Numonyx M28W640HCT70ZB6F 64 mbit (4 mb x 16, boot block) 3 v supply flash memory Datasheet

M28W640HCT
M28W640HCB
64 Mbit (4 Mb x 16, boot block)
3 V supply Flash memory
Preliminary Data
Features
■
Supply voltage
– VDD = 2.7 V to 3.6 V
– VPP = 12 V for fast program (optional)
■
Access times: 70 ns
■
Asynchronous Page Read mode
– Page width: 4 words
– Page access: 25 ns
– Random access: 70 ns
■
Programming time:
– 10 µs typical
– Double Word Programming option
– Quadruple Word Programming option
■
Common Flash interface
■
Memory blocks
– Parameter blocks (top or bottom location)
– Main blocks
■
Block locking
– All blocks locked at power-up
– Any combination of blocks can be locked
– WP for block lock-down
■
Security
– 128 bit user programmable OTP cells
– 64 bit unique device identifier
■
Automatic standby mode
■
Program and Erase Suspend
■
100,000 program/erase cycles per block
■
Electronic signature
– Manufacturer code: 20h
– Top device code, M28W640HCT: 8848h
– Bottom device code, M28W640HCB:
8849h
March 2008
FBGA
TFBGA48 (ZB)
6.39 x 10.5 mm
TSOP48 (N)
12 x 20 mm
■
Packages
– ECOPACK® compliant
Rev 2
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
1/72
www.numonyx.com
1
Contents
M28W640HCT, M28W640HCB
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3
4
2/72
2.1
Address inputs (A0-A21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2
Data input/output (DQ0-DQ15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3
Chip Enable (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4
Output Enable (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5
Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6
Write Protect (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7
Reset (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8
VDD supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9
VPP program supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10
VSS ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1
Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5
Automatic Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Command interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1
Read Memory Array command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2
Read Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3
Read Electronic Signature command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4
Read CFI Query command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5
Block Erase command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6
Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.7
Double Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.8
Quadruple Word Program command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9
Clear Status Register command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
M28W640HCT, M28W640HCB
5
6
Contents
4.10
Program/Erase Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.11
Program/Erase Resume command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.12
Protection Register Program command . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.13
Block Lock command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.14
Block Unlock command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.15
Block Lock-down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Block locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1
Reading a block’s lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2
Locked state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3
Unlocked state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4
Lock-down state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5
Locking operations during Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . 26
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1
Program/Erase controller status (bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2
Erase Suspend status (bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3
Erase status (bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4
Program status (bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5
VPP status (bit 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.6
Program Suspend status (bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.7
Block Protection status (bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.8
Reserved (bit 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Appendix A Block address tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Appendix B Common Flash interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3/72
Contents
M28W640HCT, M28W640HCB
Appendix C Flowcharts and pseudocodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Appendix D Command interface and Program/Erase controller state. . . . . . . . 67
11
4/72
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
M28W640HCT, M28W640HCB
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Bus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Command codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Read electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Read block lock signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Program, Erase times and Program/Erase endurance cycles . . . . . . . . . . . . . . . . . . . . . . 24
Block Lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Protection status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Status Register bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Operating and AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Read AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Write AC characteristics, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Write AC characteristics, Chip Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Power-up and Reset AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package mechanical data. . . . . 42
TFBGA48 6.39 x 10.5 mm - 8 x 6 ball array, 0.75 mm pitch, package mechanical data . . 43
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Top boot block addresses, M28W640HCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Bottom boot block addresses, M28W640HCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Query structure overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
CFI query identification string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CFI query system interface information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Device geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Primary algorithm-specific extended query table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Security code area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Write state machine current/next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Write state machine current/next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5/72
List of figures
M28W640HCT, M28W640HCB
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
6/72
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
TSOP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
TFBGA connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Block addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Protection register memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
AC measurement load circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Page Read AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Write AC waveforms, Write Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Write AC waveforms, Chip Enable controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Power-up and Reset AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline . . . . . . . . . . . . 42
TFBGA48 6.39 x 10.5 mm - 8 x 6 ball array, 0.75 mm pitch, bottom view package outline 43
Program flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Double Word Program flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Quadruple Word Program flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Program Suspend & Resume flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . 62
Erase flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Erase Suspend & Resume flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Locking operations flowchart and pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Protection Register Program flowchart and pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 66
M28W640HCT, M28W640HCB
1
Description
Description
The M28W640HCT and M28W640HCB are 64 Mbit (4 Mbit x 16) non-volatile Flash
memories that can be erased electrically at block level and programmed in-system on a
word-by-word basis using a 2.7 V to 3.6 V VDD supply. An optional 12V VPP power supply is
provided to speed up customer programming.
The devices feature an asymmetrical blocked architecture. They have an array of 135
blocks: 8 parameter blocks of 4 Kwords and 127 main blocks of 32 Kwords. The
M28W640HCT has the parameter blocks at the top of the memory address space while the
M28W640HCB locates the parameter blocks starting from the bottom. The memory maps
are shown in Figure 4: Block addresses.
The M28W640HCT and M28W640HCB feature an instant, individual block locking scheme
that allows any block to be locked or unlocked with no latency, enabling instant code and
data protection. All blocks have three levels of protection. They can be locked and lockeddown individually preventing any accidental programming or erasure. There is an additional
hardware protection against program and erase. When VPP ≤VPPLK all blocks are protected
against program or erase. All blocks are locked at power-up.
Each block can be erased separately. Erase can be suspended in order to perform either
read or program in any other block and then resumed. Program can be suspended to read
data in any other block and then resumed. Each block can be programmed and erased over
100,000 cycles.
