M28W320FSU M28W640FSU 32Mbit (2Mb x16) and 64Mbit (4Mb x16) 3V Supply, Uniform Block, Secure Flash Memories FEATURES SUMMARY ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ SUPPLY VOLTAGE – VDD = 2.7V to 3.6V Core Power Supply – VDDQ= 2.7V to 3.6V for Input/Output – VPP = 12V for fast Program (optional) ACCESS TIME: 70ns PROGRAMMING TIME: – 10µs typical – Double Word Programming Option – Quadruple Word Programming Option COMMON FLASH INTERFACE UNIFORM BLOCKS 64-KWord UNIFORM MEMORY BLOCKS – M28W320FSU: 32 Blocks – M28W640FSU: 64 Blocks HARDWARE PROTECTION – VPP Pin for Write protect of All Blocks SECURITY FEATURES – 128 bit User-programmable OTP segment – 64 bit Unique Device Identifier – KRYPTO Features: Modify Protection, Read Protection, Device Authentication AUTOMATIC STAND-BY MODE PROGRAM and ERASE SUSPEND 100,000 PROGRAM/ERASE CYCLES per BLOCK ELECTRONIC SIGNATURE – Manufacturer Code: 20h – Device Codes: M28W320FSU: 880Ch, M28W640FSU: 8857h PACKAGE – Compliant with Lead-Free Soldering Processes – Lead-Free Version May 2005 Figure 1. Package BGA TBGA64 (ZA) 10 x 13mm 1/49 M28W320FSU, M28W640FSU TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Figure 3. Table 1. Figure 4. Figure 5. Figure 6. M28W320FSU Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 M28W640FSU Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 M28W320FSU and M28W640FSU Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Address Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VDD Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VDDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 2. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 HARDWARE PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 VPP ≤ VPPLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SECURITY FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 3. Command Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2/49 M28W320FSU, M28W640FSU Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Quadruple Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 5. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 6. Read Protection Register and Protection Register Lock . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 7. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 17 STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 8. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 9. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 10. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 8. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 11. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 12. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 9. Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 13. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 10.Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 14. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 11.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 15. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 12.Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 16. Power-Up and Reset AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 13.TBGA64 - 10x13 active ball array, 1mm pitch, Bottom View Package Outline . . . . . . . . 29 Table 17. TBGA64 - 10x13 active ball array, 1mm pitch, Package Mechanical Data . . . . . . . . . . . 29 3/49 M28W320FSU, M28W640FSU PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 18. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 19. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 APPENDIX A.BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 20. Block Addresses, M28W320FSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 21. Block Addresses, M28W640FSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 22. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 23. CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 24. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 25. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 26. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 27. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 APPENDIX C.FLOWCHARTS AND PSEUDO CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 14.Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 15.Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 16.Quadruple Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 17.Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 42 Figure 18.Erase Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 19.Erase Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 20.Protection Register Program Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . 45 APPENDIX D.COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE. . . . . . . . 46 Table 28. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 29. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 30. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4/49 M28W320FSU, M28W640FSU SUMMARY DESCRIPTION The M28W320FSU and the M28W640FSU are 32 Mbit (2Mbit x 16) and 64 Mbit (4Mbit x 16) Secure Flash memories. The devices can be erased electrically at block level and programmed in-system on a Word-by-Word basis using a 2.7V to 3.6V VDD supply for the circuitry and a 2.7V to 3.6V VDDQ supply for the Input/Output pins. An optional 12V VPP power supply is provided to speed up customer programming. The M28W320FSU and M28W640FSU feature 32 Mbits and 64 Mbits respectively and are divided into thirty-two and sixty-four 64-KWord Uniform blocks, respectively. Refer to Figure 5. for a detailed description of the devices memory architecture and map. All devices are equipped with hardware and software block protection features to avoid unwanted program/erase (modify) or read of the Flash memory content: ■ Hardware Protection: – When VPP ≤ VPPLK all blocks are protected against program or erase. ■ Software Protection thanks to KRYPTO Security Features: – Modify Protection: volatile and nonvolatile. – Read Protection. The KRYPTO Security features are described in a dedicated Application Note. Please contact STMicroelectronics for further details. Two registers are available for protection purpose: The Protection Register ■ The KRYPTO Protection Register. The Protection Register is a 192 bit Protection Register to increase the protection of a system design. The Protection Register is divided into a 64 bit segment and a 128 bit segment. The 64 bit segment contains a unique device number written by ST, while the second one is one-time-programmable by the user. The user programmable segment can be permanently protected. Figure 6., shows the Protection Register Memory Map. The KRYPTO Protection Register is used to manage the Modify and Read protection modes. It also features a Device Authentication mechanism. The KRYPTO Protection Register is described in a dedicated Application Note. Please contact STMicroelectronics for further details. Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be suspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the timings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards. All the devices are offered in a TBGA64 (10 x 13mm) package. In addition to the standard version, the package is also available in Lead-free version, in compliance with JEDEC Std J-STD020B, the ST ECOPACK 7191395 Specification, and the RoHS (Restriction of Hazardous Substances) directive. The package is compliant with Lead-free soldering processes. All devices are supplied with all the bits erased (set to ’1’). ■ 5/49 M28W320FSU, M28W640FSU Figure 2. M28W320FSU Logic Diagram Figure 3. M28W640FSU Logic Diagram VDD VDDQ VPP VDD VDDQ VPP 21 22 16 16 A0-A21 A0-A20 DQ0-DQ15 W DQ0-DQ15 W E E M28W320FSU G G RP RP M28W640FSU VSS VSS AI10660 AI10659 Table 1. Signal Names M28W320FSU M28W640FSU A0-A20 A0-A21 DQ0-DQ15 Address Inputs Data Input/Output E Chip Enable G Output Enable W Write Enable RP Reset VDD Core Power Supply VDDQ 6/49 Signal Names Power Supply for Input/Output VPP Optional Supply Voltage for Fast Program & Erase VSS Ground NC Not Connected Internally M28W320FSU, M28W640FSU Figure 4. TBGA Connections (Top view through package) 1 2 3 4 5 6 7 8 A A0 A5 A7 VPP A12 VDD A17 A21 B A1 VSS A8 E A13 NC A18 NC C A2 A6 A9 A11 A14 NC A19 A20 D A3 A4 A10 RP NC NC A15 A16 E DQ8 DQ1 DQ9 DQ3 DQ4 NC DQ15 NC F NC DQ0 DQ10 DQ11 DQ12 NC NC G G NC NC DQ2 VDDQ DQ5 DQ6 DQ14 W H NC NC VDD VSSQ DQ13 VSS DQ7 NC AI09910b Note: 1. The above figure gives the TBGA connections for M28W640FSU. On M28W320FSU, A21 is NC. 7/49 M28W320FSU, M28W640FSU Figure 5. M28W320FSU and M28W640FSU Block Addresses M28W640FSU Block Addresses M28W320FSU Block Addresses 3FFFFFh 1FFFFFh 64 KWords 64 KWords 3F0000h 3EFFFFh 1F0000h 1EFFFFh 64 KWords 64 KWords 1E0000h 3E0000h Total of 64 1 Mbit Uniform Blocks Total of 32 1 Mbit Uniform Blocks 01FFFFh 01FFFFh 64 KWords 64 KWords 010000h 00FFFFh 010000h 00FFFFh 64 KWords 64 KWords 000000h 000000h AI10661 Note: 1. Also see APPENDIX A., Tables 21 and 20 for a full listing of the Block Addresses. Figure 6. Protection Register Memory Map PROTECTION REGISTER 8Ch User Programmable OTP 85h 84h Unique device number 81h 80h Protection Register Lock 1 0 AI05520b 8/49 M28W320FSU, M28W640FSU SIGNAL DESCRIPTIONS See Figures 2 and 3, Logic Diagrams and Table 1., Signal Names, for a brief overview of the signals connected to this device. Address Inputs. The Address Inputs select the cells in the memory array to access during Bus Read operations. Address Inputs range from A0 to A20 for the M28W320FSU. The M28W640FSU has an additional A21 address line. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine. Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed during a Write Bus operation. Chip Enable (E). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at VILand Reset is at VIH the device is in active mode. When Chip Enable is at VIH the memory is deselected, the outputs are high impedance and the power consumption is reduced to the stand-by level. Output Enable (G). The Output Enable controls data outputs during the Bus Read operation of the memory. Write Enable (W). The Write Enable controls the Bus Write operation of the memory’s Command Interface. The data and address inputs are latched on the rising edge of Chip Enable, E, or Write Enable, W, whichever occurs first. Reset (RP). The Reset input provides a hardware reset of the memory. When Reset is at VIL, the memory is in reset mode: the outputs are high impedance and the current consumption is minimized. After Reset all blocks are in the Locked state. When Reset is at VIH, the device is in normal operation. Exiting reset mode the device enters read array mode, but a negative transition of Chip Enable or a change of the address is required to ensure valid data outputs. VDD Supply Voltage. VDD provides the power supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase). VDDQ Supply Voltage. VDDQ provides the power supply to the I/O pins and enables all Outputs to be powered independently from VDD. VDDQ can be tied to VDD or can use a separate supply. VPP Program Supply Voltage. VPP is both a control input and a power supply pin. The two functions are selected by the voltage range applied to the pin. The Supply Voltage VDD and the Program Supply Voltage VPP can be applied in any order. If VPP is kept in a low voltage range (0V to 3.6V) VPP is seen as a control input. In this case a voltage lower than VPPLK gives an absolute protection against program or erase, while VPP > VPP1 enables these functions (see Table 12., DC Characteristics, for the relevant values). VPP is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect on Program or Erase. If VPP is set to VPPH, it acts as a power supply pin. In this condition VPP must be stable until the Program/Erase algorithm is completed (see Table 14. and Table 15.). A Quadruple Word Program command will be ignored if VPP is not set to VPPH while a Double Word Program can be performed even if VPP is set to VDD. VSS Ground. VSS is the reference for all voltage measurements. Note: Each device in a system should have VDD, VDDQ and VPP decoupled with a 0.1µF capacitor close to the pin. See Figure 8., AC Measurement Load Circuit. The PCB track widths should be sufficient to carry the required VPP program and erase currents. 9/49 M28W320FSU, M28W640FSU BUS OPERATIONS There are six standard bus operations that control the device. These are Bus Read, Bus Write, Output Disable, Standby, Automatic Standby and Reset. See Table 2., Bus Operations, for a summary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations. Read. Read Bus operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output Enable must be at VIL in order to perform a read operation. The Chip Enable input should be used to enable the device. Output Enable should be used to gate data onto the output. The data read depends on the previous command written to the memory (see Command Interface section). See Figure 9., Read AC Waveforms, and Table 13., Read AC Characteristics, for details of when the output becomes valid. Read mode is the default state of the device when exiting Reset or after power-up. Write. Bus Write operations write Commands to the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at VIL with Output Enable at VIH. Commands, Input Data and Addresses are latched on the rising edge of Write Enable or Chip Enable, whichever occurs first. See Figure 10. and Figure 11., Write AC Waveforms, and Table 14. and Table 15., Write AC Characteristics, for details of the timing requirements. Output Disable. The data outputs are high impedance when the Output Enable is at VIH. Standby. Standby disables most of the internal circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by when Chip Enable is at VIH and the device is in read mode. The power consumption is reduced to the stand-by level and the outputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to VIH during a program or erase operation, the device enters Standby mode when finished. Automatic Standby. Automatic Standby provides a low power consumption state during Read mode. Following a read operation, the device enters Automatic Standby after 150ns of bus inactivity even if Chip Enable is Low, VIL, and the supply current is reduced to IDD1. The data Inputs/Outputs will still output data if a bus Read operation is in progress. Reset. During Reset mode when Output Enable is Low, VIL, the memory is deselected and the outputs are high impedance. The memory is in Reset mode when Reset is at VIL. The power consumption is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to VSS during a Program or Erase, this operation is aborted and the memory content is no longer valid. Table 2. Bus Operations E G W RP VPP DQ0-DQ15 Bus Read VIL VIL VIH VIH Don't Care Data Output Bus Write VIL VIH VIL VIH VDD or VPPH Data Input Output Disable VIL VIH VIH VIH Don't Care Hi-Z Standby VIH X X VIH Don't Care Hi-Z X X X VIL Don't Care Hi-Z Operation Reset Note: X = VIL or VIH, VPPH = 12V ± 5%. 10/49 M28W320FSU, M28W640FSU HARDWARE PROTECTION All devices feature hardware protection. Refer to SIGNAL DESCRIPTIONS section for a detailed description of these signals. VPP ≤ VPPLK. The VPP pin protects all the memory blocks from program and erase operations. Refer to SIGNAL DESCRIPTIONS section for a detailed description of these signals. SECURITY FEATURES The M28W320FSU and M28W640FSU are equipped with KRYPTO Security features performing software protection. They allow any block to be protected from program/erase or read operations: ■ Modify Protection including Volatile Block Lock/Unlock, Non-Volatile Block Modify Protection, Non-Volatile Password Modify Protection and Irreversible Protection. ■ Read Protection. The KRYPTO features (Modify Protection mode, Read Protection mode and Device Authentication mechanism) are not described in this Datasheet. For further details concerning these additional protection modes please contact ST Sales Offices. The devices also feature a 64 bit Unique Device Identifier and a 128 bit user-programmable OTP segment (see Figure 6., Protection Register Memory Map and Protection Register Program Command). 