STMicroelectronics M27C256B-90F3TR 256 kbit (32kb ã 8) uv eprom and otp eprom Datasheet

M27C256B
256 Kbit (32Kb × 8) UV EPROM and OTP EPROM
Feature summary
■
5V ± 10% supply voltage in Read operation
■
Access time: 45ns
■
Low power consumption:
– Active Current 30mA at 5MHz
– Standby Current 100µA
■
Programming voltage: 12.75V ± 0.25V
■
Programming time: 100µs/Word
■
Electronic signature
– Manufacturer Code: 20h
– Device Code: 8Dh
28
1
FDIP28W (F)
28
1
■
ECOPACK® packages available
PDIP28 (B)
PLCC32 (C)
May 2006
Rev 2
1/24
www.st.com
1
Contents
M27C256B
Contents
1
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Two-line output control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
System considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6
PRESTO II programming algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7
Program inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8
Program Verify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.10
Erasure operation (applies for UV EPROM) . . . . . . . . . . . . . . . . . . . . . . . 11
3
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
M27C256B
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read mode DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Programming mode DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Read mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Read mode AC characteristics 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Programming mode AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FDIP28WB - 28 pin Ceramic Frit-seal DIP, with window (round 0.280"),
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PDIP28 - 28 pin Plastic DIP, 600 mils width, package mechanical data . . . . . . . . . . . . . . 20
PLCC32 - 32 pin Rectangular Plastic Leaded Chip Carrier, package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3/24
List of figures
M27C256B
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
4/24
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DIP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
LCC connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Programming flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
AC testing input output waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AC testing load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Read mode AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Programming and Verify modes AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FDIP28WB - 28 pin Ceramic Frit-seal DIP, with window, package outline . . . . . . . . . . . . . 19
PDIP28 - 28 pin Plastic DIP, 600 mils width, package outline . . . . . . . . . . . . . . . . . . . . . . 20
PLCC32 - 32 pin Rectangular Plastic Leaded Chip Carrier, package outline. . . . . . . . . . . 21
M27C256B
1
Summary description
Summary description
The M27C256B is a 256 Kbit EPROM offered in the two ranges UV (ultra violet erase) and
OTP (one time programmable). It is ideally suited for microprocessor systems and is
organized as 32,768 by 8 bits.
The FDIP28W (window ceramic frit-seal package) has a transparent lid which allows the
user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be
written to the device by following the programming procedure.
For applications where the content is programmed only one time and erasure is not
required, the M27C256B is offered in PDIP28 and PLCC32 packages.
In order to meet environmental requirements, ST offers the M27C256B in ECOPACK®
packages.
ECOPACK packages are Lead-free. The category of second Level Interconnect is marked
on the package and on the inner box label, in compliance with JEDEC Standard JESD97.
The maximum ratings related to soldering conditions are also marked on the inner box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 1.
Logic diagram
VCC
VPP
15
8
A0-A14
E
Q0-Q7
M27C256B
G
VSS
AI00755B
5/24
Summary description
Table 1.
M27C256B
Signal names
A0-A14
Address Inputs
Q0-Q7
Data Outputs
E
Chip Enable
G
Output Enable
VPP
Program Supply
VCC
Supply Voltage
VSS
Ground
NC
Not Connected Internally
DU
Don’t Use
Figure 2.
DIP connections
VPP
A12
A7
A6
A5
A4
A3
A2
A1
A0
Q0
Q1
Q2
VSS
1
28
2
27
3
26
4
25
5
24
6
23
7
22
M27C256B
8
21
9
20
10
19
11
18
12
17
13
16
14
15
AI00756
6/24
VCC
A14
A13
A8
A9
A11
G
A10
E
Q7
Q6
Q5
Q4
Q3
M27C256B
Summary description
A7
A12
VPP
DU
VCC
A14
A13
LCC connections
1 32
9
M27C256B
25
A8
A9
A11
NC
G
A10
E
Q7
Q6
17
VSS
DU
Q3
Q4
Q5
A6
A5
A4
A3
A2
A1
A0
NC
Q0
Q1
Q2
Figure 3.
AI00757
7/24
Device operation
2
M27C256B
Device operation
The operating modes of the M27C256B are listed in the Operating Modes. A single power
supply is required in the read mode. All inputs are TTL levels except for VPP and 12V on A9
for Electronic Signature.