The device includes a 192-bit protection register to increase the protection of a system
design. The protection register is divided into a 64-bit segment and a 128-bit segment. The
64-bit segment contains a unique device number written by Numonyx, while the second one
is one-time-programmable by the user. The user programmable segment can be
permanently protected. Figure 5, shows the protection register memory map.
Program and Erase commands are written to the command interface of the memory. An onchip Program/Erase controller takes care of the timings necessary for program and erase
operations. The end of a program or erase operation can be detected and any error
conditions identified. The command set required to control the memory is consistent with
JEDEC standards.
The memory is offered in TSOP48 (12 × 20 mm) and TFBGA48 (6.39 × 10.5 mm, 0.75 mm
pitch) packages and is supplied with all the bits erased (set to ’1’).
7/72
Description
M28W640HCT, M28W640HCB
Figure 1.
Logic diagram
VDD
VPP
22
16
A0-A21
DQ0-DQ15
W
E
G
M28W640HCT
M28W640HCB
RP
WP
VSS
AI09903b
Table 1.
Signal names
Name
8/72
Description
Direction
A0-A21
Address inputs
Inputs
DQ0-DQ15
Data input/output
E
Chip Enable
Input
G
Output Enable
Input
W
Write Enable
Input
RP
Reset
Input
WP
Write Protect
Input
VDD
Power supply
Power supply
VPP
Optional supply voltage for fast program & erase
Power supply
VSS
Ground
Power supply
NC
Not connected internally
I/O
–
M28W640HCT, M28W640HCB
Figure 2.
Description
TSOP connections
A15
A14
A13
A12
A11
A10
A9
A8
A21
A20
W
RP
VPP
WP
A19
A18
A17
A7
A6
A5
A4
A3
A2
A1
1
48
12 M28W640HCT 37
13 M28W640HCB 36
24
25
A16
VDD
VSS
DQ15
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VDD
DQ11
DQ3
DQ10
DQ2
DQ9
DQ1
DQ8
DQ0
G
VSS
E
A0
AI09904c
1. All VDD pins must be connected to the power supply.
2. All VSS pins must be connected to the ground.
9/72
Description
M28W640HCT, M28W640HCB
Figure 3.
TFBGA connections (top view through package)
1
2
3
A
A13
A11
A8
B
A14
A10
C
A15
D
4
5
6
7
8
VPP
WP
A19
A7
A4
W
RP
A18
A17
A5
A2
A12
A9
A21
A20
A6
A3
A1
A16
DQ14
DQ5
DQ11
DQ2
DQ8
E
A0
E
VDD
DQ15
DQ6
DQ12
DQ3
DQ9
DQ0
VSS
F
VSS
DQ7
DQ13
DQ4
VDD
DQ10
DQ1
G
AI04380c
1. All VDD pins must be connected to the power supply.
2. All VSS pins must be connected to the ground.
10/72
M28W640HCT, M28W640HCB
Figure 4.
Description
Block addresses
M28W640HCB
Bottom boot block addresses
M28W640HCT
Top boot block addresses
3FFFFF
3FFFFF
4 Kwords
32 Kwords
3F8000
3F7FFF
3FF000
Total of 8
4 Kword blocks
32 Kwords
3F0000
Total of 127
32 Kword blocks
3F8FFF
4 Kwords
3F8000
3F7FFF
32 Kwords
00FFFF
3F0000
32 Kwords
008000
007FFF
4 Kwords
Total of 127
32 Kword blocks
007000
Total of 8
4 Kword blocks
00FFFF
32 Kwords
008000
007FFF
000FFF
32 Kwords
4 Kwords
000000
000000
AI09905b
1. Also see Appendix A, Tables 23 and 24 for a full listing of the block addresses.
Figure 5.
Protection register memory map
PROTECTION REGISTER
8Ch
User programmable OTP
85h
84h
Unique device number
81h
80h
Protection register lock
1
0
AI05520b
11/72
Signal descriptions
2
M28W640HCT, M28W640HCB
Signal descriptions
See Figure 1: Logic diagram and Table 1: Signal names, for a brief overview of the signals
connected to this device.
2.1
Address inputs (A0-A21)
The Address inputs select the cells in the memory array to access during bus read
operations. During bus write operations they control the commands sent to the command
interface of the internal state machine.
2.2
Data input/output (DQ0-DQ15)
The Data I/O outputs the data stored at the selected address during a bus read operation or
inputs a command or the data to be programmed during a write bus operation.
2.3
Chip Enable (E)
The Chip Enable input activates the memory control logic, input buffers, decoders and
sense amplifiers. When Chip Enable is at VILand Reset is at VIH the device is in active
mode. When Chip Enable is at VIH the memory is deselected, the outputs are high
impedance and the power consumption is reduced to the standby level.
2.4
Output Enable (G)
The Output Enable controls data outputs during the bus read operation of the memory.
2.5
Write Enable (W)
The Write Enable controls the bus write operation of the memory’s command interface. The
data and address inputs are latched on the rising edge of Chip Enable, E, or Write Enable,
W, whichever occurs first.
2.6
Write Protect (WP)
Write Protect is an input that gives an additional hardware protection for each block. When
Write Protect is at VIL, the lock-down is enabled and the protection status of the block
cannot be changed. When Write Protect is at VIH, the lock-down is disabled and the block
can be locked or unlocked (refer to Table 7: Read Protection Register and Lock Register).
12/72
M28W640HCT, M28W640HCB
2.7
Signal descriptions
Reset (RP)
The Reset input provides a hardware reset of the memory. When Reset is at VIL, the
memory is in reset mode: the outputs are high impedance and the current consumption is
minimized. After Reset all blocks are in the locked state. When Reset is at VIH, the device is
in normal operation. Exiting reset mode the device enters read array mode, but a negative
transition of Chip Enable or a change of the address is required to ensure valid data outputs.
