M24C64 M24C32 64Kbit and 32Kbit Serial I²C Bus EEPROM FEATURES SUMMARY ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Two-Wire I2C Serial Interface Supports 400kHz Protocol Single Supply Voltage: – 4.5 to 5.5V for M24Cxx – 2.5 to 5.5V for M24Cxx-W – 1.8 to 5.5V for M24Cxx-R Write Control Input BYTE and PAGE WRITE (up to 32 Bytes) RANDOM and SEQUENTIAL READ Modes Self-Timed Programming Cycle Automatic Address Incrementing Enhanced ESD/Latch-Up Protection More than 1 Million Erase/Write Cycles More than 40-Year Data Retention Figure 1. Packages 8 1 PDIP8 (BN) 8 1 SO8 (MN) 150 mil width Table 1. Product List Reference Part Number M24C64 M24C64 M24C64-W M24C64-R TSSOP8 (DW) 169 mil width M24C32 M24C32 M24C32-W M24C32-R UFDFPN8 (MB) 2x3mm² (MLP) January 2005 1/26 M24C64, M24C32 TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3. DIP, SO, TSSOP and UFDFPN Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 4. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus . . . . . . . . . . . . . . . . 5 Figure 5. I2C Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Device Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 4. Most Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 5. Least Significant Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 7. Write Mode Sequences with WC=1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 9 Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 8. Write Mode Sequences with WC=0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 9. Write Cycle Polling Flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 10.Read Mode Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2/26 M24C64, M24C32 Acknowledge in Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 7. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 8. Operating Conditions (M24Cxx-6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 9. Operating Conditions (M24Cxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 10. Operating Conditions (M24Cxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 11. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 11.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 12. Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 13. DC Characteristics (M24Cxx(1), M24Cxx-W6 and M24Cxx-W3) . . . . . . . . . . . . . . . . . . . 16 Table 14. DC Characteristics (M24Cxx-W6 and M24Cxx-W3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 15. DC Characteristics (M24Cxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 16. AC Characteristics (M24Cxx-6, M24Cxx-W6 and M24Cxx-W3) . . . . . . . . . . . . . . . . . . . 18 Table 17. AC Characteristics (M24Cxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 12.AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 13.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 20 Table 18. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . 20 Figure 14.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . 21 Table 19. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 15.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 22 Table 20. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 22 Figure 16.UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm. . . 23 Table 21. UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm, Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 23. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3/26 M24C64, M24C32 SUMMARY DESCRIPTION These I2C-compatible electrically erasable programmable memory (EEPROM) devices are organized as 8192 x 8 bits (M24C64) and 4096 x 8 bits (M24C32). Figure 2. Logic Diagram VCC 3 E0-E2 SCL SDA M24C64 M24C32 WC VSS AI01844B I2C uses a two-wire serial interface, comprising a bi-directional data line and a clock line. The devices carry a built-in 4-bit Device Type Identifier code (1010) in accordance with the I2C bus definition. The device behaves as a slave in the I2C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiated by a Start condition, generated by the bus master. The Start condition is followed by a Device Select Code and Read/Write bit (RW) (as described in Table 3.), terminated by an acknowledge bit. When writing data to the memory, the device inserts an acknowledge bit during the 9th bit time, following the bus master’s 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Write, and after a NoAck for Read. 4/26 Table 2. Signal Names E0, E1, E2 Chip Enable SDA Serial Data SCL Serial Clock WC Write Control VCC Supply Voltage VSS Ground Power On Reset: VCC Lock-Out Write Protect In order to prevent data corruption and inadvertent Write operations during Power-up, a Power On Reset (POR) circuit is included. At Power-up, the internal reset is held active until VCC has reached the Power On Reset (POR) threshold voltage, and all operations are disabled – the device will not respond to any command. In the same way, when VCC drops from the operating voltage, below the Power On Reset (POR) threshold voltage, all operations are disabled and the device will not respond to any command. A stable and valid VCC (as defined in Table 9. and Table 10.) must be applied before applying any logic signal. Figure 3. DIP, SO, TSSOP and UFDFPN Connections M24C64 M24C32 E0 E1 E2 VSS 1 2 3 4 8 7 6 5 VCC WC SCL SDA AI01845C Note: See PACKAGE MECHANICAL section for package dimensions, and how to identify pin-1. M24C64, M24C32 SIGNAL DESCRIPTION Serial Clock (SCL). This input signal is used to strobe all data in and out of the device. In applications where this signal is used by slave devices to synchronize the bus to a slower clock, the bus master must have an open drain output, and a pull-up resistor must be connected from Serial Clock (SCL) to VCC. (Figure 4. indicates how the value of the pull-up resistor can be calculated). In most applications, though, this method of synchronization is not employed, and so the pull-up resistor is not necessary, provided that the bus master has a push-pull (rather than open drain) output. Serial Data (SDA). This bi-directional signal is used to transfer data in or out of the device. It is an open drain output that may be wire-OR’ed with other open drain or open collector signals on the bus. A pull up resistor must be connected from Se- rial Data (SDA) to VCC. (Figure 4. indicates how the value of the pull-up resistor can be calculated). Chip Enable (E0, E1, E2). These input signals are used to set the value that is to be looked for on the three least significant bits (b3, b2, b1) of the 7bit Device Select Code. These inputs must be tied to VCC or VSS, to establish the Device Select Code. Write Control (WC). This input signal is useful for protecting the entire contents of the memory from inadvertent write operations. Write operations are disabled to the entire memory array when Write Control (WC) is driven High. When unconnected, the signal is internally read as VIL, and Write operations are allowed. When Write Control (WC) is driven High, Device Select and Address bytes are acknowledged, Data bytes are not acknowledged. Figure 4. Maximum RL Value versus Bus Capacitance (CBUS) for an I2C Bus VCC Maximum RP value (kΩ) 20 16 RL 12 RL SDA MASTER 8 fc = 100kHz 4 fc = 400kHz CBUS SCL CBUS 0 10 100 1000 CBUS (pF) AI01665 5/26 M24C64, M24C32 Figure 5. I2C Bus Protocol SCL SDA SDA Input START Condition SCL 1 2 SDA MSB SDA Change STOP Condition 3 7 8 9 ACK START Condition SCL 1 SDA MSB 2 3 7 8 9 ACK STOP Condition AI00792B Table 3. Device Select Code Device Type Identifier1 Device Select Code Chip Enable Address2 RW b7 b6 b5 b4 b3 b2 b1 b0 1 0 1 0 E2 E1 E0 RW Note: 1. The most significant bit, b7, is sent first. 