11/49 M28W320FSU, M28W640FSU COMMAND INTERFACE All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution of the Program and Erase commands. The Program/Erase Controller provides a Status Register whose output may be read at any time, to monitor the progress of the operation, or the Program/ Erase states. See Table 3., Command Codes, for a summary of the commands and see APPENDIX D., Table 28., Write State Machine Current/Next, sheet 1 of 2., for a summary of the Command Interface. The Command Interface is reset to Read mode when power is first applied, when exiting from Reset or whenever VDD is lower than VLKO. Command sequences must be followed exactly. Any invalid combination of commands will reset the device to Read mode. Refer to Table 4., Commands, in conjunction with the text descriptions below. Read Memory Array Command The Read command returns the memory to its Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return the memory to Read mode. Subsequent read operations will read the addressed location and output the data. When a device Reset occurs, the memory defaults to Read mode. Read Status Register Command The Status Register indicates when a program or erase operation is complete and the success or failure of the operation itself. Issue a Read Status Register command to read the Status Register’s contents. Subsequent Bus Read operations read the Status Register at any address, until another command is issued. See Table 8., Status Register Bits, for details on the definitions of the bits. The Read Status Register command may be issued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will automatically output the content of the Status Register. Read Electronic Signature Command The Read Electronic Signature command reads the Manufacturer and Device Codes, and the Protection Register. The Read Electronic Signature command consists of one write cycle, a subsequent read will output the Manufacturer Code, the Device Code and the Protection Register. See Tables 5, and 6 for the valid address. 12/49 Table 3. Command Codes Hex Code Command 01h Block Lock confirm 10h Program 20h Erase 30h Double Word Program 40h Program 50h Clear Status Register 56h Quadruple Word Program 70h Read Status Register 90h Read Electronic Signature 98h Read CFI Query B0h Program/Erase Suspend C0h Protection Register Program D0h Program/Erase Resume FFh Read Memory Array Read CFI Query Command The Read Query Command is used to read data from the Common Flash Interface (CFI) Memory Area, allowing programming equipment or applications to automatically match their interface to the characteristics of the device. One Bus Write cycle is required to issue the Read Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. See APPENDIX B., COMMON FLASH INTERFACE (CFI), Tables 22, 23, 24, 25, 26 and 27 for details on the information contained in the Common Flash Interface memory area. Block Erase Command The Block Erase command can be used to erase a block. It sets all the bits within the selected block to ’1’. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error. Two Bus Write cycles are required to issue the command. ■ The first bus cycle sets up the Erase command. ■ The second latches the block address in the internal state machine and starts the Program/ Erase Controller. M28W320FSU, M28W640FSU If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits b4 and b5 are set and the command aborts. Erase aborts if Reset turns to VIL. As data integrity cannot be guaranteed when the Erase operation is aborted, the block must be erased again. During Erase operations the memory will accept the Read Status Register command and the Program/Erase Suspend command, all other commands will be ignored. Typical Erase times are given in Table 7., Program, Erase Times and Program/Erase Endurance Cycles. See APPENDIX C., Figure 18., Erase Flowchart and Pseudo Code, for a suggested flowchart for using the Erase command. Program Command The memory array can be programmed word-byword. Two bus write cycles are required to issue the Program Command. ■ The first bus cycle sets up the Program command. ■ The second latches the Address and the Data to be written and starts the Program/Erase Controller. During Program operations the memory will accept the Read Status Register command and the Program/Erase Suspend command. Typical Program times are given in Table 7., Program, Erase Times and Program/Erase Endurance Cycles. Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and reprogrammed. See APPENDIX C., Figure 14., Program Flowchart and Pseudo Code, for the flowchart for using the Program command. Double Word Program Command This feature is offered to improve the programming throughput, writing a page of two adjacent words in parallel.The two words must differ only for the address A0. The Double Word Program command can be issued either with VPP set to VPPH or to VDD. Three bus write cycles are necessary to issue the Double Word Program command. ■ The first bus cycle sets up the Double Word Program Command. ■ The second bus cycle latches the Address and the Data of the first word to be written. ■ The third bus cycle latches the Address and the Data of the second word to be written and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and reprogrammed. See APPENDIX C., Figure 15., Double Word Program Flowchart and Pseudo Code for the flowchart for using the Double Word Program command. Quadruple Word Program Command This feature is offered to improve the programming throughput, writing a page of four adjacent words in parallel.The four words must differ only for the addresses A0 and A1. A Quadruple word Program command will be ignored if VPP is not set to VPPH. Five bus write cycles are necessary to issue the Quadruple Word Program command. ■ The first bus cycle sets up the Quadruple Word Program Command. ■ The second bus cycle latches the Address and the Data of the first word to be written. ■ The third bus cycle latches the Address and the Data of the second word to be written. ■ The fourth bus cycle latches the Address and the Data of the third word to be written. ■ The fifth bus cycle latches the Address and the Data of the fourth word to be written and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and reprogrammed. See APPENDIX C., Figure 16., Quadruple Word Program Flowchart and Pseudo Code, for the flowchart for using the Quadruple Word Program command. Clear Status Register Command The Clear Status Register command can be used to reset bits 1, 3, 4 and 5 in the Status Register to ‘0’. One bus write cycle is required to issue the Clear Status Register command. The bits in the Status Register do not automatically return to ‘0’ when a new Program or Erase command is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command. Program/Erase Suspend Command The Program/Erase Suspend command is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase 13/49 M28W320FSU, M28W640FSU command and pause the Program/Erase controller. During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume, Read Array, Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then the Program, Double Word Program, Quadruple Word Program, Block Lock, or Protection Program commands will also be accepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protection Program commands. When the Program/Erase Resume command is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly. During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Enable to VIH. Program/Erase is aborted if Reset turns to VIL. See APPENDIX C., Figure 17., Program Suspend & Resume Flowchart and Pseudo Code, and Figure 19., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Program/Erase Suspend command. Program/Erase Resume Command The Program/Erase Resume command can be used to restart the Program/Erase Controller after a Program/Erase Suspend operation has paused it. One Bus Write cycle is required to issue the command. Once the command is issued subse- 14/49 quent Bus Read operations read the Status Register. See APPENDIX C., Figure 17., Program Suspend & Resume Flowchart and Pseudo Code, and Figure 19., Erase Suspend & Resume Flowchart and Pseudo Code, for flowcharts for using the Program/Erase Resume command. Protection Register Program Command The Protection Register Program command is used to Program the 128 bit user One-Time-Programmable (OTP) segment of the Protection Register. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set to ‘1’. The user can only program the bits to ‘0’. Two write cycles are required to issue the Protection Register Program command. ■ The first bus cycle sets up the Protection Register Program command. ■ The second latches the Address and the Data to be written to the Protection Register and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. The segment can be protected by programming bit 1 of the Protection Lock Register (see Figure 6., Protection Register Memory Map). Attempting to program a previously protected Protection Register will result in a Status Register error. The protection of the Protection Register is not reversible. The Protection Register Program cannot be suspended. M28W320FSU, M28W640FSU Cycles Table 4. Commands Commands Bus Write Operations 1st Cycle 2nd Cycle Op. Add Data Op. Add Data 3rd Cycle 4th Cycle Op. Add Data Op. Read Memory Array 1+ Write X FFh Read RA RD Read Status Register 1+ Write X 70h Read X SRD Read Electronic Signature 1+ Write X 90h Read SA(2) IDh Read CFI Query 1+ Write X 98h Read QA QD Erase 2 Write X 20h Write BA D0h Program 2 Write X 40h or Write 10h PA PD Double Word Program(3) 3 Write X 30h Write PA1 PD1 Write PA2 PD2 Quadruple Word Program(4) 5 Write X 56h Write PA1 PD1 Write PA2 PD2 Write Clear Status Register 1 Write X 50h Program/Erase Suspend 1 Write X B0h Program/Erase Resume 1 Write X D0h Protection Register Program 2 Write X C0h Write PRA PRD 5th Cycle Add Data PA3 Op. Add Data PD3 Write PA4 PD4 Note: 1. X = Don't Care, RA=Read Address, RD=Read Data, SRD=Status Register Data, ID=Identifier (Manufacture and Device Code), QA=Query Address, QD=Query Data, BA=Block Address, PA=Program Address, PD=Program Data, PRA=Protection Register Address, PRD=Protection Register Data. 2. The signature addresses are listed in Tables 5 and 6. 3. Program Addresses 1 and 2 must be consecutive Addresses differing only for A0. 4. Program Addresses 1,2,3 and 4 must be consecutive Addresses differing only for A0 and A1. Table 5. Read Electronic Signature Code E G W A0 A1 A2-A7 A8-A20 A8-A21(2) DQ0-DQ7 DQ8-DQ15 VIL VIL VIH VIL VIL 0 Don't Care 20h 00h M28W320FSU VIL VIL VIH VIH VIL 0 Don't Care 0Ch 88h M28W640FSU VIL VIL VIH VIH VIL 0 Don't Care 57h 88h Device Manufacture Code Device Code Note: 1. RP = VIH. 2. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU. 15/49 M28W320FSU, M28W640FSU Table 6. Read Protection Register and Protection Register Lock E G W A0-A7 A8-A21(1) DQ0 DQ1 DQ2 Lock VIL VIL VIH 80h Don't Care 0 OTP Prot. data 0 00h 00h Unique ID 0 VIL VIL VIH 81h Don't Care ID data ID data ID data ID data ID data Unique ID 1 VIL VIL VIH 82h Don't Care ID data ID data ID data ID data ID data Unique ID 2 VIL VIL VIH 83h Don't Care ID data ID data ID data ID data ID data Unique ID 3 VIL VIL VIH 84h Don't Care ID data ID data ID data ID data ID data OTP 0 VIL VIL VIH 85h Don't Care OTP data OTP data OTP data OTP data OTP data OTP 1 VIL VIL VIH 86h Don't Care OTP data OTP data OTP data OTP data OTP data OTP 2 VIL VIL VIH 87h Don't Care OTP data OTP data OTP data OTP data OTP data OTP 3 VIL VIL VIH 88h Don't Care OTP data OTP data OTP data OTP data OTP data OTP 4 VIL VIL VIH 89h Don't Care OTP data OTP data OTP data OTP data OTP data OTP 5 VIL VIL VIH 8Ah Don't Care OTP data OTP data OTP data OTP data OTP data OTP 6 VIL VIL VIH 8Bh Don't Care OTP data OTP data OTP data OTP data OTP data OTP 7 VIL VIL VIH 8Ch Don't Care OTP data OTP data OTP data OTP data OTP data Word Note: 1. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU. 16/49 DQ3-DQ7 DQ8-DQ15 M28W320FSU, M28W640FSU Table 7. Program, Erase Times and Program/Erase Endurance Cycles M28W320FSU, M28W640FSU Parameter Test Conditions Unit Min Typ Max VPP = VDD 10 200 µs VPP = VPPH or VPP = VDD 10 200 µs VPP = VPPH 10 200 µs Using Word Program command VPP = VDD 0.64 Using Double Word Program command VPP = VPPH or VPP = VDD 0.32 VPP = VPPH 0.16 VPP =VPPH or VPP = VDD 1 Word Program Double Word Program Quadruple Word Program Block Program Using Quadruple Word Program command Block Erase Program/Erase Cycles (per Block) Data Retention s 5 s s 10 s 100,000 cycles 20 years 17/49 M28W320FSU, M28W640FSU STATUS REGISTER The Status Register provides information on the current or previous Program or Erase operation. The various bits convey information and errors on the operation. To read the Status register the Read Status Register command can be issued, refer to Read Status Register Command section. To output the contents, the Status Register is latched on the falling edge of the Chip Enable or Output Enable signals, and can be read until Chip Enable or Output Enable returns to VIH. Either Chip Enable or Output Enable must be toggled to update the latched data. Bus Read operations from any address always read the Status Register during Program and Erase operations. The bits in the Status Register are summarized in Table 8., Status Register Bits. Refer to Table 8. in conjunction with the following text descriptions. Program/Erase Controller Status (Bit 7). The Program/Erase Controller Status bit indicates whether the Program/Erase Controller is active or inactive. When the Program/Erase Controller Status bit is Low (set to ‘0’), the Program/Erase Controller is active; when the bit is High (set to ‘1’), the Program/Erase Controller is inactive, and the device is ready to process a new command. The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller pauses. After the Program/Erase Controller pauses the bit is High. During Program, Erase, operations the Program/ Erase Controller Status bit can be polled to find the end of the operation. Other bits in the Status Register should not be tested until the Program/Erase Controller completes the operation and the bit is High. After the Program/Erase Controller completes its operation the Erase Status, Program Status, VPP Status and Block Lock Status bits should be tested for errors. Erase Suspend Status (Bit 6). The Erase Suspend Status bit indicates that an Erase operation has been suspended or is going to be suspended. When the Erase Suspend Status bit is High (set to ‘1’), a Program/Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Bit 7 is set within 30µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode. 18/49 When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low. Erase Status (Bit 5). The Erase Status bit can be used to identify if the memory has failed to verify that the block has erased correctly. When the Erase Status bit is High (set to ‘1’), the Program/ Erase Controller has applied the maximum number of pulses to the block and still failed to verify that the block has erased correctly. The Erase Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail. Program Status (Bit 4). The Program Status bit is used to identify a Program failure. When the Program Status bit is High (set to ‘1’), the Program/Erase Controller has applied the maximum number of pulses to the byte and still failed to verify that it has programmed correctly. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail. VPP Status (Bit 3). The VPP Status bit can be used to identify an invalid voltage on the VPP pin during Program and Erase operations. The VPP pin is only sampled at the beginning of a Program or Erase operation. Indeterminate results can occur if VPP becomes invalid during an operation. When the VPP Status bit is Low (set to ‘0’), the voltage on the VPP pin was sampled at a valid voltage; when the VPP Status bit is High (set to ‘1’), the VPP pin has a voltage that is below the VPP Lockout Voltage, VPPLK, the memory is protected and Program and Erase operations cannot be performed. Once set High, the VPP Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail. Program Suspend Status (Bit 2). The Program Suspend Status bit indicates that a Program operation has been suspended. When the Program Suspend Status bit is High (set to ‘1’), a Program/ Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Program Suspend Status should only be considered valid when the Pro- M28W320FSU, M28W640FSU gram/Erase Controller Status bit is High (Program/ Erase Controller inactive). Bit 2 is set within 5µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode. When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low. Block Protection Status (Bit 1). The Block Protection Status bit can be used to identify if a Program or Erase operation has tried to modify the contents of a locked block. When the Block Protection Status bit is High (set to ‘1’), a Program or Erase operation has been attempted on a locked block. Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail. Reserved (Bit 0). Bit 0 of the Status Register is reserved. Its value must be masked. Note: Refer to APPENDIX C., FLOWCHARTS AND PSEUDO CODES, for using the Status Register. Table 8. Status Register Bits Bit 7 6 5 4 3 2 1 0 Name Logic Level Definition '1' Ready '0' Busy '1' Suspended '0' In progress or Completed '1' Erase Error '0' Erase Success '1' Program Error '0' Program Success '1' VPP Invalid, Abort '0' VPP OK '1' Suspended '0' In Progress or Completed '1' Program/Erase on protected Block, Abort '0' No operation to protected blocks P/E.C. Status Erase Suspend Status Erase Status Program Status VPP Status Program Suspend Status Block Protection Status Reserved Note: Logic level '1' is High, '0' is Low. 19/49 M28W320FSU, M28W640FSU MAXIMUM RATING Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im- plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 9. Absolute Maximum Ratings Value Symbol Parameter Unit Min Max Ambient Operating Temperature (1) – 40 85 °C TBIAS Temperature Under Bias – 40 125 °C TSTG Storage Temperature – 55 155 °C TLEAD Lead Temperature during Soldering (2) °C TA VIO VDD, VDDQ VPP Input or Output Voltage – 0.6 VDDQ+0.6 V Supply Voltage – 0.6 4.1 V Program Voltage – 0.6 13 V Note: 1. Depends on range. 2. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK® 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU. 20/49 M28W320FSU, M28W640FSU DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measure- ment Conditions summarized in Table 10., Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 10. Operating and AC Measurement Conditions M28W320FSU, M28W640FSU Parameter 70 Units Min Max VDD Supply Voltage 2.7 3.6 V VDDQ Supply Voltage 2.7 3.6 V Ambient Operating Temperature –40 85 °C Load Capacitance (CL) 50 Input Rise and Fall Times pF 5 Input Pulse Voltages Input and Output Timing Ref. Voltages Figure 7. AC Measurement I/O Waveform ns 0 to VDDQ V VDDQ/2 V Figure 8. AC Measurement Load Circuit VDDQ VDDQ VDDQ/2 VDDQ VDD 0V 25kΩ AI00610 DEVICE UNDER TEST CL 0.1µF 25kΩ 0.1µF CL includes JIG capacitance AI00609C Table 11. Capacitance Symbol CIN COUT Parameter Input Capacitance Output Capacitance Test Condition Min Max Unit VIN = 0V 6 pF VOUT = 0V 12 pF Note: Sampled only, not 100% tested. 21/49 M28W320FSU, M28W640FSU Table 12. DC Characteristics Symbol Parameter Test Condition Min Typ Max Unit ILI Input Leakage Current 0V≤ VIN ≤ VDDQ ±1 µA ILO Output Leakage Current 0V≤ VOUT ≤VDDQ ±10 µA IDD Supply Current (Read) IDD1 Supply Current (Stand-by or Automatic Stand-by) IDD2 Supply Current (Reset) IDD3 IDD4 Supply Current (Program) Supply Current (Erase) E = VSS, G = VIH, f = 5MHz 9 18 mA E = VDDQ ± 0.2V, RP = VDDQ ± 0.2V 15 50 µA RP = VSS ± 0.2V 15 50 µA Program in progress VPP = 12V ± 5% 5 10 mA Program in progress VPP = VDD 10 20 mA Erase in progress VPP = 12V ± 5% 5 20 mA Erase in progress VPP = VDD 10 20 mA E = VDDQ ± 0.2V, Erase suspended 15 50 µA 400 µA IDD5 Supply Current (Program/Erase Suspend) IPP Program Current (Read or Stand-by) VPP > VDD IPP1 Program Current (Read or Stand-by) VPP ≤ VDD 1 5 µA IPP2 Program Current (Reset) RP = VSS ± 0.2V 1 5 µA Program in progress VPP = 12V ± 5% 1 10 mA Program in progress VPP = VDD 1 5 µA Erase in progress VPP = 12V ± 5% 3 10 mA Erase in progress VPP = VDD 1 5 µA IPP3 IPP4 Program Current (Program) Program Current (Erase) VIL Input Low Voltage –0.5 0.8 V VIH Input High Voltage 0.7 VDDQ VDDQ +0.4 V VOL Output Low Voltage IOL = 100µA, VDD = VDD min, VDDQ = VDDQ min 0.1 V VOH Output High Voltage IOH = –100µA, VDD = VDD min, VDDQ = VDDQ min VPP1 Program Voltage (Program or Erase operations) 2.7 3.6 V VPPH Program Voltage (Program or Erase operations) 11.4 12.6 V VPPLK Program Voltage (Program and Erase lock-out) 1 V VLKO VDD Supply Voltage (Program and Erase lock-out) 2 V 22/49 VDDQ –0.1 V M28W320FSU, M28W640FSU Figure 9. Read AC Waveforms tAVAV A0-A20/A21(1) VALID tAVQV tAXQX E tELQV tELQX tEHQX tEHQZ G tGLQV tGHQX tGLQX tGHQZ VALID DQ0-DQ15 ADDR. VALID CHIP ENABLE OUTPUTS ENABLED DATA VALID STANDBY AI09928 Note: 1. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU. Table 13. Read AC Characteristics Symbol Alt M28W320FSU M28W640FSU 70 70 Min 70 70 ns Parameter Unit tAVAV tRC tAVQV tACC Address Valid to Output Valid Max 70 70 ns tAXQX (1) tOH Address Transition to Output Transition Min 0 0 ns tEHQX (1) tOH Chip Enable High to Output Transition Min 0 0 ns tEHQZ (1) tHZ Chip Enable High to Output Hi-Z Max 20 20 ns tELQV (2) tCE Chip Enable Low to Output Valid Max 70 70 ns tELQX (1) tLZ Chip Enable Low to Output Transition Min 0 0 ns tGHQX (1) tOH Output Enable High to Output Transition Min 0 0 ns tGHQZ (1) tDF Output Enable High to Output Hi-Z Max 20 20 ns tGLQV (2) tOE Output Enable Low to Output Valid Max 20 20 ns tGLQX (1) tOLZ Output Enable Low to Output Transition Min 0 0 ns Address Valid to Next Address Valid Note: 1. Sampled only, not 100% tested. 2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV. 23/49 24/49 VPP DQ0-DQ15 W G E A0-A20/A21(1) tWLWH COMMAND SET-UP COMMAND tDVWH tELWL tWHDX tWHWL tWHEH CMD or DATA CONFIRM COMMAND OR DATA INPUT tVPHWH tAVWH VALID tAVAV tWHEL tWHGL tWHAX PROGRAM OR ERASE AI09929 tQVVPL STATUS REGISTER STATUS REGISTER READ 1st POLLING tELQV M28W320FSU, M28W640FSU Figure 10. Write AC Waveforms, Write Enable Controlled Note: 1. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU. M28W320FSU, M28W640FSU Table 14. Write AC Characteristics, Write Enable Controlled Symbol Alt M28W320FSU M28W640FSU 70 70 Parameter Unit tAVAV tWC Write Cycle Time Min 70 70 ns tAVWH tAS Address Valid to Write Enable High Min 45 45 ns tDVWH tDS Data Valid to Write Enable High Min 45 45 ns tELWL tCS Chip Enable Low to Write Enable Low Min 0 0 ns tELQV Chip Enable Low to Output Valid Min 70 70 ns tQVVPL Output Valid to VPP Low Min 0 0 ns tVPS VPP High to Write Enable High Min 200 200 ns tWHAX tAH Write Enable High to Address Transition Min 0 0 ns tWHDX tDH Write Enable High to Data Transition Min 0 0 ns tWHEH tCH Write Enable High to Chip Enable High Min 0 0 ns tWHEL Write Enable High to Chip Enable Low Min 25 25 ns tWHGL Write Enable High to Output Enable Low Min 20 20 ns (1,2) tVPHWH (1) tWHWL tWPH Write Enable High to Write Enable Low Min 25 25 ns tWLWH tWP Write Enable Low to Write Enable High Min 45 45 ns Note: 1. Sampled only, not 100% tested. 2. Applicable if VPP is seen as a logic input (VPP < 3.6V). 