2.8
VDD supply voltage
VDD provides the power supply to the internal core and the I/O pins of the memory device. It
is the main power supply for all operations (read, program and erase).
2.9
VPP program supply voltage
VPP is both a control input and a power supply pin. The two functions are selected by the
voltage range applied to the pin. The supply voltage, VDD, and the program supply voltage,
VPP, can be applied in any order.
If VPP is kept in a low voltage range (0 V to 3.6 V) VPP is seen as a control input. In this case
a voltage lower than VPPLK gives an absolute protection against program or erase, while
VPP > VPP1 enables these functions (see Table 15: DC characteristics, for the relevant
values). VPP is only sampled at the beginning of a program or erase; a change in its value
after the operation has started does not have any effect on program or erase, however for
Double or Quadruple Word Program the results are uncertain.
If VPP is in the range 11.4 V to 12.6 V it acts as a power supply pin. In this condition VPP
must be stable until the Program/Erase algorithm is completed (see Table 17 and Table 18).
2.10
VSS ground
VSS is the reference for all voltage measurements.
Note:
Each device in a system should have VDD and VPP decoupled with a 0.1 µF capacitor close
to the pin. See Figure 7: AC measurement load circuit. The PCB track widths should be
sufficient to carry the required VPP program and erase currents.
13/72
Bus operations
3
M28W640HCT, M28W640HCB
Bus operations
There are six standard bus operations that control the device. These are Bus Read, Bus
Write, Output Disable, Standby, Automatic Standby and Reset. See Table 2: Bus operations,
for a summary.
Typically glitches of less than 5 ns on Chip Enable or Write Enable are ignored by the
memory and do not affect bus operations.
3.1
Read
Read bus operations are used to output the contents of the memory array, the Electronic
Signature, the Status Register and the common Flash interface. Both Chip Enable and
Output Enable must be at VIL in order to perform a read operation. The Chip Enable input
should be used to enable the device. Output Enable should be used to gate data onto the
output. The data read depends on the previous command written to the memory (see
Section 4: Command interface). See Figure 8: Read AC waveforms, and Table 16: Read AC
characteristics, for details of when the output becomes valid.
Read operations of the memory array can be performed in asynchronous page mode, which
provides a fast access time. Data is internally read and stored in a page buffer. The page
has a size of 4 words and is addressed by A0-A1 address inputs. Read operations of the
electronic signature, the Status Register, the command Flash interface, the Block Protection
status, the Configuration Register status and the security code are performed as
asynchronous read cycles (Random Read). Both Chip Enable, E, and Output Enable, G,
must be at VIL in order to read the output of the memory (see Figure 9: Page Read AC
waveforms).
Read mode is the default state of the device when exiting reset or after power-up.
3.2
Write
Bus write operations write commands to the memory or latch input data to be programmed.
A write operation is initiated when Chip Enable and Write Enable are at VIL with Output
Enable at VIH. Commands, input data and addresses are latched on the rising edge of Write
Enable or Chip Enable, whichever occurs first.
See Figure 9 and Figure 11, Write AC waveforms, and Table 17 and Table 18, Write AC
characteristics, for details of the timing requirements.
3.3
Output Disable
The data outputs are high impedance when the Output Enable is at VIH.
3.4
Standby
Standby disables most of the internal circuitry allowing a substantial reduction of the current
consumption. The memory is in standby when Chip Enable is at VIH and the device is in
read mode. The power consumption is reduced to the standby level and the outputs are set
14/72
M28W640HCT, M28W640HCB
Bus operations
to high impedance, independently from the Output Enable or Write Enable inputs. If Chip
Enable switches to VIH during a program or erase operation, the device enters Standby
mode when finished.
3.5
Automatic Standby
Automatic standby provides a low power consumption state during Read mode. Following a
read operation, the device enters automatic standby after 150 ns of bus inactivity even if
Chip Enable is Low, VIL, and the supply current is reduced to IDD1. The data inputs/outputs
will still output data if a bus read operation is in progress.
3.6
Reset
During Reset mode when Output Enable is Low, VIL, the memory is deselected and the
outputs are high impedance. The memory is in Reset mode when Reset is at VIL. The power
consumption is reduced to the standby level, independently from the Chip Enable, Output
Enable or Write Enable inputs. If Reset is pulled to VSS during a program or erase, this
operation is aborted and the memory content is no longer valid.
Table 2.
Bus operations(1)
Operation
E
G
W
RP
WP
VPP
DQ0-DQ15
Bus Read
VIL
VIL
VIH
VIH
X
Don't care
Data output
Bus Write
VIL
VIH
VIL
VIH
X
VDD or VPPH
Data input
Output Disable
VIL
VIH
VIH
VIH
X
Don't care
Hi-Z
Standby
VIH
X
X
VIH
X
Don't care
Hi-Z
X
X
X
VIL
X
Don't care
Hi-Z
Reset
1. X = VIL or VIH, VPPH = 12 V ± 5%.
15/72
Command interface
4
M28W640HCT, M28W640HCB
Command interface
All bus write operations to the memory are interpreted by the command interface.
Commands consist of one or more sequential bus write operations. An internal
Program/Erase controller handles all timings and verifies the correct execution of the
Program and Erase commands. The Program/Erase controller provides a Status Register
whose output may be read at any time to monitor the progress of the operation, or the
Program/Erase states. See Table 3: Command codes, for a summary of the commands and
see Appendix D, Table 31: Write state machine current/next, for a summary of the command
interface.
The command interface is reset to Read mode when power is first applied, when exiting
from reset or whenever VDD is lower than VLKO. Command sequences must be followed
exactly. Any invalid combination of commands will reset the device to Read mode. Refer to
Table 4: Commands, in conjunction with the text descriptions below.
