. 2 DL2PS2 0 Demux Loop2 power status bit #2. 1 DL1PS1 0 Demux Loop 1 power status bit #1. 0 DL1PS2 0 Demux Loop 1 power status bit #2. All of the HDSL overhead status bits in this register are latched active High when detected, and remain High until a write is done by the microprocessor. Note: Although the HDSL overhead indicator bits are active Low on the HDSL data stream, all status bits in this register are active High, i.e., the status bits are inverted from what was received on the loop. Demux HDSL Repeater Present Status Register Address: 18 Abbreviation: DXHRPSTAT Datasheet 35 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Read/Write Table 26. Demux HDSL Repeater Present Status Register Bit Name Default <7:3> n/a 0 Not used; Always read Low. <2:0> D<3:1>HRP 0 Demux loop<3:1> HDSL Repeater present status bit. Note: Description Although the HDSL overhead indicator bits are active Low on the HDSL data stream, all status bits in this register are active High, i.e., the status bits are inverted from what was received on the loop. Demux Loss of Signal Status Register Address: 19 Abbreviation: DXLOSDSTAT Read/Write Table 27. Demux Loss of Signal Status Register Bit Name Default Description <7:3> n/a 0 Not used; Always read Low. <2:0> D<3:1>LOSD 0 Demux loop<3:1> loss of signal status bit. All of the HDSL overhead status bits in this register are latched active High when detected, and remain High until a write of a logic one is done by the microprocessor. Note: Although the HDSL overhead indicator bits are active Low on the HDSL data stream, all status bits in this register are active High, i.e., the status bits are inverted from what was received on the loop. Loop Reversal Status Register Address: 1A Abbreviation: LPRSTAT Read/Write Table 28. Loop Reversal Status Register 36 Bit Name Default Description 7, 6 n/a 0 Not used; Always read zero. 5 LPRDONE3 0 4 LPRDONE2 0 Loop Reversal Detect. When in HTUC Mode (LTU = 1), Loop x has detected the loop identification returned from HTUR. 3 LPRDONE1 0 In HTUR Mode (LTU = 0), Loop x has detected the same loop identification three times, and the Loop x reversal is done. Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 28. Loop Reversal Status Register (Continued) Bit Name Default Description 2 LPREV[2] 0 000: Directs Loop 1 data to Loop 1 buffer and Loop 2 data to Loop 2 buffer. 1 LPREV[1] 0 001: Directs Loop 1 data to Loop 2 buffer and Loop 2 data to Loop 1 buffer. 010: Directs Loop 1 data to Loop 2 buffer and Loop 2 data to Loop 3 buffer. 011: Directs Loop 1 data to Loop 3 buffer and Loop 2 data to Loop 2 buffer. 0 LPREV[0] 0 100: Directs Loop 1 data to Loop 3 buffer and Loop 2 data to Loop 1 buffer. 101: Directs Loop 1 data to Loop 1 buffer and Loop 2 data to Loop 3 buffer. General Interrupt Enable Register Address: 1B Abbreviation: GENINTEN Read/Write Table 29. General Interrupt Enable Register Bit Name Default Description 7 n/a 0 Not used; Always read Low. 6 EIPATLOS 0 Enable interrupt on pattern sync loss. 5 EIECOVR 0 Enable Interrupt on pattern error counter overflow. 4 EILOSD 0 Enable interrupt on demux loop 1 or loop 2 or loop 3 LOSD. 3 EIPS 0 Enable interrupt on demux loop power status indication. 2 EIL3INDC_R 0 Enable interrupt on demux loop 3 indc/indr bit active. 1 EIL2INDC_R 0 Enable interrupt on demux loop 2 indc/indr bit active. 0 EIL1INDC_R 0 Enable interrupt on demux loop 1 indc/indr bit active. General Interrupt Vector Status All of the HDSL overhead status bits in this register are latched active High when detected, and remain High until a write is done by the microprocessor. When a logic ‘1’ is written to these registers, these status bits are cleared unless the associated overhead bit is still active. Address: 1C Abbreviation: GENINTSTAT Read/Write Table 30. General Interrupt Status Register Bit Name Default 7 n/a 0 Not used; Always read Low. 6 IVPATLOS 0 Pattern sync loss. 5 IVECOVR 0 Pattern error counter overflow. 4 IVLOSD 0 Demux loop 1 or loop 2 or loop 3 LOSD. Datasheet Description 37 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 30. General Interrupt Status Register (Continued) Bit Name Default Description 3 IVPS 0 Demux loops PS1 or PS2 indication. 2 IVL3INDC_R 0 Demux loop 3 indc/r bit active, new event. 1 IVL2INDC_R 0 Demux loop 2 indc/r bit active, new event. 0 IVL1INDC_R 0 Demux loop 1indc/r bit active, new event. Note: INTGEN interrupt pin corresponds to the interrupt of PATLOS, ECOVR, LOSD, PS, UIB status bits in the GENINSTAT register and the INDC/R status bits in IND_3EOCSTAT register. 6MS Interrupt Enable Register Address: 1D Abbreviation: 6MSINTEN Read/Write Table 31. 6ms Interrupt Enable Register Bit Name Default Description <7:6> n/a 0 Not used; Always read Low. 5 EIMX36MS 0 Enable interrupt on loop 3 mux 6ms interrupt. 4 EIMX26MS 0 Enable interrupt on loop 2 mux 6ms interrupt. 3 EIMX16MS 0 Enable interrupt on loop 1 mux 6ms interrupt. 2 EIDX36MS 0 Enable interrupt on loop 3 demux 6ms interrupt. 1 EIDX26MS 0 Enable interrupt on loop 2 demux 6ms interrupt. 0 EIDX16MS 0 Enable interrupt on loop 1 demux 6ms interrupt. 6MS Interrupt Vector Status When a logic ‘1’ is written to these registers, these status bits are cleared unless the associated overhead bit is still active. Address: 1E Abbreviation: 6MSINTSTAT Read/Write Table 32. 6ms Interrupt Status Register 38 Bit Name Default Description <7:6> n/a 0 Not used; Always read Low. 5 L3MX6MS 0 Loop 3 mux 6ms interrupt. 4 L2MX6MS 0 Loop 2 mux 6ms interrupt. 3 L1MX6MS 0 Loop 1 mux 6ms interrupt. Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 32. 6ms Interrupt Status Register (Continued) Bit Name Default 2 L3DX6MS 0 Loop 3 demux 6ms interrupt. 1 L2DX6MS 0 Loop 2 demux 6ms interrupt. 