25/49 26/49 VPP DQ0-DQ15 E G W A0-A20/A21 tELEH COMMAND POWER-UP AND SET-UP COMMAND tDVEH tWLEL tEHDX tEHEL tEHWH CMD or DATA CONFIRM COMMAND OR DATA INPUT tVPHEH tAVEH VALID tAVAV tEHGL tEHAX PROGRAM OR ERASE tQVVPL STATUS REGISTER STATUS REGISTER READ 1st POLLING tELQV AI09930 M28W320FSU, M28W640FSU Figure 11. Write AC Waveforms, Chip Enable Controlled Note: 1. Addresses range from A0 to A20 for the M28W320FSU and from A0 to A21 for the M28W640FSU. M28W320FSU, M28W640FSU Table 15. Write AC Characteristics, Chip Enable Controlled Symbol Alt M28W320FSU M28W640FSU 70 70 Parameter Unit tAVAV tWC Write Cycle Time Min 70 70 ns tAVEH tAS Address Valid to Chip Enable High Min 45 45 ns tDVEH tDS Data Valid to Chip Enable High Min 45 45 ns tEHAX tAH Chip Enable High to Address Transition Min 0 0 ns tEHDX tDH Chip Enable High to Data Transition Min 0 0 ns tEHEL tCPH Chip Enable High to Chip Enable Low Min 25 25 ns Chip Enable High to Output Enable Low Min 25 25 ns tEHGL tEHWH tWH Chip Enable High to Write Enable High Min 0 0 ns tELEH tCP Chip Enable Low to Chip Enable High Min 45 45 ns tELQV Chip Enable Low to Output Valid Min 70 70 ns tQVVPL Output Valid to VPP Low Min 0 0 ns tVPS VPP High to Chip Enable High Min 200 200 ns tCS Min 0 0 ns (1,2) tVPHEH (1) tWLEL Write Enable Low to Chip Enable Low Note: 1. Sampled only, not 100% tested. 2. Applicable if VPP is seen as a logic input (VPP < 3.6V). 27/49 M28W320FSU, M28W640FSU Figure 12. Power-Up and Reset AC Waveforms W, E, G tPHWL tPHEL tPHGL tPHWL tPHEL tPHGL RP tVDHPH tPLPH VDD, VDDQ Power-Up Reset AI03537b Table 16. Power-Up and Reset AC Characteristics Symbol Parameter Test Condition M28W320FSU, M28W640FSU Unit 70 tPHWL tPHEL tPHGL Reset High to Write Enable Low, Chip Enable Low, Output Enable Low During Program and Erase Min 50 µs others Min 30 ns tPLPH(1,2) Reset Low to Reset High Min 100 ns tVDHPH(3) Supply Voltages High to Reset High Min 50 µs Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns. 2. Sampled only, not 100% tested. 3. It is important to assert RP in order to allow proper CPU initialization during power up or reset. 28/49 M28W320FSU, M28W640FSU PACKAGE MECHANICAL Figure 13. TBGA64 - 10x13 active ball array, 1mm pitch, Bottom View Package Outline D D1 FD FE E SD SE E1 ddd BALL "A1" A e b A2 A1 BGA-Z23 Note: Drawing is not to scale. Table 17. TBGA64 - 10x13 active ball array, 1mm pitch, Package Mechanical Data millimeters inches Symbol Typ Min A Max Typ Min 1.200 A1 0.300 A2 0.800 b 0.200 0.350 Max 0.0472 0.0118 0.0079 0.0138 0.0138 0.0197 0.0315 0.350 0.500 D 10.000 9.900 10.100 0.3937 0.3898 0.3976 D1 7.000 – – 0.2756 – – ddd 0.100 0.0039 e 1.000 – – 0.0394 – – E 13.000 12.900 13.100 0.5118 0.5079 0.5157 E1 7.000 – – 0.2756 – – FD 1.500 – – 0.0591 – – FE 3.000 – – 0.1181 – – SD 0.500 – – 0.0197 – – SE 0.500 – – 0.0197 – – 29/49 M28W320FSU, M28W640FSU PART NUMBERING Table 18. Ordering Information Scheme Example: Device Type M28 Operating Voltage W = VDD = 2.7V to 3.6V; VDDQ = 2.7V to 3.6V Device Function 320FSU = 32 Mbit (2 Mb x16), Uniform Block, Secure, 0.13µm 640FSU = 64 Mbit (4 Mb x16), Uniform Block, Secure, 0.13µm Speed 70 = 70ns Package ZA = TBGA64:10 x 13mm, 1mm pitch Temperature Range 1 = 0 to 70 °C 6 = –40 to 85 °C Option Blank = Standard Packing T = Tape & Reel Packing E = Lead-Free and RoHS Package, Standard Packing F = Lead-Free and RoHS Package, Tape & Reel Packing 30/49 M28W320FSU 70 ZA 6 T M28W320FSU, M28W640FSU Table 19. Daisy Chain Ordering Scheme Example: M28W640FSU -ZA T Device Type M28W320FSU M28W640FSU Daisy Chain -ZA = TBGA64: 10 x 13, 1mm pitch Option Blank = Standard Packing T = Tape & Reel Packing E = Lead-Free and RoHS Package, Standard Packing F = Lead-Free and RoHS Package, Tape & Reel Packing Note:Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you. 31/49 M28W320FSU, M28W640FSU APPENDIX A. BLOCK ADDRESS TABLES Table 20. Block Addresses, M28W320FSU Block Number Address Range 31 1F0000h-1FFFFFh 30 1E0000h-1EFFFFh 29 1D0000h-1DFFFFh 28 1C0000h-1CFFFFh 27 1B0000h-1BFFFFh 26 1A0000h-1AFFFFh 25 190000h-19FFFFh 24 180000h-18FFFFh 23 170000h-17FFFFh 22 160000h-16FFFFh 21 150000h-15FFFFh 20 140000h-14FFFFh 19 130000h-13FFFFh 18 120000h-12FFFFh 17 110000h-11FFFFh 16 100000h-10FFFFh 32/49 Block Number Address Range 15 0F0000h-0FFFFFh 14 0E0000h-0EFFFFh 13 0D0000h-0DFFFFh 12 0C0000h-0CFFFFh 11 0B0000h-0BFFFFh 10 0A0000h-0AFFFFh 9 090000h-09FFFFh 8 080000h-08FFFFh 7 070000h-07FFFFh 6 060000h-06FFFFh 5 050000h-05FFFFh 4 040000h-04FFFFh 3 030000h-03FFFFh 2 020000h-02FFFFh 1 010000h-01FFFFh 0 000000h-00FFFFh M28W320FSU, M28W640FSU Table 21. Block Addresses, M28W640FSU Block Number Address Range 63 3F0000h-3FFFFFh 62 3E0000h-3EFFFFh 61 3D0000h-3DFFFFh 60 3C0000h-3CFFFFh 59 3B0000h-3BFFFFh 58 3A0000h-3AFFFFh 57 390000h-39FFFFh 56 380000h-38FFFFh 55 370000h-37FFFFh 54 360000h-36FFFFh 53 350000h-35FFFFh 52 340000h-34FFFFh 51 330000h-33FFFFh 50 320000h-32FFFFh 49 310000h-31FFFFh 48 300000h-30FFFFh 47 2F0000h-2FFFFFh 46 2E0000h-2EFFFFh 45 2D0000h-2DFFFFh 44 2C0000h-2CFFFFh 43 2B0000h-2BFFFFh 42 2A0000h-2AFFFFh 41 290000h-29FFFFh 40 280000h-28FFFFh 39 270000h-27FFFFh 38 260000h-26FFFFh 37 250000h-25FFFFh 36 240000h-24FFFFh 35 230000h-23FFFFh 34 220000h-22FFFFh 33 210000h-21FFFFh 32 200000h-20FFFFh Block Number Address Range 31 1F0000h-1FFFFFh 30 1E0000h-1EFFFFh 29 1D0000h-1DFFFFh 28 1C0000h-1CFFFFh 27 1B0000h-1BFFFFh 26 1A0000h-1AFFFFh 25 190000h-19FFFFh 24 180000h-18FFFFh 23 170000h-17FFFFh 22 160000h-16FFFFh 21 150000h-15FFFFh 20 140000h-14FFFFh 19 130000h-13FFFFh 18 120000h-12FFFFh 17 110000h-11FFFFh 16 100000h-10FFFFh 15 0F0000h-0FFFFFh 14 0E0000h-0EFFFFh 13 0D0000h-0DFFFFh 12 0C0000h-0CFFFFh 11 0B0000h-0BFFFFh 10 0A0000h-0AFFFFh 9 090000h-09FFFFh 8 080000h-08FFFFh 7 070000h-07FFFFh 6 060000h-06FFFFh 5 050000h-05FFFFh 4 040000h-04FFFFh 3 030000h-03FFFFh 2 020000h-02FFFFh 1 010000h-01FFFFh 0 000000h-00FFFFh 33/49 M28W320FSU, M28W640FSU APPENDIX B. COMMON FLASH INTERFACE (CFI) The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary. When the CFI Query Command (RCFI) is issued the device enters CFI Query mode and the data structure is read from the memory. Tables 22, 23, 24, 25, 26 and 27 show the addresses used to retrieve the data. The CFI data structure also contains a security area where a 64 bit unique security number is written (see Table 27., Security Code Area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by ST. Issue a Read command to return to Read mode. Table 22. Query Structure Overview Offset Sub-section Name Description 00h Reserved Reserved for algorithm-specific information 10h CFI Query Identification String Command set ID and algorithm data offset 1Bh System Interface Information Device timing & voltage information 27h Device Geometry Definition Flash device layout P Primary Algorithm-specific Extended Query table Additional information specific to the Primary Algorithm (optional) A Alternate Algorithm-specific Extended Query table Additional information specific to the Alternate Algorithm (optional) Note: Query data are always presented on the lowest order data outputs. Table 23. CFI Query Identification String Offset Data 00h 0020h Manufacturer Code 01h 880Ch 8857h M28W320FSU Device Code M28W640FSU Device Code 02h-0Fh Description ST Uniform reserved Reserved 10h 0051h 11h 0052h 12h 0059h 13h 0003h 14h 0000h 15h 0035h 16h 0000h 17h 0000h 18h 0000h 19h 0000h 1Ah 0000h "Q" Query Unique ASCII String "QRY" "R" "Y" Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm Address for Primary Algorithm extended Query table (see Table 26.) Intel compatible P = 35h Alternate Vendor Command Set and Control Interface ID Code second vendor specified algorithm supported (0000h means none exists) NA Address for Alternate Algorithm extended Query table (0000h means none exists) NA Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’. 