4.1
Read Memory Array command
The Read command returns the memory to its Read mode. One Bus Write cycle is required
to issue the Read Memory Array command and return the memory to Read mode.
Subsequent read operations will read the addressed location and output the data. When a
device Reset occurs, the memory defaults to Read mode.
4.2
Read Status Register command
The Status Register indicates when a program or erase operation is complete and the
success or failure of the operation itself. Issue a Read Status Register command to read the
Status Register’s contents. Subsequent bus read operations read the Status Register at any
address, until another command is issued. See Table 11: Status Register bits, for details on
the definitions of the bits.
The Read Status Register command may be issued at any time, even during a
program/erase operation. Any read attempt during a program/erase operation will
automatically output the content of the Status Register.
4.3
Read Electronic Signature command
The Read Electronic Signature command reads the manufacturer and device codes and the
Block Locking Status, or the Protection Register.
The Read Electronic Signature command consists of one write cycle, a subsequent read will
output the manufacturer code, the device code, the Block Lock and Lock-Down Status, or
the Protection and Lock Register. See Tables 5, 6 and 7 for the valid address.
16/72
M28W640HCT, M28W640HCB
Table 3.
Command interface
Command codes
Hex code
4.4
Command
01h
Block Lock confirm
10h
Program
20h
Erase
2Fh
Block Lock-down confirm
30h
Double Word Program
40h
Program
50h
Clear Status Register
56h
Quadruple Word Program
60h
Block Lock, Block Unlock, Block Lock-down
70h
Read Status Register
90h
Read Electronic Signature
98h
Read CFI Query
B0h
Program/Erase Suspend
C0h
Protection Register Program
D0h
Program/Erase Resume, Block Unlock confirm
FFh
Read Memory Array
Read CFI Query command
The Read Query command is used to read data from the common Flash interface (CFI)
memory area, allowing programming equipment or applications to automatically match their
interface to the characteristics of the device. One Bus Write cycle is required to issue the
Read Query command. Once the command is issued subsequent bus read operations read
from the common Flash interface memory area. See Appendix B: Common Flash interface
(CFI), tables 25, 26, 27, 28, 29 and 30 for details on the information contained in the
common Flash interface memory area.
4.5
Block Erase command
The Block Erase command can be used to erase a block. It sets all the bits within the
selected block to ’1’. All previous data in the block is lost. If the block is protected then the
erase operation will abort, the data in the block will not be changed and the Status Register
will output the error.
Two Bus Write cycles are required to issue the command:
●
The first bus cycle sets up the Erase command
●
The second latches the block address in the internal state machine and starts the
Program/Erase controller.
If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits b4 and b5 are
set and the command aborts.
17/72
Command interface
M28W640HCT, M28W640HCB
Erase aborts if Reset turns to VIL. As data integrity cannot be guaranteed when the erase
operation is aborted, the block must be erased again.
During erase operations the memory will accept the Read Status Register command and
the Program/Erase Suspend command, all other commands will be ignored. Typical Erase
times are given in Table 8: Program, Erase times and Program/Erase endurance cycles.
See Appendix C, Figure 19: Erase flowchart and pseudocode, for a suggested flowchart for
using the Erase command.
4.6
Program command
The memory array can be programmed word-by-word. Two bus write cycles are required to
issue the Program command:
●
The first bus cycle sets up the Program command.
●
The second latches the address and the data to be written and starts the
Program/Erase controller.
During program operations the memory will accept the Read Status Register command and
the Program/Erase Suspend command. Typical Program times are given in Table 8:
Program, Erase times and Program/Erase endurance cycles.
Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the
program operation is aborted, the block containing the memory location must be erased and
reprogrammed.
See Appendix C, Figure 15: Program flowchart and pseudocode, for the flowchart for using
the Program command.
4.7
Double Word Program command
This feature is offered to improve the programming throughput, writing a page of two
adjacent words in parallel.The two words must differ only for the address A0. Programming
should not be attempted when VPP is not at VPPH.
Three bus write cycles are necessary to issue the Double Word Program command:
●
The first bus cycle sets up the Double Word Program command
●
The second bus cycle latches the address and the data of the first word to be written
●
The third bus cycle latches the address and the data of the second word to be written
and starts the Program/Erase controller.
Read operations output the Status Register content after the programming has started.
Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the
program operation is aborted, the block containing the memory location must be erased and
reprogrammed.
See Appendix C, Figure 16: Double Word Program flowchart and pseudocode for the
flowchart for using the Double Word Program command.
18/72
M28W640HCT, M28W640HCB
4.8
Command interface
Quadruple Word Program command
This feature is offered to improve the programming throughput, writing a page of four
adjacent words in parallel.The four words must differ only for the addresses A0 and A1.
Programming should not be attempted when VPP is not at VPPH.
Five bus write cycles are necessary to issue the Quadruple Word Program command:
●
The first bus cycle sets up the Quadruple Word Program command.
●
The second bus cycle latches the address and the data of the first word to be written
●
The third bus cycle latches the address and the data of the second word to be written
●
The fourth bus cycle latches the address and the data of the third word to be written
●
The fifth bus cycle latches the address and the data of the fourth word to be written and
starts the Program/Erase controller.
Read operations output the Status Register content after the programming has started.
Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the
program operation is aborted, the block containing the memory location must be erased and
reprogrammed.
See Appendix C, Figure 17: Quadruple Word Program flowchart and pseudocode, for the
flowchart for using the Quadruple Word Program command.
4.9
Clear Status Register command
The Clear Status Register command can be used to reset bits 1, 3, 4 and 5 in the Status
Register to ‘0’. One bus write cycle is required to issue the Clear Status Register command.