0 L1DX6MS 0 Loop 1 demux 6ms interrupt. Note: Description INT6MS interrupt pin corresponds to the interrupt of Mux and Demux 6MS status bits in the 6MSINTSTAT register and triple-echo EOC status bits in IND_3EOCSTAT register. Indicator and Triple Echo EOC Interrupt Enable Register Address: 1F Abbreviation: IND_3EOCINTEN Read/Write Table 33. Indicator Bits & Triple Echo EOC Enable Register Bit Name Default <7:6> n/a 0 Not used; Always read zero. <5:3> EIL<3:1>INDCR 0 Enable interrupt on loop <3:1> ready to receive indicator bit. 0 Enable Interrupt on Loop <3:1> EOC Triple-Echo Message Compare. When High, in addition to enabling the Triple-Echo Message interrupt, the integrated EOC message (which is updated only when a Triple_Echo message is valid) is output. When Low, the non-integrated EOC message (updated every 6 ms) is sent to the receive EOC message register on each loop. <2:0> EIL<3:1>CMP Description Indicator and Triple Echo EOC Interrupt Status Register When a logic ‘1’ is written to these registers, these status bits are cleared unless the associated overhead bit is still active. Address: 20 Abbreviation: IND_3EOCINTSTAT Read/Write Table 34. Indicator Bits & Triple EOC Status Register Bit Name Default <7:6> n/a 0 Not used; Always read zero. <5:3> L<3:1>INDCR 0 Loop <3:1> Ready to Receive Indicator. This status bit is active to indicate to the distant HDSL transceiver that it is ready to receive data. <2:0> L<3:1>EOCCMP 0 Loop <3:1> EOC Triple-Echo Message Compare Detected. This status bit is active only when a new message has been received three consecutive times. Datasheet Description 39 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Global Control Register Address: 21 Abbreviation: GLBCTL Read/Write Table 35. Global Control Register Bit Name Default Description 7 n/a 0 Not used; always read zero. 6 LP_CFG[1] 0 HDSL loop configuration for fractional E1 application at central office side. These two bits will control the relationship of DX three data buffer’s restart. 00: loops 1, 2 coming from the same remote terminal. 5 LP_CFG[0] 0 01: loops 1, 3 coming from the same remote terminal. 10: loops 2, 3 coming from the same remote terminal. 11: 3 loops coming from 3 different remote terminals. 4 E1DTLB 0 E1 Data Loopback Enable for fractional E1. When High, both input/output directions of the E1 NRZ data are loopback, but not the E1 clock or frame pulse. When Low, normal operation. 3 E1FMSEL 0 E1 Framer Select. 0 = Select DS2143; 1 = Select DS2181. If 0, E1FRM0 and E1FRM1 coincide with the first bit of time slot 0 for E1DAT0 and E1DATI respectively. If 1, E1FRM0 and E1FRMI coincide with the last bit of time slot 31 for E1DAT0 and E1DATI respectively. 2 THMODEN 1 1 = Threshold Modulation Enable. 0 = Threshold Modulation Disable. Indicates the DX E1 clock loop source status. <1:0> TMGSTAT 0 00: loop 1 01: loop 2 10: loop 3 PLL Band Width Control Registers (2 bytes) Address: 22 Abbreviation: PLL_BWH Read/Write Table 36. PLL Band Width Control (High Byte) Bit Name Default <7:0> PLL_BWH FC Description PLL locking time register High byte. For values greater than 80h, longer locking time to low end frequency, with lower jitter amplitude. Address: 23 Abbreviation: PLL_BWL Read/Write 40 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 37. PLL Band Width Control (Low Byte) Bit Name Default <7:0> PLL_BWL 03 Description PLL locking time register Low byte. For values less than 80h, longer locking time to High end frequency, with lower jitter amplitude. Demux Restart Counter Register Address: 24 Abbreviation: DXRSCNTR Read only Table 38. Demux Restart Counter Bit Name Default <7:0> n/a 0 Description E1 Demux Restart Counter. Increments each time the E1 demux loop has been restarted. Primarily used for manufacture testing. Mux Loop 1 Z Bit Registers (6 Bytes) Address: 25 Abbreviation: MXL1Z1 Read/Write Table 39. Mux Loop 1 Z Bits (LSB) Bit Name Default <7:0> Z<1:8> FF Description Mux Loop 1 Z bit <1:8> Address: 26 Abbreviation: MXL1Z2 Read/Write Table 40. Mux Loop 1 Z Bits Bit Name Default <7:0> Z<9:16> FF Description Mux Loop 1 Z bit <9:16> Address: 27 Abbreviation: MXL1Z3 Read/Write Datasheet 41 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 41. Mux Loop 1 Z Bits Bit Name Default <7:0> Z<17:24> FF Description Mux Loop 1 Z bit <17:24> Address: 28 Abbreviation: MXL1Z4 Read/Write Table 42. Mux Loop 1 Z Bits Bit Name Default <7:0> Z<25:32> FF Description Mux Loop 1 Z bit <25:32> Address: 29 Abbreviation: MXL1Z5 Read/Write Table 43. Mux Loop 1 Z Bits Bit Name Default <7:0> Z<33:40> FF Description Mux Loop 1 Z bit <33:40> Address: 2A Abbreviation: MXL1Z6 Read/Write Table 44. Mux Loop 1 Z Bits (MSB) Bit Name Default <7:0> Z<41:48> FF Description Mux Loop 1 Z bit <41:48> Mux Loop 1 EOC Transmit Message (2 bytes) Address: 2B Abbreviation: MXL1EOCH Read/Write Table 45. Mux Loop 1 EOC Message (High Byte) 42 Bit Name Default Description <7:5> n/a 0 Not used; Always read Low. <4:0> EOC<1:5> 0 Mux Loop 1 EOC bit <1:5> Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Address: 2C Abbreviation: MXL1EOCL Read/Write Table 46. Mux Loop 1 EOC Message (Low Byte) Bit Name Default <7:0> EOC<6:13> 0 Description Mux Loop 1 EOC bit <6:13> Mux Loop 1 User Indicator Bit Register Address: 2D Abbreviation: MXL1UIB Read/Write Table 47. Mux Loop 1 UIB Bits Bit Name Default Description 7 n/a 0 Not used; Always read Low. 6 RRBE 0 Mux loop 1 regenerator remote block error. 5 RCBE 0 Mux loop 1 regenerator central block error. 4 REGA 0 Mux loop 1 internal alarm bit in the regenerator. 3 RTA 0 Mux loop 1 remote terminal alarm. 2 INDC/R 0 Mux loop 1 ready to receive indicator at the LTU/NTU. 1 UIB1 0 Mux loop 1uib bit 1. 0 UIB2 0 Mux loop 1 uib bit 2. Demux Loop 1 Z Bit Registers (6 Bytes) Address: 2E Abbreviation: DXL1Z1 Read Table 48. Demux Loop 1 Z Bits (LSB) Bit Name Default <7:0> Z<1:8> 0 Description Demux Loop 1 Z bit <1:8> Address: 2F Abbreviation: DXL1Z2 Read Datasheet 43 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 49. Demux Loop 1 Z Bits Bit Name Default <7:0> Z<9:16> 0 Description Demux Loop 1 Z bit <9:16> Address: 30 Abbreviation: DXL1Z3 Read Table 50. Demux Loop 1 Z Bits Bit Name Default <7:0> Z<17:24> 0 Description Demux Loop 1 Z bit <17:24> Address: 31 Abbreviation: DXL1Z4 Read Table 51. Demux Loop 1 Z Bits Bit Name Default <7:0> Z<25:32> 0 Description Demux Loop 1 Z bit <25:32> Address: 32 Abbreviation: DXL1Z5 Read Table 52. Demux Loop 1 Z Bits Bit Name Default <7:0> Z<33:40> 0 Description Demux Loop 1 Z bit <33:40> Address: 33 Abbreviation: DXL1Z6 Read Table 53. Demux Loop 1 Z Bits (MSB) Bit Name Default <7:0> Z<41:48> 0 Description Demux Loop 1 Z bit <41:48> Demux Loop 1 EOC Transmit Message (2 bytes) Address: 34 44 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Abbreviation: DXL1EOCH Read Table 54. Demux Loop 1 EOC Message (High Byte) Bit Name Default Description <7:5> n/a 0 Not used; Always read Low. <4:0> EOC<1:5> 0 Demux Loop 1 EOC bit <1:5> Address: 35 Abbreviation: DXL1EOCL Read Table 55. Demux Loop 1 EOC Message (Low byte) Bit Name Default <7:0> EOC<6:13> 0 Description Demux Loop 1 EOC bit <6:13> Demux Loop 1 User Indicator Bit Register Address: 36 Abbreviation: DXL1UIB Read Table 56. Demux Loop 1 UIB Bits Bit Name Default Description 7 n/a 0 Not used; Always read Low. 6 RRBE 0 Demux loop 1 regenerator remote block error. 5 RCBE 0 Demux loop 1 regenerator central block error. 4 REGA 0 Demux loop 1 internal alarm bit in the regenerator. 3 RTA 0 Demux loop 1 remote terminal alarm. 