2.1
Read mode
The M27C256B has two control functions, both of which must be logically active in order to
obtain data at the outputs. Chip Enable (E) is the power control and should be used for
device selection. Output Enable (G) is the output control and should be used to gate data to
the output pins, independent of device selection. Assuming that the addresses are stable,
the address access time (tAVQV) is equal to the delay from E to output (tELQV). Data is
available at the output after delay of tGLQV from the falling edge of G, assuming that E has
been low and the addresses have been stable for at least tAVQV-tGLQV.
2.2
Standby mode
The M27C256B has a standby mode which reduces the supply current from 30mA to
100µA. The M27C256B is placed in the standby mode by applying a CMOS high signal to
the E input. When in the standby mode, the outputs are in a high impedance state,
independent of the G input.
2.3
Two-line output control
Because EPROMs are usually used in larger memory arrays, this product features a 2 line
control function which accommodates the use of multiple memory connection. The two line
control function allows:
●
the lowest possible memory power dissipation,
●
complete assurance that output bus contention will not occur.
For the most efficient use of these two control lines, E should be decoded and used as the
primary device selecting function, while G should be made a common connection to all
devices in the array and connected to the READ line from the system control bus. This
ensures that all deselected memory devices are in their low power standby mode and that
the output pins are only active when data is desired from a particular memory device.
8/24
M27C256B
2.4
Device operation
System considerations
The power switching characteristics of Advance CMOS EPROMs require careful decoupling
of the devices. The supply current, ICC, has three segments that are of interest to the system
designer: the standby current level, the active current level, and transient current peaks that
are produced by the falling and rising edges of E. The magnitude of this transient current
peaks is dependent on the capacitive and inductive loading of the device at the output. The
associated transient voltage peaks can be suppressed by complying with the two line output
control and by properly selected decoupling capacitors. It is recommended that a 0.1µF
ceramic capacitor be used on every device between VCC and VSS. This should be a high
frequency capacitor of low inherent inductance and should be placed as close to the device
as possible. In addition, a 4.7µF bulk electrolytic capacitor should be used between VCC and
VSS for every eight devices. The bulk capacitor should be located near the power supply
connection point. The purpose of the bulk capacitor is to overcome the voltage drop caused
by the inductive effects of PCB traces.
2.5
Programming
When delivered (and after each erasure for UV EPROM), all bits of the M27C256B are in the
"1" state. Data is introduced by selectively programming "0"s into the desired bit locations.
Although only "0"s will be programmed, both "1"s and "0"s can be present in the data word.
The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The
M27C256B is in the programming mode when VPP input is at 12.75V, G is at VIH and E is
pulsed to VIL. The data to be programmed is applied to 8 bits in parallel to the data output
pins. The levels required for the address and data inputs are TTL. VCC is specified to be
6.25V ± 0.25 V.
2.6
PRESTO II programming algorithm
PRESTO II Programming Algorithm allows to program the whole array with a guaranteed
margin, in a typical time of 3.5 seconds. Programming with PRESTO II involves the
application of a sequence of 100µs program pulses to each byte until a correct verify occurs
(see Figure 4.). During programming and verify operation, a MARGIN MODE circuit is
automatically activated in order to guarantee that each cell is programmed with enough
margin. No overprogram pulse is applied since the verify in MARGIN MODE provides
necessary margin to each programmed cell.
9/24
Device operation
Figure 4.
M27C256B
Programming flowchart
VCC = 6.25V, VPP = 12.75V
n=0
E = 100µs Pulse
NO
++n
= 25
YES
FAIL
NO
++ Addr
VERIFY
YES
Last
Addr
NO
YES
CHECK ALL BYTES
1st: VCC = 6V
2nd: VCC = 4.2V
AI00760B
2.7
Program inhibit
Programming of multiple M27C256Bs in parallel with different data is also easily
accomplished. Except for E, all like inputs including G of the parallel M27C256B may be
common. A TTL low level pulse applied to a M27C256B's E input, with VPP at 12.75V, will
program that M27C256B. A high level E input inhibits the other M27C256Bs from being
programmed.