34/49 Value M28W320FSU, M28W640FSU Table 24. CFI Query System Interface Information Offset Data Description Value 1Bh 0027h VDD Logic Supply Minimum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100mV 2.7V 1Ch 0036h VDD Logic Supply Maximum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100mV 3.6V 1Dh 00B4h VPP [Programming] Supply Minimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100mV 11.4V 1Eh 00C6h VPP [Programming] Supply Maximum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100mV 12.6V 1Fh 0004h Typical time-out per single word program = 2n µs 16µs 20h 0004h Typical time-out for Double/Quadruple Word Program = 2n µs 16µs 21h 000Ah Typical time-out per individual block erase = 2n ms 1s 22h 0000h Typical time-out for full chip erase = 2n ms NA 23h 0005h Maximum time-out for Word program = 2n times typical 512µs 24h 0005h Maximum time-out for Double/Quadruple Word Program = 2n times typical 512µs 25h 0003h Maximum time-out per individual block erase = 2n times typical 8s 26h 0000h Maximum time-out for chip erase = 2n times typical NA 35/49 M28W320FSU, M28W640FSU Table 25. Device Geometry Definition M28W640FSU M28W320FSU M28W640FSU M28W320FSU Offset Word Mode Description Value 4 MBytes 0016h Device Size = 2n in number of bytes 27h 0017h 8 MBytes 28h 29h 0001h 0000h Flash Device Interface Code description 2Ah 2Bh 0003h 0000h Maximum number of bytes in multi-byte program or page = 2n 8 2Ch 0001h Number of Erase Block Regions within the device. It specifies the number of regions within the device containing contiguous Erase Blocks of the same size. 1 2Dh 2Eh 001Fh 0000h Region 1 Information Number of identical-size erase blocks = 001Fh+1 32 2Fh 30h 0000h 0002h 2Dh 2Eh 003Fh 0000h 2Fh 30h 0000h 0002h 31h to 34h 36/49 Data Region 1 Information Block size in Region 1 = 0200h * 256 byte Region 1 Information Number of identical-size erase blocks = 003Fh+1 Region 1 Information Block size in Region 1 = 0200h * 256 byte Reserved x16 Async. 128 KBytes 64 128 KBytes M28W320FSU, M28W640FSU Table 26. Primary Algorithm-Specific Extended Query Table Offset P = 35h (1) Data (P+0)h = 35h 0050h (P+1)h = 36h 0052h (P+2)h = 37h 0049h (P+3)h = 38h 0031h Major version number, ASCII "1" (P+4)h = 39h 0030h Minor version number, ASCII "0" (P+5)h = 3Ah 0066h (P+6)h = 3Bh 0000h (P+7)h = 3Ch 0000h (P+8)h = 3Dh 0000h Extended Query table contents for Primary Algorithm. Address (P+5)h contains less significant byte. bit 0Chip Erase supported(1 = Yes, 0 = No) bit 1Suspend Erase supported(1 = Yes, 0 = No) bit 2Suspend Program supported(1 = Yes, 0 = No) bit 3Legacy Lock/Unlock supported(1 = Yes, 0 = No) bit 4Queued Erase supported(1 = Yes, 0 = No) bit 5Instant individual block locking supported(1 = Yes, 0 = No) bit 6Protection bits supported(1 = Yes, 0 = No) bit 7Page mode read supported(1 = Yes, 0 = No) bit 8Synchronous read supported(1 = Yes, 0 = No) bit 31 to 9 Reserved; undefined bits are ‘0’ (P+9)h = 3Eh 0001h (P+A)h = 3Fh 0003h (P+B)h = 40h 0000h Description Value "P" Primary Algorithm extended Query table unique ASCII string “PRI” "R" "I" Supported Functions after Suspend Read Array, Read Status Register and CFI Query are always supported during Erase or Program operation bit 0Program supported after Erase Suspend (1 = Yes, 0 = No) bit 7 to 1Reserved; undefined bits are ‘0’ Block Lock Status Defines which bits in the Block Status Register section of the Query are implemented. Address (P+A)h contains less significant byte bit 0 Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0 = No) bit 15 to 1Reserved for future use; undefined bits are ‘0’ No Yes Yes No No Yes Yes No No Yes Yes (P+C)h = 41h 0030h VDD Logic Supply Optimum Program/Erase voltage (highest performance) bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100mV 3V (P+D)h = 42h 00C0h VPP Supply Optimum Program/Erase voltage bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100mV 12V (P+E)h = 43h 0001h Number of Protection register fields in JEDEC ID space. "00h," indicates that 256 protection bytes are available 01 (P+F)h = 44h 0080h 80h (P+10)h = 45h 0000h (P+11)h = 46h 0003h (P+12)h = 47h 0004h Protection Field 1: Protection Description This field describes user-available One Time Programmable (OTP) Protection Register bytes. Some are pre-programmed with device unique serial numbers. Others are user programmable. Bits 0–15 point to the Protection Register Lock byte, the section’s first byte. The following bytes are factory pre-programmed and user-programmable. bit 0 to 7 Lock/bytes JEDEC-plane physical low address bit 8 to 15Lock/bytes JEDEC-plane physical high address bit 16 to 23 "n" such that 2n = factory pre-programmed bytes bit 24 to 31 "n" such that 2n = user programmable bytes (P+13)h = 48h 00h 8 Bytes 16 Bytes Reserved Note: 1. See Table 23., offset 15 for P pointer definition. 37/49 M28W320FSU, M28W640FSU Table 27. Security Code Area Offset Data 80h 00XX 81h XXXX 82h XXXX 83h XXXX 84h XXXX 85h XXXX 86h XXXX 87h XXXX 88h XXXX 89h XXXX 8Ah XXXX 8Bh XXXX 8Ch XXXX 38/49 Description Protection Register Lock 64 bits: unique device number 128 bits: User Programmable OTP M28W320FSU, M28W640FSU APPENDIX C. FLOWCHARTS AND PSEUDO CODES Figure 14. Program Flowchart and Pseudo Code Start program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0x40) ; /*or writeToFlash (any_address, 0x10) ; */ Write 40h or 10h writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/ Write Address & Data do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b3 = 0 NO VPP Invalid Error (1, 2) if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ; NO Program Error (1, 2) if (status_register.b4==1) /*program error */ error_handler ( ) ; NO Program to Protected Block Error (1, 2) YES b4 = 0 YES b1 = 0 if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ; YES End } AI03538b Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations. 39/49 M28W320FSU, M28W640FSU Figure 15. Double Word Program Flowchart and Pseudo Code Start Write 30h double_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2) { writeToFlash (any_address, 0x30) ; writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */ writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */ /*Memory enters read status state after the Program command*/ Write Address 1 & Data 1 (3) Write Address 2 & Data 2 (3) do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b3 = 0 NO VPP Invalid Error (1, 2) if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ; NO Program Error (1, 2) if (status_register.b4==1) /*program error */ error_handler ( ) ; NO Program to Protected Block Error (1, 2) YES b4 = 0 YES b1 = 0 if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ; YES End } AI03539b Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase operations. 3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0. 40/49 M28W320FSU, M28W640FSU Figure 16. Quadruple Word Program Flowchart and Pseudo Code Start quadruple_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2, addressToProgram3, dataToProgram3, addressToProgram4, dataToProgram4) { writeToFlash (any_address, 0x56) ; Write 56h Write Address 1 & Data 1 (3) writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */ Write Address 2 & Data 2 (3) writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */ writeToFlash (addressToProgram3, dataToProgram3) ; /*see note (3) */ Write Address 3 & Data 3 (3) writeToFlash (addressToProgram4, dataToProgram4) ; /*see note (3) */ Write Address 4 & Data 4 (3) /*Memory enters read status state after the Program command*/ do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b3 = 0 NO VPP Invalid Error (1, 2) if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ; NO Program Error (1, 2) if (status_register.b4==1) /*program error */ error_handler ( ) ; NO Program to Protected Block Error (1, 2) YES b4 = 0 YES b1 = 0 if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ; YES End } AI06233 Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase operations. 3. Address 1 to Address 4 must be consecutive addresses differing only for bits A0 and A1. 