2 INDC/R 0 Demux loop 1 ready to receive indicator at the LTU/NTU. 1 UIB1 0 Demux loop 1 UIB bit 1. 0 UIB2 0 Demux loop 1 UIB bit 2. Demux Loop 1 CRC Error Counter Address: 37 Abbreviation: DXL1CRCEC Read Datasheet 45 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 57. Demux Loop 1 CRC Error Count Bit <7:0> Name Default Description 0 Demux Loop 1 CRC Error Counter. This 8-bit counter increments each time one or more errors are detected on the demux Loop 1 CRC-6 bits. After a microprocessor read, the counter is cleared. This counter is disabled when the LOSW1 signal is High, and automatically stops at 0FFh to prevent overflow. CRC1EC<7:0> Demux Loop 1 FEBE Error Counter Address: 38 Abbreviation: DXL1FEBEEC Read Table 58. Demux Loop 1 FEBE Error Count Bit <7:0> Name FEBE1EC<7:0> Default Description 0 Demux Loop 1 FEBE Error Counter. This 8-bit counter increments each time one or more errors are detected on the demux Loop 1 FEBE bits. After a microprocessor read, the counter is cleared. This counter is disabled when the LOSW1 signal is High, and automatically stops at 0FFh to prevent overflow. Demux Loop 1 BPV Error Counter Address: 39 Abbreviation: DXL1BPVEC Read Table 59. Demux Loop 1 BPV Error Count Bit <7:0> Name BPV1EC<7:0> Default Description 0 Demux Loop 1 BPV Error Counter. This 8-bit counter increments each time one or more errors are detected on the demux Loop 1 BPV bits. After a microprocessor read, the counter is cleared. This counter is disabled when the LOSW1 signal is High, and automatically stops at 0FFh to prevent overflow. Loop 1 QRSS Test Pattern Error Counter (2 bytes) Address: 3A Abbreviation: L1PATECH Read 46 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 60. Loop 1 QRSS Test Pattern Error Counter (High byte) Bit <7:0> Name Default Description 0 Loop 1 Test Pattern Error Counter (High byte). This 16-bit counter increments each time the demux test pattern receiver detects a pattern error. When the upper byte is read, the current count of both bytes is latched and the counter is cleared. This counter is disabled when pattern sync is lost. This counter does not stop counting at 0FFFFh, however, a latched overflow status bit is provided in the General Interrupt Vector Status register. PAT1ECH <15:8> Address: 3B Abbreviation: L1PATECL Read Table 61. Loop 1 QRSS Test Pattern Error Counter (Low) Bit Name <7:0> PAT1ECL <7:0> Default Description Loop 1 Test Pattern Error Counter (Low byte). The lower byte is latched when the upper byte is read. Therefore, this byte must be read last when reading the 16-bit Pattern Error Counter. Loop 1 Mux Restart Counter Address: 3C Abbreviation: DX1RSCNTR Read Table 62. Loop 1 Mux Restart Counter Bit Name Default Description <7:0> n/a 0 Loop 1 Mux Restart Counter. Increments each time the Mux loop 1 has been restarted. Cleared when read and stops at FFh. Mux Loop 2 Z Bit Register (6 Bytes) Address: 45 Abbreviation: MXL2Z1 Read/Write Table 63. Mux Loop 2 Z Bits (LSB) Bit Name Default <7:0> Z<1:8> FF Description Mux Loop 2 Z bit <1:8> Address: 46 Abbreviation: MXL2Z2 Datasheet 47 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Read/Write Table 64. Mux Loop 2 Z Bits Bit Name Default <7:0> Z<9:16> FF Description Mux Loop 2 Z bit <9:16> Address: 47 Abbreviation: MXL2Z3 Read/Write Table 65. Mux Loop 2 Z Bits Bit Name Default <7:0> Z<17:24> FF Description Mux Loop 2 Z bit <17:24> Address: 48 Abbreviation: MXL2Z4 Read/Write Table 66. Mux Loop 2 Z Bits Bit Name Default <7:0> Z<25:32> FF Description Mux Loop 2 Z bit <25:32> Address: 49 Abbreviation: MXL2Z5 Read/Write Table 67. Mux Loop 2 Z Bits Bit Name Default <7:0> Z<33:40> FF Description Mux Loop 2 Z bit <33:40> Address: 4A Abbreviation: MXL2Z6 Read/Write Table 68. Mux Loop 2 Z Bits (MSB) 48 Bit Name Default <7:0> Z<41:48> FF Description Mux Loop 2 Z bit <41:48> Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Mux Loop 2 EOC Transmit Message (2 bytes) Address: 4B Abbreviation: MXL2EOCH Read/Write Table 69. Mux Loop 2 EOC Message (High byte) Bit Name Default Description <7:5> n/a 0 Not used; Always read Low. <4:0> EOC<1:5> 0 Mux Loop 2 EOC bit <1:5> Address: 4C Abbreviation: MXL2EOCL Read/Write Table 70. Mux Loop 2 EOC Message (Low byte) Bit Name Default <7:0> EOC<6:13> 0 Description Mux Loop 2 EOC bit <6:13> Mux Loop 2 User Indicator Bit Register Address: 4D Abbreviation: MXL2UIB Read/Write Table 71. Mux Loop 2 UIB Bits Bit Name Default Description 7 n/a 0 Not used; Always read Low. 6 RRBE 0 Mux loop 2 regenerator remote block error. 5 RCBE 0 Mux loop 2 regenerator central block error. 4 REGA 0 Mux Loop 2 internal alarm bit in the regenerator. 3 RTA 0 Mux loop 2 remote terminal alarm. 2 INDC/R 0 Mux loop 2 ready to receive indicator at the LTU/NTU. 1 UIB1 0 Mux loop 2 UIB bit 1. 0 UIB2 0 Mux loop 2 UIB bit 2. Demux Loop 2 Z Bit Register (6 Bytes) Address: 4E Abbreviation: DXL2Z1 Datasheet 49 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Read Table 72. Demux Loop 2 Z Bits (LSB) Bit Name Default <7:0> Z<1:8> 0 Description Demux Loop 2 Z bit <1:8> Address: 4F Abbreviation: DXL2Z2 Read Table 73. Demux Loop 2 Z Bits Bit Name Default <7:0> Z<9:16> 0 Description Demux Loop 2 Z bit <9:16> Address: 50 Abbreviation: DXL2Z3 Read Table 74. Demux Loop 2 Z Bits Bit Name Default <7:0> Z<17:24> 0 Description Demux Loop 2 Z bit <17:24> Address: 51 Abbreviation: DXL2Z4 Read Table 75. Demux Loop 2 Z Bits Bit Name Default <7:0> Z<25:32> 0 Description Demux Loop 2 Z bit <25:32> Address: 52 Abbreviation: DXL2Z5 Read Table 76. Demux Loop 2 Z Bits 50 Bit Name Default <7:0> Z<33:40> 0 Description Demux Loop 2 Z bit <33:40> Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Address: 53 Abbreviation: DXL2Z6 Read Table 77. Demux Loop 2 Z Bits (MSB) Bit Name Default <7:0> Z<41:48> 0 Description Demux Loop 2 Z bit <41:48> Demux Loop 2 EOC Transmit Message (2 bytes) Address: 54 Abbreviation: DXL2EOCH Read Table 78. Demux Loop 2 EOC Message (High byte) Bit Name Default Description <7:5> n/a 0 Not used; Always read Low. <4:0> EOC<1:5> 0 Demux Loop 2 EOC bit <1:5> Address: 55 Abbreviation: DXL2EOCL Read Table 79. Demux Loop 2 EOC Message (Low byte) Bit Name Default <7:0> EOC<6:13> 0 Description Demux Loop 2 EOC bit <6:13> Demux Loop 2 User Indicator Bit Register Address: 56 Abbreviation: DXL2UIB Read Table 80. Demux Loop 2 UIB Bits Bit Name Default 7 n/a 0 Not used; Always read Low. 6 RRBE 0 DemuX loop 2 regenerator remote block error. 5 RCBE 0 Demux loop 2 regenerator central block error. 4 REGA 0 Demux loop 2 internal alarm bit in the regenerator. Datasheet Description 51 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 80. Demux Loop 2 UIB Bits (Continued) Bit Name Default Description 3 RTA 0 Demux loop 2 remote terminal alarm. 