2.8
Program Verify
A verify (read) should be performed on the programmed bits to determine that they were
correctly programmed. The verify is accomplished with G at VIL, E at VIH, VPP at 12.75V and
VCC at 6.25V.
2.9
Electronic signature
The Electronic Signature (ES) mode allows the reading out of a binary code from an
EPROM that will identify its manufacturer and type. This mode is intended for use by
programming equipment to automatically match the device to be programmed with its
corresponding programming algorithm. The ES mode is functional in the 25°C ± 5°C
ambient temperature range that is required when programming the M27C256B. To activate
the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of
the M27C256B, with VCC = VPP = 5V. Two identifier bytes may then be sequenced from the
device outputs by toggling address line A0 from VIL to VIH. All other address lines must be
held at VIL during Electronic Signature mode. Byte 0 (A0 = VIL) represents the manufacturer
code and byte 1 (A0 = VIH) the device identifier code. For the STMicroelectronics
M27C256B, these two identifier bytes are given in Table 3 and can be read-out on outputs
Q7 to Q0.
10/24
M27C256B
2.10
Device operation
Erasure operation (applies for UV EPROM)
The erasure characteristics of the M27C256B is such that erasure begins when the cells are
exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted
that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å
range. Research shows that constant exposure to room level fluorescent lighting could
erase a typical M27C256B in about 3 years, while it would take approximately 1 week to
cause erasure when exposed to direct sunlight. If the M27C256B is to be exposed to these
types of lighting conditions for extended periods of time, it is suggested that opaque labels
be put over the M27C256B window to prevent unintentional erasure. The recommended
erasure procedure for the M27C256B is exposure to short wave ultraviolet light which has
wavelength 2537Å. The integrated dose (i.e. UV intensity x exposure time) for erasure
should be a minimum of 15 W-sec/cm2. The erasure time with this dosage is approximately
15 to 20 minutes using an ultraviolet lamp with 12000 µW/cm2 power rating. The M27C256B
should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps
have a filter on their tubes which should be removed before erasure.
Operating modes(1)
Table 2.
Mode
E
G
A9
VPP
Q7-Q0
Read
VIL
VIL
X
VCC
Data Out
Output Disable
VIL
VIH
X
VCC
Hi-Z
VIL Pulse
VIH
X
VPP
Data In
Verify
VIH
VIL
X
VPP
Data Out
Program Inhibit
VIH
VIH
X
VPP
Hi-Z
Standby
VIH
X
X
VCC
Hi-Z
Electronic Signature
VIL
VIL
VID
VCC
Codes
Program
1. X = VIH or VIL, VID = 12V ± 0.5V.
Table 3.
Electronic signature
Identifier
A0
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0
Hex Data
Manufacturer’s
Code
VIL
0
0
1
0
0
0
0
0
20h
Device Code
VIH
1
0
0
0
1
1
0
1
8Dh
11/24
Maximum rating
3
M27C256B
Maximum rating
Stressing the device above the rating listed in the Absolute Maximum Ratings table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the Operating sections of
this specification is not implied. Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality documents.
Table 4.
Absolute maximum ratings
Symbol
TA
Parameter
Ambient Operating
Temperature(1)
Value
Unit
–40 to 125
°C
TBIAS
Temperature Under Bias
–50 to 125
°C
TSTG
Storage Temperature
–65 to 150
°C
VIO(2)
Input or Output Voltage (except A9)
–2 to 7
V
Supply Voltage
–2 to 7
V
–2 to 13.5
V
–2 to 14
V
VCC
VA9(2)
VPP
A9 Voltage
Program Supply Voltage
1. Depends on range.
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than
20ns. Maximum DC voltage on Output is VCC +0.5V with possible overshoot to VCC +2V for a period less
than 20ns.
12/24
M27C256B
4
DC and AC parameters
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC Characteristic tables that
follow are derived from tests performed under the Measurement Conditions summarized in
the relevant tables. Designers should check that the operating conditions in their circuit
match the measurement conditions when relying on the quoted parameters.
Table 5.
AC measurement conditions
High Speed
Standard
Input Rise and Fall Times
≤10ns
≤20ns
Input Pulse Voltages
0 to 3V
0.4V to 2.4V
1.5V
0.8V and 2V
Input and Output Timing Ref.