The bits in the Status Register do not automatically return to ‘0’ when a new Program or
Erase command is issued. The error bits in the Status Register should be cleared before
attempting a new Program or Erase command.
4.10
Program/Erase Suspend command
The Program/Erase Suspend command is used to pause a program or erase operation.
One bus write cycle is required to issue the Program/Erase command and pause the
Program/Erase controller.
During Program/Erase Suspend the command interface will accept the Program/Erase
Resume, Read Array, Read Status Register, Read Electronic Signature and Read CFI
Query commands. Additionally, if the suspend operation was Erase then the Program,
Double Word Program, Quadruple Word Program, Block Lock, Block Lock-down or
Protection Program commands will also be accepted. The block being erased may be
protected by issuing the Block Protect, Block Lock or Protection Program commands. When
the Program/Erase Resume command is issued the operation will complete. Only the blocks
not being erased may be read or programmed correctly.
During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by
taking Chip Enable to VIH. Program/Erase is aborted if Reset turns to VIL.
See Appendix C, Figure 18: Program Suspend & Resume flowchart and pseudocode, and
Figure 20: Erase Suspend & Resume flowchart and pseudocode, for flowcharts for using
the Program/Erase Suspend command.
19/72
Command interface
4.11
M28W640HCT, M28W640HCB
Program/Erase Resume command
The Program/Erase Resume command can be used to restart the Program/Erase controller
after a program/erase suspend operation has paused it. One Bus Write cycle is required to
issue the command. Once the command is issued subsequent bus read operations read the
Status Register.
See Appendix C, Figure 18: Program Suspend & Resume flowchart and pseudocode, and
Figure 20: Erase Suspend & Resume flowchart and pseudocode, for flowcharts for using
the Program/Erase Resume command.
4.12
Protection Register Program command
The Protection Register Program command is used to program the 128 bit user one-timeprogrammable (OTP) segment of the Protection Register. The segment is programmed 16
bits at a time. When shipped all bits in the segment are set to ‘1’. The user can only program
the bits to ‘0’.
Two write cycles are required to issue the Protection Register Program command:
●
The first bus cycle sets up the Protection Register Program command
●
The second latches the address and the data to be written to the Protection Register
and starts the Program/Erase controller.
Read operations output the Status Register content after the programming has started.
The segment can be protected by programming bit 1 of the Protection Lock Register (see
Figure 5: Protection register memory map). Attempting to program a previously protected
Protection Register will result in a Status Register error. The protection of the Protection
Register is not reversible.
The Protection Register Program cannot be suspended.
4.13
Block Lock command
The Block Lock command is used to lock a block and prevent program or erase operations
from changing the data in it. All blocks are locked at power-up or reset.
Two Bus Write cycles are required to issue the Block Lock command:
●
The first bus cycle sets up the Block Lock command
●
The second Bus Write cycle latches the block address.
The lock status can be monitored for each block using the Read Electronic Signature
command. Table 10 shows the protection status after issuing a Block Lock command.
The Block Lock bits are volatile, once set they remain set until a hardware reset or powerdown/power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block
Locking, for a detailed explanation.
20/72
M28W640HCT, M28W640HCB
4.14
Command interface
Block Unlock command
The Block Unlock command is used to unlock a block, allowing the block to be programmed
or erased. Two Bus Write cycles are required to issue the Block Unlock command:
●
The first bus cycle sets up the Block Unlock command
●
The second Bus Write cycle latches the block address.
The lock status can be monitored for each block using the Read Electronic Signature
command. Table 10 shows the protection status after issuing a Block Unlock command.
Refer to the Section 5: Block locking, for a detailed explanation.
4.15
Block Lock-down command
A locked block cannot be programmed or erased, or have its protection status changed
when WP is Low, VIL. When WP is High, VIH, the Lock-down function is disabled and the
locked blocks can be individually unlocked by the Block Unlock command.
Two Bus Write cycles are required to issue the Block Lock-down command:
●
The first bus cycle sets up the Block Lock command
●
The second Bus Write cycle latches the block address.
The lock status can be monitored for each block using the Read Electronic Signature
command. Locked-down blocks revert to the locked (and not locked-down) state when the
device is reset on power-down. Table 10 shows the protection status after issuing a Block
Lock-down command. Refer to the Section 5: Block locking for a detailed explanation.
21/72
Command interface
Table 4.
M28W640HCT, M28W640HCB
Commands(1)
Commands
Cycles
Bus write operations
1st cycle
Op. Add Data
2nd cycle
Op.
3rd cycle
Add Data
4th cycle
5th cycle
Op. Add Data Op. Add Data Op. Add Data
Read Memory
1+ Write
Array
X
FFh
Read
RA
RD
Read Status
Register
1+ Write
X
70h
Read
X
SRD
Read
Electronic
Signature
1+ Write
X
90h
Read SA(2)
IDh
Read CFI
Query
1+ Write
X
98h
Read
QA
QD
Erase
2
Write
X
20h
Write
BA
D0h
Program
2
Write
X
40h or
Write
10h
PA
PD
Double Word
Program(3)
3
Write
X
30h
Write PA1
PD1 Write PA2 PD2
Quadruple
Word
Program(4)
5
Write
X
56h
Write PA1
PD1 Write PA2 PD2 Write PA3 PD3 Write PA4 PD4
Clear Status
Register
1
Write
X
50h
Program/Erase
1
Suspend
Write
X
B0h
Program/Erase
1
Resume
Write
X
D0h
Block Lock
2
Write
X
60h
Write
BA
01h
Block Unlock
2
Write
X
60h
Write
BA
D0h
Block Lockdown
2
Write
X
60h
Write
BA
2Fh
Protection
Register
Program
2
Write
X
C0h
Write PRA PRD
1. X = Don't care, RA=Read Address, RD=Read Data, SRD=Status Register Data, ID=Identifier (manufacturer and device
code), QA=Query Address, QD=Query Data, BA=Block Address, PA=Program Address, PD=Program Data,
PRA=Protection Register Address, PRD=Protection Register Data.