2 INDC/R 0 Demux loop 2 ready to receive indicator at the LTU/NTU. 1 UIB1 0 Demux loop 2 UIB bit 1. 0 UIB2 0 Demux loop 2 UIB bit 2. Demux Loop 2 CRC Error Counter Address: 57 Abbreviation: DXL2CRCEC Read Table 81. Demux Loop 2 CRC Error Count Bit Name Default Description <7:0> CRC2EC<7:0> 0 Demux Loop 2 CRC Error Counter. This 8-bit counter increments each time one or more errors are detected on the demux Loop 2 CRC-6 bits. After a microprocessor read, the counter is cleared. This counter is disabled when the LOSW2 signal is High, and automatically stops at 0FFh to prevent overflow. Loop 2 FEBE Error Counter Address: 58 Abbreviation: DXL2FEBEEC Read Table 82. Demux Loop 2 FEBE Error Count Bit <7:0> Name FEBE2EC<7:0> Default Description 0 Demux Loop 2 FEBE Error Counter. This 8-bit counter increments each time one or more errors are detected on the demux Loop 2 FEBE bits. After a microprocessor read, the counter is cleared. This counter is disabled when the LOSW2 signal is High, and automatically stops at 0FFh to prevent overflow. Loop 2 BPV Error Counter Address: 59 Abbreviation: DXL2BPVEC Read 52 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 83. Demux Loop 2 BPV Error Count Bit Name Default Description <7:0> BPV2EC<7:0> 0 Demux Loop 2 BPV Error Counter. This 8-bit counter increments each time one or more errors are detected on the demux Loop 2 BPV bits. After a microprocessor read, the counter is cleared. This counter is disabled when the LOSW2 signal is High, and automatically stops at 0FFh to prevent overflow. Loop 2 QRSS Test Pattern Error Counter (2 bytes) Address: 5A Abbreviation: L2PATECH Read Table 84. Loop 2 QRSS Test Pattern Error Counter (High byte) Bit <7:0> Name PAT2EC<15:8> Default Description 0 Loop 2 Test Pattern Error Counter (High byte). This 16-bit counter increments each time the demux test pattern receiver detects a pattern error. When the upper byte is read, the current count of both bytes is latched and the counter is cleared. This counter is disabled when pattern sync is lost. This counter does not stop counting at 0FFFFh, however, a latched overflow status bit is provided in the General Interrupt Vector Status register. Address: 5B Abbreviation: L2PATECL Read Table 85. Loop 2 QRSS Test Pattern Error Counter (Low byte) Bit Name Default Description <7:0> PAT2EC<7:0> 0 Loop 2 Test Pattern Error Counter (Low byte). The lower byte is latched when the upper byte is read. Therefore, this byte must be read last when reading the 16-bit Pattern Error Counter. Loop 2 Mux Restart Counter Register Address: 5C Abbreviation: MX2RSCNTR Read Table 86. Loop 2 Mux Restart Counter Bit <7:0> Datasheet Name n/a Default 0 Description Loop 2 mux restart counter. Increments each time the mux loop has been restarted. 53 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Mux Loop 3 Z Bit Register (6 Bytes) Address: 65 Abbreviation: MXL3Z1 Read/Write Table 87. Mux Loop 3 Z Bits (LSB) Bit Name Default <7:0> Z<1:8> FF Description Mux Loop 3 Z bit <1:8> Address: 66 Abbreviation: MXL3Z2 Read/Write Table 88. Mux Loop 3 Z Bits Bit Name Default <7:0> Z<9:16> FF Description Mux Loop 3 Z bit <9:16> Address: 67 Abbreviation: MXL3Z3 Read/Write Table 89. Mux Loop 3 Z Bits Bit Name Default <7:0> Z<17:24> FF Description Mux Loop 3 Z bit <17:24> Address: 68 Abbreviation: MXL3Z4 Read/Write Table 90. Mux Loop 3 Z Bits Bit Name Default <7:0> Z<25:32> FF Description Mux Loop 3 Z bit <25:32> Address: 69 Abbreviation: MXL3Z5 Read/Write 54 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 91. Mux Loop 3 Z Bits Bit Name Default <7:0> Z<33:40> FF Description Mux Loop 3 Z bit <33:40> Address: 6A Abbreviation: MXL3Z6 Read/Write Table 92. Mux Loop 3 Z Bits (MSB) Bit Name Default <7:0> Z<41:48> FF Description Mux Loop 3 Z bit <41:48> Mux Loop 3 EOC transmit Message (2 bytes) Address: 6B Abbreviation: MXL3EOCH Read/Write Table 93. Mux Loop 3 EOC Message (High byte) Bit Name Default Description <7:5> n/a 0 Not used; Always read Low. <4:0> EOC<1:5> 0 Mux Loop 3 EOC bit <1:5> Address: 6C Abbreviation: MXL3EOCL Read/Write Table 94. Mux Loop 3 EOC Message (Low byte) Bit Name Default <7:0> EOC<6:13> 0 Description Mux Loop 3 EOC bit <6:13> Mux Loop 3 User Indicator Bit Register Address: 6D Abbreviation: MXL3UIB Read/Write Datasheet 55 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 95. Mux Loop 3 UIB Bits Bit Name Default Description 7 n/a 0 Not used; Always read Low. 6 RRBE 0 Mux loop 3 regenerator remote block error. 5 RCBE 0 Mux loop 3 regenerator central block error. 4 REGA 0 Mux loop 3 internal alarm bit in the regenerator. 3 RTA 0 Mux loop 3 remote terminal alarm. 2 INDC/R 0 Mux Loop 3 ready to receive indicator at the LTU/NTU. 1 UIB1 0 Mux loop 3 UIB bit 1. 0 UIB2 0 Mux loop 3 UIB bit 2. Demux Loop 3 Z Bit Register (6 Bytes) Address: 6E Abbreviation: DXL3Z1 Read Table 96. Demux Loop 3 Z Bits (LSB) Bit Name Default <7:0> Z<1:8> 0 Description Demux Loop 3 Z bit <1:8> Address: 6F Abbreviation: DXL3Z2 Read Table 97. Demux Loop 3 Z Bits Bit Name Default <7:0> Z<9:16> 0 Description Demux Loop 3 Z bit <9:16> Address: 70 Abbreviation: DXL3Z3 Read Table 98. Demux Loop 3 Z Bits 56 Bit Name Default <7:0> Z<17:24> 0 Description Demux Loop 3 Z bit <17:24> Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Address: 71 Abbreviation: DXL3Z4 Read Table 99. Demux Loop 3 Z Bits Bit Name Default <7:0> Z<25:32> 0 Description Demux Loop 3 Z bit <25:32> Address: 72 Abbreviation: DXL3Z5 Read Table 100. Demux Loop 3 Z Bits Bit Name Default <7:0> Z<33:40> 0 Description Demux Loop 3 Z bit <33:40> Address: 73 Abbreviation: DXL3Z6 Read Table 101. Demux Loop 3 Z Bits Bit Name Default <7:0> Z<41:48> 0 Description Demux Loop 3 Z bit <41:48> Demux Loop 3 EOC Transmit Message (2 bytes) Address: 74 Abbreviation: DXL3EOCH Read Table 102. Demux Loop 3 EOC Message (High byte) Bit Name Default Description <7:5> n/a 0 Not used; Always read Low. <4:0> EOC<1:5> 0 Demux Loop 3 EOC bit <1:5> Address: 75 Abbreviation: DXL3EOCL Read Datasheet 57 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 103. Demux Loop 3 EOC Message (Low byte) Bit Name Default <7:0> EOC<6:13> 0 Description Demux Loop 3 EOC bit <6:13> Demux Loop 3 User Indicator Bit Register Address: 76 Abbreviation: DXL3UIB Read Table 104. Demux Loop 3 UIB Bits Bit Name Default Description 7 n/a 0 Not used; Always read Low. 6 RRBE 0 Demux loop 1 regenerator remote block error. 5 RCBE 0 Demux loop 1 regenerator central block error. 4 REGA 0 Demux loop 1 internal alarm bit in the regenerator. 