Voltages
Figure 5.
AC testing input output waveform
High Speed
3V
1.5V
0V
Standard
2.4V
0.4V
2.0V
0.8V
AI01822
13/24
DC and AC parameters
Figure 6.
M27C256B
AC testing load circuit
1.3V
1N914
3.3kΩ
DEVICE
UNDER
TEST
OUT
CL
CL = 30pF for High Speed
CL = 100pF for Standard
CL includes JIG capacitance
Table 6.
Capacitance(1) (2)
Symbol
CIN
COUT
AI01823B
Parameter
Input Capacitance
Output Capacitance
Test Condition
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
12
pF
1. Sampled only, not 100% tested.
2.
(TA = 25 °C, f = 1 MHz)
Table 7.
Symbol
Read mode DC characteristics(1) (2)
Parameter
Test Condition
Min
Max
Unit
0V ≤VIN ≤VCC
±10
µA
0V ≤VOUT ≤VCC
±10
µA
E = VIL, G = VIL,
IOUT = 0mA, f = 5MHz
30
mA
E = VIH
1
mA
E > VCC – 0.2V
100
µA
VPP = VCC
100
µA
ILI
Input Leakage Current
ILO
Output Leakage Current
ICC
Supply Current
ICC1
Supply Current (Standby) TTL
ICC2
Supply Current (Standby)
CMOS
IPP
Program Current
VIL
Input Low Voltage
–0.3
0.8
V
VIH(3)
Input High Voltage
2
VCC + 1
V
VOL
Output Low Voltage
IOL = 2.1mA
0.4
V
Output High Voltage TTL
IOH = –1mA
3.6
V
IOH = –100µA
VCC – 0.7V
V
VOH
Output High Voltage CMOS
1. TA = 0 to 70°C, –40 to 85°C, –40 to 105°C or –40 to 125°C; VCC = 5V ± 5% or 5V ± 10%; VPP = VCC.
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
3. Maximum DC voltage on Output is VCC +0.5V.
14/24
M27C256B
DC and AC parameters
Table 8.
Symbol
Programming mode DC characteristics(1) (2)
Parameter
Test Condition
Min
VIL ≤VIN ≤VIH
Max
Unit
±10
µA
50
mA
50
mA
ILI
Input Leakage Current
ICC
Supply Current
IPP
Program Current
VIL
Input Low Voltage
–0.3
0.8
V
VIH
Input High Voltage
2
VCC + 0.5
V
VOL
Output Low Voltage
IOL = 2.1mA
0.4
V
VOH
Output High Voltage TTL
IOH = –1mA
VID
A9 Voltage
E = VIL
3.6
11.5
V
12.5
V
1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V.
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
15/24
DC and AC parameters
Figure 7.
M27C256B
Read mode AC waveforms
VALID
A0-A14
VALID
tAVQV
tAXQX
E
tEHQZ
tGLQV
G
tGHQZ
tELQV
Hi-Z
Q0-Q7
AI00758B
)
Table 9.
Read mode AC characteristics(1) (2)
M27C256B
Symbol
Alt
Parameter
Test
Condition
-45(3)
-60
-70
-80
Unit
Min Max Min Max Min Max Min Max
tAVQV
tACC
Address Valid to
Output Valid
E = VIL,
G = VIL
45
60
70
80
ns
tELQV
tCE
Chip Enable Low
to Output Valid
G = VIL
45
60
70
80
ns
tGLQV
tOE
Output Enable Low
to Output Valid
E = VIL
25
30
35
40
ns
tEHQZ(4)
tDF
Chip Enable High
to Output Hi-Z
G = VIL
0
25
0
30
0
30
0
30
ns
tGHQZ(4)
tDF
Output Enable
High to Output Hi-Z
E = VIL
0
25
0
30
0
30
0
30
ns
E = VIL,
G = VIL
0
tAXQX
Address Transition
tOH to Output
Transition
0
0
0
1. TA = 0 to 70°C, –40 to 85°C, –40 to 105°C or –40 to 125°C; VCC = 5V ± 5% or 5V ± 10%; VPP = VCC
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
3. Speed obtained with High Speed AC measurement conditions.
4. Sampled only, not 100% tested.
16/24
ns
M27C256B
DC and AC parameters
)
Table 10.