2. E0, E1 and E2 are compared against the respective external pins on the memory device. Table 4. Most Significant Byte b15 6/26 b14 b13 b12 b11 Table 5. Least Significant Byte b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 M24C64, M24C32 MEMORY ORGANIZATION The memory is organized as shown in Figure 6.. Figure 6. Block Diagram WC E0 E1 High Voltage Generator Control Logic E2 SCL SDA I/O Shift Register Data Register Y Decoder Address Register and Counter 1 Page X Decoder AI06899 7/26 M24C64, M24C32 DEVICE OPERATION The device supports the I2C protocol. This is summarized in Figure 5.. Any device that sends data on to the bus is defined to be a transmitter, and any device that reads the data to be a receiver. The device that controls the data transfer is known as the bus master, and the other as the slave device. A data transfer can only be initiated by the bus master, which will also provide the serial clock for synchronization. The M24Cxx device is always a slave in all communication. Start Condition Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in the High state. A Start condition must precede any data transfer command. The device continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock (SCL) for a Start condition, and will not respond unless one is given. Stop Condition Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and driven High. A Stop condition terminates communication between the device and the bus master. A Read command that is followed by NoAck can be followed by a Stop condition to force the device into the Stand-by mode. A Stop condition at the end of a Write command triggers the internal Write cycle. Acknowledge Bit (ACK) The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) Low to acknowledge the receipt of the eight data bits. Data Input During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock (SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock (SCL) is driven Low. Memory Addressing To start communication between the bus master and the slave device, the bus master must initiate a Start condition. Following this, the bus master sends the Device Select Code, shown in Table 3. (on Serial Data (SDA), most significant bit first). The Device Select Code consists of a 4-bit Device Type Identifier, and a 3-bit Chip Enable “Address” (E2, E1, E0). To address the memory array, the 4bit Device Type Identifier is 1010b. Up to eight memory devices can be connected on a single I2C bus. Each one is given a unique 3-bit code on the Chip Enable (E0, E1, E2) inputs. When the Device Select Code is received, the device only responds if the Chip Enable Address is the same as the value on the Chip Enable (E0, E1, E2) inputs. The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations. If a match occurs on the Device Select code, the corresponding device gives an acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match the Device Select code, it deselects itself from the bus, and goes into Standby mode. Table 6. Operating Modes Mode Current Address Read RW bit WC 1 Bytes 1 X 1 0 X Random Address Read Initial Sequence START, Device Select, RW = 1 START, Device Select, RW = 0, Address 1 1 X Sequential Read 1 X ≥1 Byte Write 0 VIL 1 START, Device Select, RW = 0 Page Write 0 VIL ≤ 32 START, Device Select, RW = 0 Note: 1. X = VIH or VIL. 8/26 reSTART, Device Select, RW = 1 Similar to Current or Random Address Read M24C64, M24C32 Figure 7. Write Mode Sequences with WC=1 (data write inhibited) WC ACK BYTE ADDR ACK BYTE ADDR NO ACK DATA IN STOP DEV SEL START BYTE WRITE ACK R/W WC ACK DEV SEL START PAGE WRITE ACK BYTE ADDR ACK BYTE ADDR NO ACK DATA IN 1 DATA IN 2 R/W WC (cont'd) NO ACK DATA IN N STOP PAGE WRITE (cont'd) NO ACK AI01120C Write Operations Following a Start condition the bus master sends a Device Select Code with the Read/Write bit (RW) reset to 0. The device acknowledges this, as shown in Figure 8., and waits for two address bytes. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. Writing to the memory may be inhibited if Write Control (WC) is driven High. Any Write instruction with Write Control (WC) driven High (during a period of time from the Start condition until the end of the two address bytes) will not modify the memory contents, and the accompanying data bytes are not acknowledged, as shown in Figure 7.. Each data byte in the memory has a 16-bit (two byte wide) address. The Most Significant Byte (Table 4.) is sent first, followed by the Least Significant Byte (Table 5.). Bits b15 to b0 form the address of the byte in memory. When the bus master generates a Stop condition immediately after the Ack bit (in the “10th bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write cycle is triggered. A Stop condition at any other time slot does not trigger the internal Write cycle. After the Stop condition, the delay tW, and the successful completion of a Write operation, the device’s internal address counter is incremented automatically, to point to the next byte address after the last one that was modified. During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does not respond to any requests. Byte Write After the Device Select code and the address bytes, the bus master sends one data byte. If the addressed location is Write-protected, by Write Control (WC) being driven High, the device replies with NoAck, and the location is not modified. If, instead, the addressed location is not Write-protected, the device replies with Ack. The bus master terminates the transfer by generating a Stop condition, as shown in Figure 8.. 9/26 M24C64, M24C32 The bus master sends from 1 to 32 bytes of data, each of which is acknowledged by the device if Write Control (WC) is Low. If Write Control (WC) is High, the contents of the addressed memory location are not modified, and each data byte is followed by a NoAck. After each byte is transferred, the internal byte address counter (the 5 least significant address bits only) is incremented. The transfer is terminated by the bus master generating a Stop condition. Page Write The Page Write mode allows up to 32 bytes to be written in a single Write cycle, provided that they are all located in the same ’row’ in the memory: that is, the most significant memory address bits (b12-b5 for M24C64, and b11-b5 for M24C32) are the same. If more bytes are sent than will fit up to the end of the row, a condition known as ‘roll-over’ occurs. This should be avoided, as data starts to become overwritten in an implementation dependent way. Figure 8. Write Mode Sequences with WC=0 (data write enabled) WC ACK BYTE ADDR ACK BYTE ADDR ACK DATA IN STOP DEV SEL START BYTE WRITE ACK R/W WC ACK DEV SEL START PAGE WRITE ACK BYTE ADDR ACK BYTE ADDR ACK DATA IN 1 DATA IN 2 R/W WC (cont'd) ACK DATA IN N STOP PAGE WRITE (cont'd) ACK AI01106C 10/26 M24C64, M24C32 Figure 9. Write Cycle Polling Flowchart using ACK WRITE Cycle in Progress START Condition DEVICE SELECT with RW = 0 NO ACK Returned YES First byte of instruction with RW = 0 already decoded by the device NO Next Operation is Addressing the Memory YES Send Address and Receive ACK ReSTART NO STOP START Condition YES DATA for the WRITE Operation DEVICE SELECT with RW = 1 Continue the WRITE Operation Continue the Random READ Operation Minimizing System Delays by Polling On ACK During the internal Write cycle, the device disconnects itself from the bus, and writes a copy of the data from its internal latches to the memory cells. The maximum Write time (tw) is shown in Table 16. and Table 17., but the typical time is shorter. To make use of this, a polling sequence can be used by the bus master. The sequence, as shown in Figure 9., is: – – – AI01847C Initial condition: a Write cycle is in progress. Step 1: the bus master issues a Start condition followed by a Device Select Code (the first byte of the new instruction). Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and the bus master goes back to Step 1. If the device has terminated the internal Write cycle, it responds with an Ack, indicating that the device is ready to receive the second part of the instruction (the first byte of this instruction having been sent during Step 1). 11/26 M24C64, M24C32 Figure 10. Read Mode Sequences ACK DATA OUT STOP START DEV SEL NO ACK R/W ACK START DEV SEL * ACK BYTE ADDR ACK ACK DEV SEL * ACK R/W NO ACK R/W ACK BYTE ADDR ACK BYTE ADDR ACK DEV SEL * START START ACK R/W ACK DATA OUT DATA OUT N DATA OUT 1 DEV SEL * NO ACK STOP START DEV SEL SEQUENTIAL RANDOM READ BYTE ADDR R/W ACK SEQUENTIAL CURRENT READ ACK START RANDOM ADDRESS READ STOP CURRENT ADDRESS READ ACK DATA OUT 1 R/W NO ACK STOP DATA OUT N AI01105C Note: 1. The seven most significant bits of the Device Select Code of a Random Read (in the 1st and 4th bytes) must be identical. Read Operations Read operations are performed independently of the state of the Write Control (WC) signal. After the successful completion of a Read operation, the device’s internal address counter is incremented by one, to point to the next byte address. Random Address Read A dummy Write is first performed to load the address into this address counter (as shown in Figure 10.) but without sending a Stop condition. Then, the bus master sends another Start condition, and repeats the Device Select Code, with the Read/Write bit (RW) set to 1. The device acknowledges this, and outputs the contents of the ad12/26 dressed byte. The bus master must not acknowledge the byte, and terminates the transfer with a Stop condition. Current Address Read For the Current Address Read operation, following a Start condition, the bus master only sends a Device Select Code with the Read/Write bit (RW) set to 1. The device acknowledges this, and outputs the byte addressed by the internal address counter. The counter is then incremented. The bus master terminates the transfer with a Stop condition, as shown in Figure 10., without acknowledging the byte. M24C64, M24C32 Sequential Read This operation can be used after a Current Address Read or a Random Address Read. The bus master does acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the next byte in sequence. To terminate the stream of bytes, the bus master must not acknowledge the last byte, and must generate a Stop condition, as shown in Figure 10.. The output data comes from consecutive addresses, with the internal address counter automatically incremented after each byte output. After the last memory address, the address counter ‘rolls-over’, and the device continues to output data from memory address 00h. Acknowledge in Read Mode For all Read commands, the device waits, after each byte read, for an acknowledgment during the 9th bit time. If the bus master does not drive Serial Data (SDA) Low during this time, the device terminates the data transfer and switches to its Standby mode. INITIAL DELIVERY STATE The device is delivered with all bits in the memory array set to 1 (each byte contains FFh). 13/26 M24C64, M24C32 MAXIMUM RATING Stressing the device outside the ratings listed in Table 7. may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the Operating sections of this specification, is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 7. Absolute Maximum Ratings Symbol Parameter TSTG Storage Temperature TLEAD Lead Temperature during Soldering Min. Max. Unit –65 150 °C See note 1 VIO Input or Output range –0.50 6.5 V VCC Supply Voltage –0.50 6.5 V VESD Electrostatic Discharge Voltage (Human Body model) 2 –4000 4000 V ECOPACK® Note: 1. Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU 2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500Ω, R2=500Ω) 14/26 °C 7191395 specification, and M24C64, M24C32 DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the Measure- ment Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 8. Operating Conditions (M24Cxx-6) Symbol VCC TA Parameter Min. Max. Unit Supply Voltage1 4.5 5.5 V Ambient Operating Temperature –40 85 °C Min. Max. Unit Supply Voltage 2.5 5.5 V Ambient Operating Temperature (Device Grade 6) –40 85 °C Ambient Operating Temperature (Device Grade 3) –40 125 °C Min. Max. Unit Supply Voltage 1.8 5.5 V Ambient Operating Temperature –40 85 °C Note: 1. This range is Not for New Design, and will soon be replaced by the M24Cxx-W range. Table 9. Operating Conditions (M24Cxx-W) Symbol VCC Parameter TA Table 10. Operating Conditions (M24Cxx-R) Symbol VCC TA Parameter 15/26 M24C64, M24C32 Table 11. AC Measurement Conditions Symbol CL Parameter Min. Load Capacitance Max. Unit 100 Input Rise and Fall Times pF 50 ns Input Levels 0.2VCC to 0.8VCC V Input and Output Timing Reference Levels 0.3VCC to 0.7VCC V Figure 11. AC Measurement I/O Waveform Input Levels Input and Output Timing Reference Levels 0.8VCC 0.7VCC 0.3VCC 0.2VCC AI00825B Table 12. Input Parameters Symbol Parameter1,2 Test Condition Min. Max. Unit CIN Input Capacitance (SDA) 8 pF CIN Input Capacitance (other pins) 6 pF 200 kΩ ZWCL WC Input Impedance VIN < 0.3VCC 50 ZWCH WC Input Impedance VIN > 0.7VCC 500 tNS Pulse width ignored (Input Filter on SCL and SDA) kΩ 200 ns Note: 1. TA = 25°C, f = 400kHz 2. Sampled only, not 100% tested. Table 13. DC Characteristics (M24Cxx(1), M24Cxx-W6 and M24Cxx-W3) Symbol Parameter Test Condition (in addition to those in Table 8.) Min. Max. Unit ILI Input Leakage Current (SCL, SDA, E2, E1, E0) VIN = VSS or VCC device in Stand-by mode ±2 µA ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ±2 µA ICC Supply Current VCC=5V, fc=400kHz (rise/fall time < 30ns) 2 mA ICC1 Stand-by Supply Current VIN = VSS or VCC, VCC = 5 V 10 µA VIL Input Low Voltage –0.45 0.3VCC V VIH Input High Voltage 0.7VCC VCC+1 V VOL Output Low Voltage 0.4 V IOL = 3 mA, VCC = 5 V Note: 1. This range is Not for New Design, and will soon be replaced by the M24Cxx-W range. 16/26 M24C64, M24C32 Table 14. DC Characteristics (M24Cxx-W6 and M24Cxx-W3) Symbol Test Condition (in addition to those in Table 9.) Parameter Min. Max. Unit ILI Input Leakage Current (SCL, SDA, E2, E1, E0) VIN = VSS or VCC device in Stand-by mode ±2 µA ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ±2 µA ICC Supply Current VCC =2.5V, fc=400kHz (rise/fall time < 30ns) 1 mA ICC1 Stand-by Supply Current VIN = VSS or VCC, VCC = 2.5 V 2 µA VIL Input Low Voltage –0.45 0.3VCC V VIH Input High Voltage 0.7VCC VCC+1 V VOL Output Low Voltage 0.4 V Max. Unit IOL = 2.1 mA, VCC = 2.5 V Table 15. DC Characteristics (M24Cxx-R) Symbol Parameter Test Condition (in addition to those in Table 10.) Min. ILI Input Leakage Current (SCL, SDA, E2, E1, E0) VIN = VSS or VCC device in Stand-by mode ±2 µA ILO Output Leakage Current VOUT = VSS or VCC, SDA in Hi-Z ±2 µA ICC Supply Current VCC =1.8V, fc=100kHz (rise/fall time < 30ns) 0.8 mA ICC1 Stand-by Supply Current VIN = VSS or VCC, VCC = 1.8 V 0.2 µA VIL Input Low Voltage –0.45 0.3 VCC V VIH Input High Voltage 0.7VCC VCC+1 V VOL Output Low Voltage 0.2 V IOL = 0.7 mA, VCC = 1.8 V 17/26 M24C64, M24C32 Table 16. AC Characteristics (M24Cxx-6, M24Cxx-W6 and M24Cxx-W3) Test conditions specified in Table 11. and Table 8. or Table 9. Symbol Alt. Parameter Min. Max. Unit fC fSCL Clock Frequency 400 kHz tCHCL tHIGH Clock Pulse Width High 600 ns tCLCH tLOW Clock Pulse Width Low 1300 ns tDL1DL2 2 tF tDXCX SDA Fall Time 20 tSU:DAT Data In Set Up Time 100 ns tCLDX tHD:DAT Data In Hold Time 0 ns tCLQX tDH Data Out Hold Time 200 ns tAA Clock Low to Next Data Valid (Access Time) 200 tCLQV 3 300 900 ns ns tCHDX 1 tSU:STA Start Condition Set Up Time 600 ns tDLCL tHD:STA Start Condition Hold Time 600 ns tCHDH tSU:STO Stop Condition Set Up Time 600 ns tDHDL tBUF Time between Stop Condition and Next Start Condition 1300 tW Note: 1. 