3 RTA 0 Demux loop 1 remote terminal alarm. 2 INDC/R 0 Demux loop 1 ready to receive indicator at the LTU/NTU. 1 UIB1 0 Demux loop 1 UIB bit 1. 0 UIB2 0 Demux loop 1 UIB bit 2. Demux Loop 3 CRC Error Counter Address: 77 Abbreviation: DXL3CRCEC Read Table 105. Demux Loop 3 CRC Error Count Bit <7:0> Name CRC3EC<7:0> Default Description 0 Demux Loop 3 CRC Error Counter. This 8-bit counter increments each time one or more errors are detected on the demux Loop 3 CRC-6 bits. After a microprocessor read, the counter is cleared. This counter is disabled when the LOSW3 signal is High, and automatically stops at 0FFh to prevent overflow. Demux Loop 3 FEBE Error Counter Address: 78 Abbreviation: DXL3FEBEEC Read 58 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 106. Demux Loop 3 FEBE Error Count Bit Name Default Description <7:0> FEBE3EC<7:0> 0 Demux Loop 3 FEBE Error Counter. This 8-bit counter increments each time one or more errors are detected on the demux Loop 3 FEBE bits. After a microprocessor read, the counter is cleared. This counter is disabled when the LOSW3 signal is High, and automatically stops at 0FFh to prevent overflow. Loop 3 BPV Error Counter Address: 79 Abbreviation: DXL3BPVEC Read Table 107. Demux Loop 3 BPV Error Count Bit Name Default Description <7:0> BPV3EC<7:0> 0 Demux Loop 3 BPV Error Counter. This 8-bit counter increments each time one or more errors are detected on the demux Loop 3 BPV bits. After a microprocessor read, the counter is cleared. This counter is disabled when the LOSW3 signal is High, and automatically stops at 0FFh to prevent overflow. Loop 3 QRSS Test Pattern Error Counter (2 bytes) Address: 7A Abbreviation: L3PATECH Read Table 108. Loop 3 QRSS Test Pattern Error Counter (High byte) Bit <7:0> Name PAT3EC<15:8> Default Description 0 Loop 3 Test Pattern Error Counter (High byte). This 16-bit counter increments each time the demux test pattern receiver detects a pattern error. When the upper byte is read, the current count of both bytes is latched and the counter is cleared. This counter is disabled when pattern sync is lost. This counter does not stop counting at 0FFFFh, however, a latched overflow status bit is provided in the General Interrupt Vector Status register. Address: 7B Abbreviation: L3PATECL Read Table 109. Loop 3 QRSS Test Pattern Error Counter (Low byte) Bit Name Default <7:0> PAT3EC<7:0> 0 Datasheet Description Loop 3 Test Pattern Error Counter (Low byte). The lower byte is latched when the upper byte is read. Therefore, this byte must be read last when reading the 16-bit Pattern Error Counter. 59 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Loop 3 Mux Restart Counter Register Address: 7C Abbreviation: MX3RSCNTR Read Table 110. Loop 3 Mux Restart Counter Bit Name Default <7:0> n/a 0 Description Loop 3 mux restart counter. Increments each time the mux loop has been restarted. HFMA Version Number Address: 7D Abbreviation: VER Read Table 111. HFMA Version Number Bit Name Default <7:4> n/a 1 <3:0> n/a 1 Description Silicon version h11 for Version 1.1. Other values undefined at time of printing. Microprocessor Mode Testing Register For Mux Address: 7E Abbreviation: MXTEST Read/Write Table 112. Microprocessor Mode Testing Register for Mux Bit Name Default <7:0> n/a 0 Description Defined for manufacturing test only. Microprocessor Mode Testing Register for Demux Abbreviations: DXTEST Address: 7F Read/Write 60 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 113. Microprocessor Mode Testing Register for Demux Bit Name Default <7:0> n/a 0 Datasheet Description Defined for manufacturing test only. 61 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications 4.0 Application information 4.1 Target Applications The LXP710 HDSL framer/mapper is primarily intended for transporting 2.048 MHz E1 traffic over two loop systems. The data can either be framed (primarily channelized voice), or unframed (primarily data transport). One end of a two-loop HDSL system is shown in Figure 7. E1 service supports 32 64-kbps channels. Details of how the 32 channels are structured can be found in the ITU G.704 document. Definition of the E1 signal is found in the ITU G.703 document. An unframed data only transport system is shown is Figure 8. If no E1 framing signal is supplied, the HDSL system must be operated in a two line point-to-point mode. Point to multipoint operation is not possible in this mode. The system in Figure 7 can also support unframed operation by setting the LXP710 to unframed mode. The LXP710 also supports a fractional service mode. Fractional service is defined to be when a customer NTU is supplied with less than 32 channels of service. The E1 signal delivered is still 2.048 kbps with the unused channels filled with an idle code. Multipoint operation is when two or more NTUs are supported (Figure 9). A multipoint system always operates the loops in a fractional mode, while a fractional service can be one loop to one NTU. Fractional operation must always be in framed E1 mode. Unframed operation can not select which E1 channels go to the appropriate loops. 4.2 ETSI Compliant Operation Many OEMs supply E1 transport systems that must meet the ETSI compliance found in ETR(ETS)-152. The LXP710 supports two loop full 2M E1 and three loop fractional operation. The LXP710 forms the E1 HDSL frame format in Table 114 for each loop and provides access to the overhead bits in all loops independently. This is necessary but not sufficient to make a piece of equipment ETSI compliant. Other issues involve the start up process between the LTU and NTU. The ETR (ETS) 152 document describes this process. Also see the SK70707/8 data sheet for how the data pump activation fits into the ETSI start-up mode. Please contact Intel’s Telecom Marketing department for software in assisting developing an E1 HDSL system. The CRC-6 calculation method used in the LXP710 has been revised in the Rev 1.3 silicon. The earlier revisions do detect CRC-6 errors, but included the stuffing bits, contrary to ETR-152. The new revision corrects this, and is automatically compatible with the older revisions. This is achieved by using the UIB1 bit. (See Table 104 on page 58.) The LTU is the master unit and is typically located in a CO facility, while the NTU is typically located in the CPE facility. In this document there are references to LTU (HTU-C). The LTU is an ETSI designation, where the HTU-C is an ANSI designation. The HTU-x references are given for those readers who may be more familiar with North American equipment nomenclature. Another common name for the LTU is the local unit and the NTU is also known