2. The signature addresses are listed in Tables 5, 6 and 7.
3. Program addresses 1 and 2 must be consecutive addresses differing only for A0.
4. Program addresses 1,2,3 and 4 must be consecutive addresses differing only for A0 and A1.
22/72
M28W640HCT, M28W640HCB
Table 5.
Command interface
Read electronic signature(1)
Code
Device
E
G
W
A0
A1
A2-A7
A8-A21
DQ0-DQ7
DQ8-DQ15
VIL
VIL
VIH
VIL
VIL
0
Don't care
20h
00h
M28W640HCT
VIL
VIL
VIH
VIH
VIL
0
Don't care
48h
88h
M28W640HCB
VIL
VIL
VIH
VIH
VIL
0
Don't care
49h
88h
Manufacturer
code
Device code
1. RP = VIH.
Table 6.
Read block lock signature
Block status
E
G
W
A0
A1
A2-A7
Locked block
VIL
VIL
VIH
VIL
VIH
0
Unlocked block
VIL
VIL
VIH
VIL
VIH
Locked-down
block
VIL
VIL
VIH
VIL
VIH
A8-A11
A12-A21
DQ0
DQ1
DQ2-DQ15
Don't care Block address
1
0
00h
0
Don't care Block address
0
0
00h
0
Don't care Block address
X(1)
1
00h
1. A locked-down block can be locked ‘DQ0 = 1’ or unlocked ‘DQ0 = 0’; see Section 5: Block locking.
Table 7.
Read Protection Register and Lock Register
E
G
W
A0-A7
A8-A21
DQ0
DQ1
DQ2
DQ3DQ7
DQ8DQ15
Lock
VIL
VIL
VIH
80h
Don't care
0
OTP Prot.
data
0
00h
00h
Unique ID 0
VIL
VIL
VIH
81h
Don't care
ID data
ID data
ID data
ID data
ID data
Unique ID 1
VIL
VIL
VIH
82h
Don't care
ID data
ID data
ID data
ID data
ID data
Unique ID 2
VIL
VIL
VIH
83h
Don't care
ID data
ID data
ID data
ID data
ID data
Unique ID 3
VIL
VIL
VIH
84h
Don't care
ID data
ID data
ID data
ID data
ID data
OTP 0
VIL
VIL
VIH
85h
Don't care
OTP data
OTP data
OTP data
OTP data OTP data
OTP 1
VIL
VIL
VIH
86h
Don't care
OTP data
OTP data
OTP data
OTP data OTP data
OTP 2
VIL
VIL
VIH
87h
Don't care
OTP data
OTP data
OTP data
OTP data OTP data
OTP 3
VIL
VIL
VIH
88h
Don't care
OTP data
OTP data
OTP data
OTP data OTP data
OTP 4
VIL
VIL
VIH
89h
Don't care
OTP data
OTP data
OTP data
OTP data OTP data
OTP 5
VIL
VIL
VIH
8Ah
Don't care
OTP data
OTP data
OTP data
OTP data OTP data
OTP 6
VIL
VIL
VIH
8Bh
Don't care
OTP data
OTP data
OTP data
OTP data OTP data
OTP 7
VIL
VIL
VIH
8Ch
Don't care
OTP data
OTP data
OTP data
OTP data OTP data
Word
23/72
Command interface
Table 8.
M28W640HCT, M28W640HCB
Program, Erase times and Program/Erase endurance cycles
M28W640HCT, M28W640HCB
Parameter
Test conditions
Unit
Min
Typ
Max
VPP = VDD
10
200
µs
Double Word Program
VPP = 12 V ± 5%
10
200
µs
Quadruple Word Program
VPP = 12 V ± 5%
10
200
µs
5
s
5
s
4
s
Word Program
Main Block Program
(1)
VPP = 12 V ± 5%
0.16/0.08
VPP = VDD
Parameter Block Program
Main Block Erase
Parameter Block Erase
Program/Erase cycles (per block)
0.32
(1)
VPP = 12 V ± 5%
0.02/0.01
VPP = VDD
0.04
4
s
VPP = 12 V ± 5%
1
10
s
VPP = VDD
1
10
s
VPP = 12 V ± 5%
0.4
10
s
VPP = VDD
0.4
10
s
100,000
cycles
1. Typical time to program a main or parameter block using the Double Word Program and the Quadruple Word Program
commands respectively.
24/72
M28W640HCT, M28W640HCB
5
Block locking
Block locking
The M28W640HCT and M28W640HCB feature an instant, individual block locking scheme
that allows any block to be locked or unlocked with no latency. This locking scheme has
three levels of protection:
●
Lock/unlock - this first level allows software-only control of block locking
●
Lock-down - this second level requires hardware interaction before locking can be
changed
●
VPP ≤VPPLK - the third level offers a complete hardware protection against program and
erase on all blocks.
The protection status of each block can be set to ‘Locked’, ‘Unlocked’, and ‘Lock-down’.
Table 10, defines all of the possible protection states (WP, DQ1, DQ0), and Appendix C,
Figure 21, shows a flowchart for the locking operations.
5.1
Reading a block’s lock status
The lock status of every block can be read in the Read Electronic Signature mode of the
device. To enter this mode write 90h to the device. Subsequent reads at the address
specified in Table 6, will output the protection status of that block. The lock status is
represented by DQ0 and DQ1. DQ0 indicates the block lock/unlock status and is set by the
Lock command and cleared by the Unlock command. It is also automatically set when
entering Lock-down. DQ1 indicates the Lock-down status and is set by the Lock-down
command. It cannot be cleared by software, only by a hardware reset or power-down.