Read mode AC characteristics 2(1) (2)
M27C256B
Symbol
Alt
Parameter
Test
Condition
-90
-10
-12
-15/-20/-25 Unit
Min Max Min Max Min Max Min
Max
tAVQV
tACC
Address Valid to
Output Valid
E = VIL,
G = VIL
90
100
120
150
ns
tELQV
tCE
Chip Enable Low
to Output Valid
G = VIL
90
100
120
150
ns
tGLQV
Output Enable
tOE Low to Output
Valid
E = VIL
40
50
60
65
ns
tEHQZ(3)
tDF
tGHQZ(3)
tAXQX
Chip Enable High
to Output Hi-Z
G = VIL
0
30
0
30
0
40
0
50
ns
Output Enable
tDF High to Output
Hi-Z
E = VIL
0
30
0
30
0
40
0
50
ns
Address
tOH Transition to
Output Transition
E = VIL,
G = VIL
0
0
0
0
ns
1. TA = 0 to 70°C, –40 to 85°C, –40 to 105°C or –40 to 125°C; VCC = 5V ± 5% or 5V ± 10%; VPP = VCC
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
3. Sampled only, not 100% tested.
17/24
DC and AC parameters
Figure 8.
M27C256B
Programming and Verify modes AC waveforms
VALID
A0-A14
tAVEL
Q0-Q7
DATA IN
tQVEL
DATA OUT
tEHQX
VPP
tVPHEL
tGHQZ
tGLQV
VCC
tVCHEL
tGHAX
E
tELEH
tQXGL
G
PROGRAM
VERIFY
AI00759
Table 11.
Programming mode AC characteristics(1) (2)
Parameter
Test
Condition
Symbol
Alt
Min
Max
tAVEL
tAS
Address Valid to Chip Enable Low
2
µs
tQVEL
tDS
Input Valid to Chip Enable Low
2
µs
tVPHEL
tVPS
VPP High to Chip Enable Low
2
µs
tVCHEL
tVCS
VCC High to Chip Enable Low
2
µs
tELEH
tPW
Chip Enable Program Pulse Width
95
tEHQX
tDH
Chip Enable High to Input Transition
2
µs
tQXGL
tOES
Input Transition to Output Enable Low
2
µs
tGLQV
tOE
Output Enable Low to Output Valid
tGHQZ
tDFP
Output Enable High to Output Hi-Z
0
tGHAX
tAH
Output Enable High to Address Transition
0
105
µs
100
ns
130
ns
1. TA = 25 °C; VCC = 6.25V ± 0.25V; VPP = 12.75V ± 0.25V.
2. VCC must be applied simultaneously with or before VPP and removed simultaneously or after VPP.
18/24
Unit
ns
M27C256B
5
Package mechanical
Package mechanical
Figure 9.
FDIP28WB - 28 pin Ceramic Frit-seal DIP, with window, package outline
A2
A3
A
A1
B1
B
L
α
e
eA
D2
C
eB
D
S
N
∅
E1
E
1
FDIPW-a
1. Drawing is not to scale.
Table 12.
FDIP28WB - 28 pin Ceramic Frit-seal DIP, with window (round 0.280"),
package mechanical data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
5.72
Max
0.225
A1
0.51
1.40
0.020
0.055
A2
3.91
4.57
0.154
0.180
A3
3.89
4.50
0.153
0.177
B
0.41
0.56
0.016
0.022
–
–
–
–
C
0.23
0.30
0.009
0.012
D
36.50
37.34
1.437
1.470
B1
1.45
0.057
D2
33.02
–
–
1.300
–
–
E
15.24
–
–
0.600
–
–
13.06
13.36
0.514
0.526
E1
e
2.54
–
–
0.100
–
–
eA
14.99
–
–
0.590
–
–
eB
16.18
18.03
0.637
0.710
L
3.18
4.10
0.125
0.161
S
1.52
2.49
0.060
0.098
–
–
–
–
α
4°
11°
4°
11°
N
28
∅
7.11
0.280
28
19/24
Package mechanical
M27C256B
Figure 10. PDIP28 - 28 pin Plastic DIP, 600 mils width, package outline
A2
A
A1
B1
B
L
α
e1
eA
D2
C
eB
D
S
N
E1
E
1
PDIP
1. Drawing is not to scale.
Table 13.