as the remote unit. 62 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 4.3 User Definable HDSL Overhead Bits ETSI specifications allocate overhead bits with the intent of command and control between the LTU (HTU-C) and NTU (HTU-R) units. The eoc bits are primarily used for this; plus three Z-bits for loop identification. The remaining 45 Z-bits per 6ms frame per loop are open for any use. This yields a 7.5 kbps channel per loop in both directions for data or low quality voice. If ETSI compliance is not needed, then the additional 13 eoc and 2 uib bits per frame bring this value to 10 kbps. This extra channel is accessible by the microprocessor with interrupts provided at the frame rate per loop to coordinate the writing to and reading of this channel. A point-to-point system could pair up these channels to provide a 15 kbps channel ETSI compliant, and a 20 kbps non ETSI compliant channel. Figure 7. Two-Loop E1 HDSL System Microprocessor E1 Line RTIP RPOS RRING RNEG RPOS RNEG RCLK RCLK RSER E1DATI RFSYNC E1FRMI E1CLKI LP1DTO TFP1 LP1DTI RFP1 TDATA TFP RDATA RFP LOSW1 ICLK1 LOSW ICLK SK70704 ACC SK70707/8 HDX Data Pump 1 TTIP TCLK TPOS TPOS TRING TNEG TNEG TCLK HDSL Lines E1CLKO TSER E1DATO TFSYNC E1FRMO ICLK2 LOSW2 RFP2 LP2DTI TFP2 LXT305A E1 LIU DS2181A E1 Framer LXP710 LP2DTO ICLK LOSW RFP RDATA TFP TDATA SK70704 ACC SK70707/8 HDX Data Pump 2 Datasheet 63 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Figure 8. Unframed Data Transport Operation Microprocessor LP1DTO TFP1 LP1DTI RFP1 LOSW1 ICLK1 E1FRMI GND RDATA RTIP RRING RCLK E1 Line E1DATI E1CLKI BPV BPVI LOS LOSDI TDATA TFP RDATA RFP LOSW ICLK SK70704 ACC SK70707/8 HDX Data Pump 1 HDSL Lines E1CLKO TCLK TTIP TRING TDATA LXT350/360 E1DATO E1 LIU n/c E1FRMO LXP710 ICLK2 LOSW2 RFP2 LP2DTI TFP2 LP2DTO ICLK LOSW RFP RDATA TFP TDATA SK70704 ACC SK70707/8 HDX Data Pump 2 64 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Figure 9. Point-to-Multipoint E1 HDSL System Microprocessor E1 Line RTIP RPOS RRING RNEG RCLK RSER E1DATI RFSYNC E1FRMI LP1DTO TFP1 LP1DTI RFP1 LOSW1 ICLK1 E1CLKI RPOS RNEG RCLK TDATA TFP RDATA RFP LOSW ICLK SK70704 ACC SK70707/8 HDX TTIP TRING TCLK TPOS TNEG Data Pump 1 TPOS TNEG TCLK HDSL Lines E1CLKO TSER E1DATO TFSYNC E1FRMO ICLK2 LOSW2 RFP2 LP2DTI TFP2 LP2DTO LXT305A E1 LIU DS2181A E1 Framer ICLK LOSW RFP RDATA TFP TDATA SK70704 ACC SK70707/8 HDX Data Pump 2 ICLK3 LOSW3 RFP3 LP3DTI TFP3 LP3DTO LXP710 ICLK LOSW RFP RDATA TFP TDATA SK70704 ACC SK70707/8 HDX Data Pump 3 4.4 System Software Guidelines Many implementations of HDSL systems contain a microprocessor per board which controls the operation of one framer and up to three data pumps. This processor usually also communicates with another in the rack that contains the board. Though there are other possibilities, this is usually a good compromise of providing the necessary computing power and local control of the devices on the board. At first glance the software required run a HDSL system seems complex, but let’s break it down to some operational modes. These modes can be: 1.) board initialization, 2.) loop activation, 3.) normal operation, 4.) diagnostic operation and 5.) external communication mode. The following discussion outlines the major tasks needed for a HDSL system, but not all the details necessary for a complete system. Datasheet 65 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications 4.4.1 Board Initialization This is usually the first code run which initializes the microprocessor which in turn writes the desired starting values to all the registers in the devices on the board. Configuration switches are read to determine whether the board is: a LTU or NTU unit, full 2M or fractional, etc. After this phase is complete the LTU board can communicate with its master controller in the rack. This is necessary to receive channel configuration and report the status of the loop. The OEM can decide whether the LTU should automatically activate the loops or wait for a explicit command from the rack controller. 4.4.2 Loop Activation This phase prepares the loops to carry the payload, in this case E1 data. The data pumps must go through a sophisticated process of training the receivers for echo cancellation, channel equalization and level slicing adjustment. Fortunately Intel data pumps do this automatically by just setting the Activation Request bit in the Control register. When the Active State bit in the Status register is set, this process is complete. Interrupt generation can be used to free the processor from polling to determine completion. Intel data pumps also automatically detect and correct TIP/RING polarity reversal in the wire pair connection. Once the data pumps are able to pass data, the framers take over to establish communication between the LTU and NTU. The first step is to establish that the loop wire pairs are connected correctly. The LTU sets Z-bits 1 - 3 to indicate loop identification. This is done by writing to the MX Z-bit registers. The NTU receives the loop IDs on the individual loops and checks to see if they are correct, if not then the NTU framer must switch the data paths internally to match and then set its MX loop ID back to the LTU when this process is complete. The loop reversal detect and switch can be done automatically in the LXP710 by setting the LPRENx bits in the TSCTL (06h) register during the board initialization phase. The second step for each side to set its MX indc/r bit when it is ready to receive data. The loop x time slot control bytes must be set. Default values can be stored at the LTU and NTU boards and loaded at power up. Alternately the LTU could receive the assignment from the rack master and, after receiving the indr bit from the NTU, send the configuration to the NTU using the unused Z-bits. Each loop could receive its assignment on its own loop. There is no standard for how the time slot assignments are made remotely so the OEM must take care to be consistent in future equipment designs to maintain interoperability. 