41/49 M28W320FSU, M28W640FSU Figure 17. Program Suspend & Resume Flowchart and Pseudo Code Start program_suspend_command ( ) { writeToFlash (any_address, 0xB0) ; Write B0h writeToFlash (any_address, 0x70) ; /* read status register to check if program has already completed */ Write 70h do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b2 = 1 NO Program Complete YES Write FFh } Read data from another address Write D0h if (status_register.b2==0) /*program completed */ { writeToFlash (any_address, 0xFF) ; read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/ else { writeToFlash (any_address, 0xFF) ; read_data ( ); /*read data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume program*/ } Write FFh } Program Continues Read Data AI03540b 42/49 M28W320FSU, M28W640FSU Figure 18. Erase Flowchart and Pseudo Code Start erase_command ( blockToErase ) { writeToFlash (any_address, 0x20) ; Write 20h writeToFlash (blockToErase, 0xD0) ; /* only A12-A20 are significannt */ /* Memory enters read status state after the Erase Command */ Write Block Address & D0h do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b3 = 0 NO VPP Invalid Error (1) YES Command Sequence Error (1) if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ; YES b4, b5 = 1 if ( (status_register.b4==1) && (status_register.b5==1) ) /* command sequence error */ error_handler ( ) ; NO b5 = 0 NO Erase Error (1) if ( (status_register.b5==1) ) /* erase error */ error_handler ( ) ; YES b1 = 0 NO Erase to Protected Block Error (1) if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ; YES End } AI03541b Note: If an error is found, the Status Register must be cleared before further Program/Erase operations. 43/49 M28W320FSU, M28W640FSU Figure 19. Erase Suspend & Resume Flowchart and Pseudo Code Start erase_suspend_command ( ) { writeToFlash (any_address, 0xB0) ; Write B0h writeToFlash (any_address, 0x70) ; /* read status register to check if erase has already completed */ Write 70h do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b6 = 1 NO Erase Complete if (status_register.b6==0) /*erase completed */ { writeToFlash (any_address, 0xFF) ; YES read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/ Write FFh Read data from another block or Program/Protection Program or Block Protect/Unprotect/Lock } else Write D0h Write FFh Erase Continues Read Data { writeToFlash (any_address, 0xFF) ; read_program_data ( ); /*read or program data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume erase*/ } } AI03542b 44/49 M28W320FSU, M28W640FSU Figure 20. Protection Register Program Flowchart and Pseudo Code Start protection_register_program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0xC0) ; Write C0h writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/ Write Address & Data do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b3 = 0 NO VPP Invalid Error (1, 2) if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ; NO Program Error (1, 2) if (status_register.b4==1) /*program error */ error_handler ( ) ; NO Program to Protected Block Error (1, 2) YES b4 = 0 YES b1 = 0 if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ; YES End } AI04381 Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations. 45/49 M28W320FSU, M28W640FSU APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE Table 28. Write State Machine Current/Next, sheet 1 of 2. Current State SR bit 7 Data When Read Read Array “1” Array Command Input (and Next State) Read Array (FFh) Program Setup (10/40h) Read Array Prog.Setup Erase Setup (20h) Erase Confirm (D0h) Ers. Setup Prog/Ers Suspend (B0h) Prog/Ers Resume (D0h) Read Status (70h) Clear Status (50h) Read Array Read Sts. Read Array Read Array Program Setup Erase Setup Read Array Read Status Read Array Electronic Read Array Signature Program Setup Erase Setup Read Array Read Status Read Array Program Setup Erase Setup Read Array Read Status Read Array Read Status Read Array Read Status “1” Read Elect.Sg. “1” Read CFI Query “1” CFI Prot. Prog. Setup “1” Status Protection Register Program Prot. Prog. (continue) “0” Status Protection Register Program continue Prot. Prog. (complete) “1” Status Prog. Setup “1” Status Program (continue) “0” Status Prog. Sus Status “1” Status Prog. Sus Read Array Program Suspend to Read Array Program (continue) Prog. Sus Read Array Program (continue) Prog. Sus Read Sts Prog. Sus Read Array Prog. Sus Read Array “1” Array Prog. Sus Read Array Program Suspend to Read Array Program (continue) Prog. Sus Read Array Program (continue) Prog. Sus Read Sts Prog. Sus Read Array Prog. Sus Read Elect.Sg. “1” Electronic Prog. Sus Signature Read Array Program Suspend to Read Array Program (continue) Prog. Sus Read Array Program (continue) Prog. Sus Read Sts Prog. Sus Read Array Prog. Sus Read CFI “1” CFI Prog. Sus Read Array Program Suspend to Read Array Program (continue) Prog. Sus Read Array Program (continue) Prog. Sus Read Sts Prog. Sus Read Array Program (complete) “1” Status Read Array Read Status Read Array Erase Setup “1” Status Erase Cmd.Error “1” Status Erase (continue) “0” Status Erase Sus Read Sts “1” Status Erase Sus Read Array Program Setup Erase Sus Read Array Erase (continue) Erase Sus Read Array Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase Sus Read Array “1” Array Erase Sus Read Array Program Setup Erase Sus Read Array Erase (continue) Erase Sus Read Array Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase Sus Read Elect.Sg. “1” Electronic Erase Sus Signature Read Array Program Setup Erase Sus Read Array Erase (continue) Erase Sus Read Array Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase Sus Read CFI “1” CFI Erase Sus Read Array Program Setup Erase Sus Read Array Erase (continue) Erase Sus Read Array Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase (complete) “1” Status Read Array Program Setup Erase Setup Status Read Array Read Array Program Setup Erase Setup Read Array Program Prog. Sus Read Sts Program (continue) Program Setup Erase Setup Erase Command Error Read Array Program Setup Program (continue) Read Array Erase (continue) Erase Setup Erase (continue) Erase CmdError Erase (continue) Erase Command Error Read Array Read Status Erase Sus Read Sts Erase (continue) Read Array Read Status Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend. 46/49 Read Array Read Array M28W320FSU, M28W640FSU Table 29. Write State Machine Current/Next, sheet 2 of 2. Command Input (and Next State) Current State Read Elect.Sg. (90h) Read CFI Query (98h) Prot. Prog. Setup (C0h) Read Array Read Elect.Sg. Read CFI Query Prot. Prog. Setup Read Status Read Elect.Sg. Read CFI Query Prot. Prog. Setup Read Elect.Sg. Read Elect.Sg. Read CFI Query Prot. Prog. Setup Read CFI Query Read Elect.Sg. Read CFI Query Prot. Prog. Setup Prot. Prog. Setup Protection Register Program Prot. Prog. (continue) Protection Register Program (continue) Prot. Prog. (complete) Read Elect.Sg. Read CFI Query Prog. Setup Program Program (continue) Program (continue) Prot. Prog. Setup Prog. Suspend Read Status Prog. Suspend Read Elect.Sg. Prog. Suspend Read CFI Query Program Suspend Read Array Prog. Suspend Read Array Prog. Suspend Read Elect.Sg. Prog. Suspend Read CFI Query Program Suspend Read Array Prog. Suspend Read Elect.Sg. Prog. Suspend Read Elect.Sg. Prog. Suspend Read CFI Query Program Suspend Read Array Prog. Suspend Read CFI Prog. Suspend Read Elect.Sg. Prog. Suspend Read CFI Query Program Suspend Read Array Program (complete) Read Elect.Sg. Read CFIQuery Prot. Prog. Setup Erase Setup Erase Cmd.Error Erase Command Error Read Elect.Sg. Erase (continue) Read CFI Query Prot. Prog. Setup Erase (continue) Erase Suspend Read Ststus Erase Suspend Read Elect.Sg. Erase Suspend Read CFI Query Erase Suspend Read Array Erase Suspend Read Array Erase Suspend Read Elect.Sg. Erase Suspend Read CFI Query Erase Suspend Read Array Erase Suspend Read Elect.Sg. Erase Suspend Read Elect.Sg. Erase Suspend Read CFI Query Erase Suspend Read Array Erase Suspend Read CFI Query Erase Suspend Read Elect.Sg. Erase Suspend Read CFI Query Erase Suspend Read Array Erase (complete) Read Elect.Sg. Read CFI Query Prot. Prog. Setup Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection. 47/49 M28W320FSU, M28W640FSU REVISION HISTORY Table 30. Document Revision History Date Version 07-Dec-2004 0.1 First Issue. 07-Feb-2005 0.2 Locations 31h to 34h set to reserved in Table 25., Device Geometry Definition. 16-May-2005 1.0 Datasheet status updated to “Full Datasheet”. Table 25., Device Geometry Definition updated. 48/49 Revision Details M28W320FSU, M28W640FSU Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. ECOPACK is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 49/49