The following sections explain the operation of the locking system.
5.2
Locked state
The default status of all blocks on power-up or after a hardware reset is ‘Locked’ (states
(0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any
program or erase operations attempted on a locked block will return an error in the Status
Register. The status of a locked block can be changed to ‘Unlocked’ or ‘Lock-down’ using
the appropriate software commands. An unlocked block can be locked by issuing the Lock
command.
5.3
Unlocked state
Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked
blocks return to the locked state after a hardware reset or when the device is powered-down.
The status of an unlocked block can be changed to ‘Locked’ or ‘Locked-down’ using the
appropriate software commands. A locked block can be unlocked by issuing the Unlock
command.
25/72
Block locking
5.4
M28W640HCT, M28W640HCB
Lock-down state
Blocks that are Locked-down (state (0,1,x)) are protected from program and erase
operations (as for locked blocks) but their protection status cannot be changed using
software commands alone. A Locked or Unlocked block can be Locked-down by issuing the
Lock-down command. Locked-down blocks revert to the locked state when the device is
reset or powered-down.
The Lock-down function is dependent on the WP input pin. When WP=0 (VIL), the blocks in
the Lock-down state (0,1,x) are protected from program, erase and protection status
changes. When WP=1 (VIH) the Lock-down function is disabled (1,1,1) and Locked-down
blocks can be individually unlocked to the (1,1,0) state by issuing the software command,
where they can be erased and programmed. These blocks can then be relocked (1,1,1) and
unlocked (1,1,0) as desired while WP remains High. When WP is Low, blocks that were
previously Locked-down return to the Lock-down state (0,1,x) regardless of any changes
made while WP was High. Device reset or power-down resets all blocks, including those in
Lock-down or in a Locked state.
5.5
Locking operations during Erase Suspend
Changes to block lock status can be performed during an Erase Suspend by using the
standard locking command sequences to unlock, lock or lock-down a block. This is useful in
the case when another block needs to be updated while an erase operation is in progress.
To change block locking during an erase operation, first write the Erase Suspend command,
then check the Status Register until it indicates that the erase operation has been
suspended. Next write the desired Lock command sequence to a block and the Lock Status
will be changed. After completing any desired lock, read, or program operations, resume the
erase operation with the Erase Resume command.
If a block is Locked or Locked-down during an Erase Suspend of the same block, the locking
status bits will be changed immediately, but when the erase is resumed, the erase operation
will complete.
Locking operations cannot be performed during a Program Suspend. Refer to Appendix D,
command interface and Program/Erase controller state, for detailed information on which
commands are valid during Erase Suspend.
Table 9.
Block Lock status
Item
Address
Block Lock configuration
Data
LOCK
Block is Unlocked
DQ0=0
xx002
26/72
Block is Locked
DQ0=1
Block is Locked-down
DQ1=1
M28W640HCT, M28W640HCB
Table 10.
Block locking
Protection status
Current Protection status(1)
Next Protection status(1)
(WP, DQ1, DQ0)
(WP, DQ1, DQ0)
Current state
Program/Erase
allowed
After Block
Lock
command
After Block
Unlock
command
After Block
Lock-down
command
After WP
transition
1,0,0
yes
1,0,1
1,0,0
1,1,1
0,0,0
no
1,0,1
1,0,0
1,1,1
0,0,1
1,1,0
yes
1,1,1
1,1,0
1,1,1
0,1,1
1,1,1
no
1,1,1
1,1,0
1,1,1
0,1,1
0,0,0
yes
0,0,1
0,0,0
0,1,1
1,0,0
no
0,0,1
0,0,0
0,1,1
1,0,1
no
0,1,1
0,1,1
0,1,1
1,1,1 or 1,1,0 (3)
1,0,1
0,0,1
(2)
(2)
0,1,1
1. The lock status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for
a locked block) as read in the Read Electronic Signature command with A1 = VIH and A0 = VIL.
2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status.
3. A WP transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110.
27/72
Status Register
6
M28W640HCT, M28W640HCB
Status Register
The Status Register provides information on the current or previous program or erase
operation. The various bits convey information and errors on the operation. To read the
Status Register the Read Status Register command can be issued, refer to Section 4.2:
Read Status Register command. To output the contents, the Status Register is latched on
the falling edge of the Chip Enable or Output Enable signals, and can be read until Chip
Enable or Output Enable returns to VIH. Either Chip Enable or Output Enable must be
toggled to update the latched data.
Bus read operations from any address always read the Status Register during program and
erase operations.
The bits in the Status Register are summarized in Table 11: Status Register bits. Refer to
Table 11 in conjunction with the following text descriptions.
6.1
Program/Erase controller status (bit 7)
The Program/Erase controller status bit indicates whether the Program/Erase controller is
active or inactive. When the Program/Erase controller status bit is Low (set to ‘0’), the
Program/Erase controller is active; when the bit is High (set to ‘1’), the Program/Erase
controller is inactive, and the device is ready to process a new command.
The Program/Erase controller Status is Low immediately after a Program/Erase Suspend
command is issued until the Program/Erase controller pauses. After the Program/Erase
controller pauses the bit is High.
During program, erase, operations the Program/Erase controller status bit can be polled to
find the end of the operation. Other bits in the Status Register should not be tested until the
Program/Erase controller completes the operation and the bit is High.
After the Program/Erase controller completes its operation the Erase Status, Program
Status, VPP Status and Block Lock Status bits should be tested for errors.