4.4.3 Normal Operation Payload data is transported to both sides in this mode. Additionally this mode monitors the condition of the HDSL system. Operational characteristics such as signal-to-noise ratio (SNR), loss of signal (LOS) and CRC errors are tracked on each loop to anticipate problems. A LOSW from a data pump is a definite indication that the loop is malfunctioning and corrective action must be taken. When symptoms indicate that corrective actions are needed, the HDSL system should make changes gracefully to minimize the effect on the E1 link. In the instance of HDSL loop failures the LTU should continually cycle through activation attempts, while the NTU should go QUIET, time- 66 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 out and then wait for the LTU activation sequence. In instances of local lightning or a cable is cut, the system can recover on its own when the lightning transient dies down, or when the cable is spliced. Point-to-point systems can program LXP710’s automatic loop swap feature to maintain operation of selected E1 channels on a surviving loop when the primary loop is cut. In rack systems, the LTU should report abnormalities to the rack master. Local unit problems can be defined in terms of errors from either the local E1 or HDSL interface. Remote units can also experience errors. The NTU needs to set the appropriate bits in the HDSL loop. The rta, remote terminal alarm, bit can be used when no other bit is appropriate. Then the LTU can interrogate the NTU through the eoc bits to determine the problem. The ETR (ETS) 152 defines the eoc protocol and certain actions to be performed, but leaves open many register definitions. Again OEM implementations will differ. 4.4.4 Diagnostic Operation The diagnostic mode is used when a system is installed to ensure proper operation or to troubleshoot an operational system. The LTU and NTU can be put into loopback modes to isolate sections of the system for performance measurement or troubleshooting. Payload transport operation is shut off or limited in this mode. A HDSL system should be designed to minimize the impact on a properly operating loop when working on the failed one. The LXP710 provides features to change the loop timing source to maintain proper E1 timing. 4.4.5 External Communication This is usually a background mode for rack systems. The OEM must use a protocol to supply the LTU with configuration information and receive diagnostic data from it. The external system can support remote performance monitoring and command loopbacks, error injections, etc. This also provides the option to upgrade the HDSL system’s application software if it is contained in a FLASH EPROM, taking care not to alter the board bootload software. Datasheet 67 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications . Table 114. HDSL Frame Structure for Two Pair Point-to-Point System Time 0 ms 68 Frame Bit # HOH Bit # Symbol 1:14 1:14 SW<1:14> Description Sync word 15 15 losd Loss of input signal at the far end application interface 16 16 febe Far end block error 17:1756 – B01:B12 Payload block 1:12 1757 17 eoc01 eoc address 1758 18 eoc02 eoc address Notes Double barker code HDSL payload including Zm1:Zm12 1759 19 eoc03 eoc data/opcode 1760 20 eoc04 eoc Odd/Even Byte 1761 21 crc1 Cyclic redundancy check CRC-6 1762 22 crc2 Cyclic redundancy check CRC-6 1763 23 ps1 NTU power status bit 1 NTU → LTU only 1764 24 ps2 NTU power status bit 2 NTU → LTU only 1765 25 bpv Bipolar violation 1766 26 eoc05 eoc unspecified 1767:3506 – B13:B24 3507 27 eoc06 eoc message bit 1 3508 28 eoc07 eoc message bit 2 3509 29 eoc08 eoc message bit 3 3510 30 eoc09 eoc message bit 4 Payload blocks 13:24 HDSL payload including Zm13:Zm24 3511 31 crc3 Cyclic redundancy check CRC-6 3512 32 crc4 Cyclic redundancy check CRC-6 3513 33 hrp Regenerator present LTU ← REG → NTU 3514 34 rrbe Regenerator remote block error LTU ← REG → NTU 3515 35 rcbe Regenerator central block error LTU ← REG → NTU 3516 36 rega Regenerator alarm LTU ← REG → NTU 3517:5256 – B25:B36 Payload blocks 25:36 HDSL payload including Zm25:Zm36 5257 37 eoc10 eoc message bit 5 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Table 114. HDSL Frame Structure for Two Pair Point-to-Point System (Continued) Time 0 6 - 1/584 ms 6 ms nominal 6 + 1/584 ms Datasheet Frame Bit # HOH Bit # Symbol Description Notes 5258 38 eoc11 eoc message bit 6 5259 39 eoc12 eoc message bit 7 5260 40 eoc13 eoc message bit 8 5261 41 crc5 Cyclic redundancy check CRC-6 5262 42 crc6 Cyclic redundancy check CRC-6 5263 43 rta Remote terminal alarm NTU → LTU only 5264 44 indc/indr Ready to receive indc=LTU → NTU indr=NTU → LTU 5265 45 uib1 Unspecified indicator bit 5266 46 uib2 Unspecified indicator bit 5267:7006 – B37:B48 Payload blocks 37:48 HDSL payload including Zm34:Zm48 7007 47 stq1s Stuff quat 1 sign Frame stuffing 7008 48 stq1m Stuff quat 1 magnitude Frame stuffing 7009 49 stq2s Stuff quat 2 sign Frame stuffing 7010 50 stq2m Stuff quat 2 magnitude Frame stuffing The times listed relate to the end of the last bit of the previous line. 69 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Figure 10. Frame Structure of Two Pair Point-to-Point System (6 - 1/584) or 6 + 1/584) ms 3503 or 3505 quats 7q 1q SS Sync. Q Q Word 1 2 12*72 1/2=870q 5q HBBB O0 0 0 H1 2 3 870q 5q BHB 1 O1 2 H3 870q B HB 2 O2 4 H5 5q BHB 3 O3 6 H7 870q 0/2q B SS Sync. 4 Q Q Word 8 12 66 ms 0 ms 6+ HDSL Payload block (48 per HDSL Frame) Pair 1 Z11 Byte 1 Byte 3 Byte 5 Byte 7 Byte 9 Byte 11 ... Byte 25 Byte 27 Byte 29 Byte 31 Byte 33 Byte 35 Pair 2 Z11 Byte 2 Byte 4 Byte 6 Byte 8 Byte 10 Byte 12 ... Byte 26 Byte 28 Byte 30 Byte 32 Byte 34 Byte 36 145 bits, 72 1/2 quats 145 bits/ 1 168 ms Symbol B01:B48 Byte n HDSL system payload blocks. Byte n from core frame (n = 1:144). HOH HDSL overhead (sw, eoc, crc,...). quat Quaternary symbol. SQ1 SQ2 Stuff quats. Sync word 70 Description 7-symbol Barker codes. “Double Barker” → 14 bits. 66+ 6 - 1/584 ms 6 + 1/584 ms Zmn Additional overhead bits (Z bits). m Indicates corresponding pair (m = 1:2). n Indicates number of payload blocks (n = 1:48). Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 5.0 Test Specifications Note: The minimum and maximum values in Table 115 through Table 126 and Figure 11 through Figure 24 represent the performance specifications of the LXP710 and are guaranteed by test except, where noted, by design. Table 115. Absolute Maximum Ratings Parameter Symbol Min Vcc -0.3 Supply voltage Input voltage – Output current – tSTOR Storage temperature Max Unit +6.0 V Vcc +0.3 V – ±25 mA -65 +150 °C Table 116. Recommended Operating Conditions Parameter Symbol Min Typ Max Unit Vcc 4.75 5.0 5.25 V tA -40 – +85 °C DC supply Ambient operating temperature Table 117. DC Electrical Characteristics Parameter Sym Min Typ1 Max Unit Test Conditions Supply current (full operation) Icc – 45 70 mA Input Low voltage VIL – – 0.14 VCC V Input High voltage VIH 0.64 VCC – – V Output Low voltage VOL – – 0.06 VCC V IOL < 2 mA Output High voltage VOH 0.64 VCC – – V IOH < -2 mA IIL – – ±5 µA 0 < VIN < VCC Tristate leakage current I 3L – – ±5 µA 0 < V < VCC Input capacitance (individual pins) CIN – 10 – pF CLREF – – 15 pF Input leakage