PDIP28 - 28 pin Plastic DIP, 600 mils width, package mechanical data
millimeters
inches
Symbol
Typ
Max
Typ
A
4.445
0.1750
A1
0.630
0.0248
A2
3.810
B
0.450
0.0177
B1
1.270
0.0500
C
3.050
4.570
0.230
0.310
0.1500
Min
Max
0.1201
0.1799
0.0091
0.0122
D
36.830
36.580
37.080
1.4500
1.4402
1.4598
D2
33.020
–
–
1.3000
–
–
E
15.240
E1
13.720
12.700
14.480
0.5402
0.5000
0.5701
e1
2.540
–
–
0.1000
–
–
eA
15.000
14.800
15.200
0.5906
0.5827
0.5984
15.200
16.680
0.5984
0.6567
eB
L
20/24
Min
0.6000
3.300
0.1299
S
1.78
2.08
0.070
0.082
α
0°
10°
0°
10°
N
28
28
M27C256B
Package mechanical
Figure 11. PLCC32 - 32 pin Rectangular Plastic Leaded Chip Carrier, package
outline
D
D1
A1
A2
1 N
B1
E2
e
E1 E
E3
F
B
0.51 (.020)
E2
1.14 (.045)
A
D3
R
D2
CP
D2
PLCC-A
1. Drawing is not to scale.
Table 14.
PLCC32 - 32 pin Rectangular Plastic Leaded Chip Carrier, package
mechanical data
millimeters
inches
Symbol
Typ
Min
Max
A
3.17
A1
Min
Max
3.56
0.125
0.140
1.53
2.41
0.060
0.095
A2
0.38
–
0.015
–
B
0.33
0.53
0.013
0.021
B1
0.66
0.81
0.026
0.032
CP
Typ
0.10
0.004
D
12.32
12.57
0.485
0.495
D1
11.35
11.51
0.447
0.453
D2
4.78
5.66
0.188
0.223
–
–
–
–
E
14.86
15.11
0.585
0.595
E1
13.89
14.05
0.547
0.553
E2
6.05
6.93
0.238
0.273
D3
7.62
0.300
E3
10.16
–
–
0.400
–
–
e
1.27
–
–
0.050
–
–
0.00
0.13
0.000
0.005
–
–
–
–
F
R
N
0.89
32
0.035
32
21/24
Part numbering
6
M27C256B
Part numbering
Table 15.
Ordering information scheme
Example:
M27C256B
-70 X
C
1
TR
Device Type
M27
Supply Voltage
C = 5V
Device Function
256B = 256 Kbit (32Kb x 8)
Speed
-45 (1)= 45 ns
-60 = 60 ns
-70 = 70 ns
-80 = 80 ns
-90 = 90 ns
-10 = 100 ns
-12 = 120 ns
-15 = 150 ns
-20 = 200 ns
-25 = 250 ns
VCC Tolerance
blank = ± 10%
X = ± 5%
Package
F = FDIP28W
B = PDIP28
C = PLCC32
Temperature Range
1 = 0 to 70 °C
3 = –40 to 125 °C
6 = –40 to 85 °C
Options
TR = Tape & Reel Packing
1. High Speed, see AC Characteristics section for further information.
For a list of available options (Speed, Package, etc) or for further information on any aspect
of this device, please contact the STMicroelectronics Sales Office nearest to you.
22/24
M27C256B
7
Revision history
Revision history
Table 16.
Date
Document revision history
Version
Revision Details
July 1998
1.0
First Issue
20-Sep-2000
1.1
AN620 Reference removed
29-Nov-2000
1.2
PLCC codification changed (Table 15.)
02-Apr-2001
1.3
FDIP28W mechanical dimensions changed (Table 12.)
29-Aug-2002
1.4
Package mechanical data clarified for PDIP28 (Table 13.),
PLCC32 (Table 14., Figure 11.) and TSOP28 (Table 15., Figure 13.)
2
Document converted to new template (sections added, information
moved).
TSOP28 package removed. Packages are ECOPACK® compliant. X
option removed from Table 15: Ordering information scheme.
18-May-2006
23/24
M27C256B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
24/24
Similar pages