2. 3. 4. tWR Write Time ns 5 or4 10 ms For a reSTART condition, or following a Write cycle. Sampled only, not 100% tested. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA. The Write Time of 5 ms only applies to devices bearing the process letter “B” in the package marking (on the top side of the package), otherwise (for devices bearing the process letter “N”) the Write Time is 10 ms. For further details, please contact your nearest ST sales office, and ask for a copy of the Product Change Notice PCEE0036. Table 17. AC Characteristics (M24Cxx-R) Test conditions specified in Table 11. and Table 10. Symbol Alt. Parameter Min. Max. Unit fC fSCL Clock Frequency 400 kHz tCHCL tHIGH Clock Pulse Width High 600 ns tCLCH tLOW Clock Pulse Width Low 1300 ns tDL1DL2 2 tF tDXCX SDA Fall Time 20 300 tSU:DAT Data In Set Up Time 100 ns tCLDX tHD:DAT Data In Hold Time 0 ns tCLQX tDH Data Out Hold Time 200 ns tCLQV 3 tAA Clock Low to Next Data Valid (Access Time) 200 tCHDX 1 tSU:STA Start Condition Set Up Time 600 ns tDLCL tHD:STA Start Condition Hold Time 600 ns tCHDH tSU:STO Stop Condition Set Up Time 600 ns tDHDL tBUF Time between Stop Condition and Next Start Condition 1300 ns tW tWR Write Time 900 10 ns ns ms Note: 1. For a reSTART condition, or following a Write cycle. 2. Sampled only, not 100% tested. 3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA. 18/26 M24C64, M24C32 Figure 12. AC Waveforms tCHCL tCLCH SCL tDLCL SDA In tCHDX tCLDX START Condition SDA Input SDA tDXCX Change tCHDH tDHDL START STOP Condition Condition SCL SDA In tCHDH tW STOP Condition Write Cycle tCHDX START Condition SCL tCLQV SDA Out tCLQX Data Valid AI00795C 19/26 M24C64, M24C32 PACKAGE MECHANICAL Figure 13. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline E b2 A2 A1 b A L c e eA eB D 8 E1 1 PDIP-B Note: Drawing is not to scale. Table 18. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data millimeters inches Symbol Typ. Min. A Typ. Min. 5.33 A1 Max. 0.210 0.38 0.015 A2 3.30 2.92 4.95 0.130 0.115 0.195 b 0.46 0.36 0.56 0.018 0.014 0.022 b2 1.52 1.14 1.78 0.060 0.045 0.070 c 0.25 0.20 0.36 0.010 0.008 0.014 D 9.27 9.02 10.16 0.365 0.355 0.400 E 7.87 7.62 8.26 0.310 0.300 0.325 E1 6.35 6.10 7.11 0.250 0.240 0.280 e 2.54 – – 0.100 – – eA 7.62 – – 0.300 – – eB L 20/26 Max. 10.92 3.30 2.92 3.81 0.430 0.130 0.115 0.150 M24C64, M24C32 Figure 14. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline h x 45˚ A C B CP e D N E H 1 A1 α L SO-a Note: Drawing is not to scale. Table 19. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data millimeters inches Symbol Typ. Min. Max. A 1.35 A1 Min. Max. 1.75 0.053 0.069 0.10 0.25 0.004 0.010 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 – – – – H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 0.90 0.016 0.035 α 0° 8° 0° 8° N 8 e CP 1.27 Typ. 0.050 8 0.10 0.004 21/26 M24C64, M24C32 Figure 15. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline D 8 5 c E1 1 E 4 α A1 A L A2 L1 CP b e TSSOP8AM Note: Drawing is not to scale. Table 20. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data mm inches Symbol Typ. Min. A 0.050 0.150 0.800 1.050 b 0.190 c 0.090 A2 Typ. Min. 1.200 A1 1.000 CP Max. 0.0472 0.0020 0.0059 0.0315 0.0413 0.300 0.0075 0.0118 0.200 0.0035 0.0079 0.0394 0.100 0.0039 D 3.000 2.900 3.100 0.1181 0.1142 0.1220 e 0.650 – – 0.0256 – – E 6.400 6.200 6.600 0.2520 0.2441 0.2598 E1 4.400 4.300 4.500 0.1732 0.1693 0.1772 L 0.600 0.450 0.750 0.0236 0.0177 0.0295 L1 1.000 0° 8° α 22/26 Max. 0.0394 0° 8° M24C64, M24C32 Figure 16. UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm e D b L1 L3 E E2 L A D2 ddd A1 UFDFPN-01 Note: Drawing is not to scale. Table 21. UFDFPN8 (MLP8) – 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm, Package Mechanical Data millimeters inches Symbol A Typ Min Max Typ Min Max 0.55 0.50 0.60 0.022 0.020 0.024 0.00 0.05 0.000 0.002 0.20 0.30 0.008 0.012 0.061 0.065 A1 b 0.25 D 2.00 D2 0.079 1.55 ddd E 0.010 1.65 0.05 3.00 E2 0.002 0.118 0.15 0.25 0.006 0.010 e 0.50 – – 0.020 – – L 0.45 0.40 0.50 0.018 0.016 0.020 L1 0.15 0.006 L3 0.30 0.012 N 8 8 23/26 M24C64, M24C32 PART NUMBERING Table 22. Ordering Information Scheme Example: M24C32 – W MN 6 T P Device Type M24 = I2C serial access EEPROM Device Function 64 = 64 Kbit (8192 x 8) 32 = 32 Kbit (4096 x 8) Operating Voltage blank(2) = VCC = 4.5 to 5.5V W = VCC = 2.5 to 5.5V R = VCC = 1.8 to 5.5V Package BN = PDIP8 MN = SO8 (150 mil width) DW = TSSOP8 (169 mil width) MB = UFDFPN8 (MLP8)(3) Device Grade 6 = Industrial: device tested with standard test flow over –40 to 85 °C 3 = Automotive: device tested with High Reliability Certified Flow(1) over –40 to 125 °C. Option blank = Standard Packing T = Tape and Reel Packing Plating Technology blank = Standard SnPb plating P or G = RoHS compliant Note: 1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Certified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy. 2. This range is Not for New Design, and will soon be replaced by the M24Cxx-W range. 3. The UFDFPN8 package is available in M24C32 devices only. It is not available in M24C64 devices. For a list of available options (speed, package, etc.) or for further information on any aspect of this 24/26 device, please contact your nearest ST Sales Office. M24C64, M24C32 REVISION HISTORY Table 23. Document Revision History Date Rev. Description of Revision 22-Dec-1999 2.3 TSSOP8 package in place of TSSOP14 (pp 1, 2, OrderingInfo, PackageMechData). 28-Jun-2000 2.4 TSSOP8 package data corrected 31-Oct-2000 2.5 References to Temperature Range 3 removed from Ordering Information Voltage range -S added, and range -R removed from text and tables throughout. 20-Apr-2001 2.6 Lead Soldering Temperature in the Absolute Maximum Ratings table amended Write Cycle Polling Flow Chart using ACK illustration updated References to PSDIP changed to PDIP and Package Mechanical data updated 16-Jan-2002 2.7 Test condition for ILI made more precise, and value of ILI for E2-E0 and WC added -R voltage range added 02-Aug-2002 2.8 Document reformatted using new template. TSSOP8 (3x3mm² body size) package (MSOP8) added. 5ms write time offered for 5V and 2.5V devices 04-Feb-2003 2.9 SO8W package removed. -S voltage range removed 27-May-2003 2.10 TSSOP8 (3x3mm² body size) package (MSOP8) removed 22-Oct-2003 3.0 Table of contents, and Pb-free options added. Minor wording changes in Summary Description, Power-On Reset, Memory Addressing, Write Operations, Read Operations. VIL(min) improved to -0.45V. 01-Jun-2004 4.0 Absolute Maximum Ratings for VIO(min) and VCC(min) improved. Soldering temperature information clarified for RoHS compliant devices. Device Grade clarified 04-Nov-2004 5.0 Product List summary table added. Device Grade 3 added. 4.5-5.5V range is Not for New Design. Some minor wording changes. AEC-Q100-002 compliance. tNS(max) changed. VIL(min) is the same on all input pins of the device. ZWCL changed. 05-Jan-2005 6.0 UFDFPN8 package added. Small text changes. 25/26 M24C64, M24C32 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. ECOPACK is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 26/26