current2 3 Load capacitance (REFCLK output) 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Table 118. E1 Interface Input Timing Specifications (Figure 11 ) Sym Min Typ1 Max Unit Setup time of E1DATI and E1FRMI tSU 10 – – ns Referenced from falling edge of E1CLKI. Hold time of E1DATI and E1FRMI tHT 20 – – ns Referenced from falling edge of E1CLKI. E1CLKI period tPW – 488 – ns Parameter Test Conditions 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Datasheet 71 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Table 118. E1 Interface Input Timing Specifications (Figure 11 ) Sym Min Typ1 Max Unit E1CLKI pulse width Low tPWL 50 – – ns E1CLKI pulse width High tPWH 50 – – ns E1CLKI rise time tR – – 60 ns E1CLKI fall time tF – – 60 ns Parameter Test Conditions 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Figure 11. E1 Interface Input Timing tR tPW tPWL E1CLKI tPWH tF E1DATI, E1FRMI tSU tHT Table 119. E1 Interface Output Timing Specifications (Figure 12) Sym Min Typ1 Max Unit tD – 15 30 ns tPW – 488 – ns E1CLKO pulse width Low tPWL 50 – – ns E1CLKO pulse width High tPWH 50 – – ns E1CLKO rise time tR – – 40 ns E1CLKO fall time tF – – 40 ns Parameter Output delay time of E1DATO and E1FRMO E1CLKO period Test Conditions Referenced from rising edge of E1CLKO. 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 72 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Figure 12. E1 Interface Output Timing tPW tPWH tPWL E1CLKO tF tR E1DATO, E1FRMO tD Table 120. HDSL Interface Input Timing Specifications (Figure 13) Sym Min Typ1 Max Unit Test Conditions Setup time of LP<1:3>DTI, RFP<1:3> tSU 10 – – ns Referenced from rising edge of ICLK1. Hold time of LP<1:3>DTI, RFP<1:3> tHT 10 – – ns Referenced from rising edge of ICLK1. Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Figure 13. HDSL Interface Input Timing ICLK1 LP<1:3>DTI, RFP<1:3> tSU tHT Table 121. HDSL Interface Output Timing Specifications (Figure 14) Parameter Output delay time of LP<1:3>DTO, TFP<1:3> Sym Min Typ1 Max Unit Test Conditions tD – – 20 ns Referenced from falling edge of ICLK1. 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Datasheet 73 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Figure 14. HDSL Interface Output Timing ICLK1 LP<1:3>DTO, TFP<1:3> tD Table 122. Microprocessor Write Cycle Specifications—Motorola Mode (Table 15) Sym Min Typ1 Max Unit Address setup time to CS, DS tASU 10 – – ns D<0:7> setup time to CS, DS tDSU 10 – – ns Data-In hold time from CS, DS tDHT 10 – – ns Allowable CS width tCPW 80 – – ns Allowable DS assertion delay after CS, R/W tRSU – – 30 ns Allowable DS width tDPW 50 – – ns Parameter Test Conditions 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 74 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Figure 15. Microprocessor Write Cycle—Motorola Mode tASU Address (A<0:6>) tDSU D<0:7> tDHT CS tCPW R/W DS tDPW tRSU Table 123. Microprocessor Read Cycle Specifications—Motorola Mode (Figure 16) Sym Min Typ1 Max Unit D<0:7> valid after CS, DS t1 – 45 60 ns D<0:7> keep valid after CS, DS negation t2 – – 30 ns Parameter Test Conditions 2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Datasheet 75 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Figure 16. Microprocessor Read Cycle—Motorola Mode Address (A<0:6>) R/W DS CS t1 D<0:7> t2 Table 124. Microprocessor Write Cycle Specifications—Intel Mode (Figure 17) Parameter Sym Min Typ1 Max Unit Address setup time to CS, WR tASU 20 – – ns D<0:7> setup time to CS, WR tDSU 10 – – ns D<0:7> hold time after CS, WR rising edge tDHT 10 – 20 ns Allowable CS width tCPW 80 – – ns Allowable WR width tRPW 80 – – ns Allowable R/W falling edge before CS rising tWSU 50 – – ns Test Conditions 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 76 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Figure 17. Microprocessor Write Cycle—Intel Mode tASU Address (A<0:6>) tDSU D<0:7> tDHT CS tCPW tWPW (R/W) WR tWSU Table 125. Microprocessor Read Cycle Specifications—Intel Mode (Figure 18) Sym Min Typ1 Max Unit D<0:7> valid after CS, RD assertion tDATA – 45 60 ns D<0:7> keep valid after CS, RD negation tDATN – – 20 ns Allowed width of CS tCPW 80 – – ns Allowed width of RD tRPW 80 – – ns Address setup time to CS, RD assertion tASU 50 – – ns Parameter Test Conditions 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Datasheet 77 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Figure 18. Microprocessor Read Cycle—Intel Mode tASU Address (A<0:6>) CS tCPW (DS) RD tRPW tDATA D<0:7> tDATN 78 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Figure 19. Peak Output Jitter Performance Peak Jitter in UI G.823 Output Jitter Limit (B1) 1.5 Output Jitter (fast PLL mode) 0.25 0.20 G.823 Output Jitter Limit (B2) Output Jitter (slow PLL mode) .0625 20 Datasheet 1.6 K 18 K 100 K 79 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Figure 20. Output Wander Performance 108 f f 107 = 10-11 (10-2S+10000) ns MTIE (ns) 106 105 Proposed ETSI Spec TM- 03036 Version 6 (ETR-152 R3) 104 103 estimated wander 102 101 Measured MTIE 0 10 10-1 -4 10 10-3 10-2 10-1 100 101 102 103 104 105 106 107 108 109 1010 Observation period(S) MTIE versus observation period S for the output of a network node Table 126. ETSI Maximum Wander Values MTIE Observation Interval 732 ns 0.05 < t ≤ 100 s 13t - 568 ns 100 < t ≤ 200 s 2000 ns 200 < t ≤ 2000 s 0.2 433t 80 + 0.01t ns t > 2000 s Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 Figure 21. Typical Jitter Transfer Results 5 0 dB ref 1.5 UI 5 JitterTransferSpec n 10 15 JitterTransferResult n 20 25 30 35 10 100 1 10 3 1 10 4 1 10 5 Frequency n Includes the effects of the LIU Jitter Attenuator. Figure 22. Jitter Transfer Measurement Setup LTU (HTU-C) NTU (HTU-R) Anritsu MP-1550A Datasheet 81 LXP710 — HDSL Framer/Mapper for 1168 kbps Applications Figure 23. Typical Jitter Tolerance Results 100 10 UI JitterTolSpec n JitterTolerance n 1 0.1 10 100 3 1 10 4 1 10 5 1 10 Frequency n Includes the effects of the LIU Jitter Attenuator. Figure 24. Jitter Tolerance Measurement Setup LTU (HTU-C) NTU (HTU-R) Anritsu MP-1550A 82 Datasheet HDSL Framer/Mapper for 1168 kbps Applications — LXP710 6.0 Mechanical Specifications Figure 25. Plastic Leaded Chip Carrier Package Specification LXP710PE • 84-pin PLCC • Extended Temperature Range (-40 °C to 85 °C) CL C B D1 D D A2 A A1 F Inches Millimeters Dim Min Max Min Max A 0.167 0.181 4.242 4.598 A1 0.098 0.110 2.490 2.794 – – – – A2 B 0.050 BSC1 (nominal) 1.27 BSC1 (nominal) C 0.028 0.711 D 1.185 D1 1.150 F 1.195 30.099 1.158 29.210 0.018 30.353 29.412 0.457 1. BSC—Basic Spacing between Centers Datasheet 83