6.2
Erase Suspend status (bit 6)
The Erase Suspend status bit indicates that an erase operation has been suspended or is
going to be suspended. When the Erase Suspend status bit is High (set to ‘1’), a
Program/Erase Suspend command has been issued and the memory is waiting for a
Program/Erase Resume command.
The Erase Suspend Status should only be considered valid when the Program/Erase
controller status bit is High (Program/Erase controller inactive). Bit 7 is set within 30 µs of
the Program/Erase Suspend command being issued therefore the memory may still
complete the operation rather than entering the Suspend mode.
When a Program/Erase Resume command is issued the Erase Suspend Status bit returns
Low.
28/72
M28W640HCT, M28W640HCB
6.3
Status Register
Erase status (bit 5)
The Erase status bit can be used to identify if the memory has failed to verify that the block
has erased correctly. When the Erase status bit is High (set to ‘1’), the Program/Erase
controller has applied the maximum number of pulses to the block and still failed to verify
that the block has erased correctly. The Erase Status bit should be read once the
Program/Erase controller status bit is High (Program/Erase controller inactive).
Once set High, the Erase Status bit can only be reset Low by a Clear Status Register
command or a hardware reset. If set High it should be reset before a new Program or Erase
command is issued, otherwise the new command will appear to fail.
6.4
Program status (bit 4)
The Program Status bit is used to identify a Program failure. When the Program Status bit is
High (set to ‘1’), the Program/Erase controller has applied the maximum number of pulses to
the byte and still failed to verify that it has programmed correctly. The Program Status bit
should be read once the Program/Erase controller status bit is High (Program/Erase
controller inactive).
Once set High, the Program status bit can only be reset Low by a Clear Status Register
command or a hardware reset. If set High it should be reset before a new command is
issued, otherwise the new command will appear to fail.
6.5
VPP status (bit 3)
The VPP status bit can be used to identify an invalid voltage on the VPP pin during program
and erase operations. The VPP pin is only sampled at the beginning of a program or erase
operation. Indeterminate results can occur if VPP becomes invalid during an operation.
When the VPP status bit is Low (set to ‘0’), the voltage on the VPP pin was sampled at a valid
voltage; when the VPP status bit is High (set to ‘1’), the VPP pin has a voltage that is below
the VPP Lockout voltage, VPPLK, the memory is protected and program and erase operations
cannot be performed.
Once set High, the VPP status bit can only be reset Low by a Clear Status Register
command or a hardware reset. If set High it should be reset before a new Program or Erase
command is issued, otherwise the new command will appear to fail.
6.6
Program Suspend status (bit 2)
The Program Suspend status bit indicates that a program operation has been suspended.
When the Program Suspend status bit is High (set to ‘1’), a Program/Erase Suspend
command has been issued and the memory is waiting for a Program/Erase Resume
command. The Program Suspend status should only be considered valid when the
Program/Erase controller status bit is High (Program/Erase controller inactive). Bit 2 is set
within 5 µs of the Program/Erase Suspend command being issued therefore the memory
may still complete the operation rather than entering the Suspend mode.
When a Program/Erase Resume command is issued the Program Suspend Status bit
returns Low.
29/72
Status Register
6.7
M28W640HCT, M28W640HCB
Block Protection status (bit 1)
The Block Protection status bit can be used to identify if a program or erase operation has
tried to modify the contents of a locked block.
When the Block Protection status bit is High (set to ‘1’), a program or erase operation has
been attempted on a locked block.
Once set High, the Block Protection status bit can only be reset Low by a Clear Status
Register command or a hardware reset. If set High it should be reset before a new
command is issued, otherwise the new command will appear to fail.
6.8
Reserved (bit 0)
Bit 0 of the Status Register is reserved. Its value must be masked.
Note:
Refer to Appendix C: Flowcharts and pseudocodes, for using the Status Register.
Table 11.
Status Register bits(1)
Bit
7
6
5
4
3
2
1
0
Name
Definition
'1'
Ready
'0'
Busy
'1'
Suspended
'0'
In progress or completed
'1'
Erase error
'0'
Erase success
'1'
Program error
'0'
Program success
'1'
VPP invalid, abort
'0'
VPP OK
'1'
Suspended
'0'
In progress or completed
'1'
Program/Erase on protected Block,
abort
'0'
No operation to protected blocks
P/E.controller status
Erase Suspend status
Erase status
Program status
VPP status
Program Suspend status
Block Protection status
Reserved
1. Logic level '1' is High, '0' is Low.
30/72
Logic level
M28W640HCT, M28W640HCB
7
Maximum ratings
Maximum ratings
Stressing the device above the rating listed in Table 12: Absolute maximum ratings may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Refer also to the Numonyx SURE Program
and other relevant quality documents.
Table 12.
Absolute maximum ratings
Value
Symbol
Parameter
Unit
Min
Max
Ambient operating temperature
– 40
85
°C
TBIAS
Temperature under bias
– 40
125
°C
TSTG
Storage temperature
– 55
155
°C
VIO
Input or output voltage
– 0.6
VDD+0.6
V
VDD
Supply voltage
– 0.6
4.1
V
VPP
Program voltage
– 0.6
13
V
TA
31/72
DC and AC parameters
8
M28W640HCT, M28W640HCB
DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC characteristics tables that
follow, are derived from tests performed under the measurement conditions summarized in
Table 13: Operating and AC measurement conditions. Designers should check that the
operating conditions in their circuit match the measurement conditions when relying on the
quoted parameters.
Table 13.
Operating and AC measurement conditions
M28W640HCT, M28W640HCB
Parameter
70 ns
Units
Min
Max
VDD supply voltage
2.7
3.6
V
Ambient operating temperature
–40
85
°C
Load capacitance (CL)
50
Input rise and fall times
5
Input pulse voltages
Input and output timing reference voltages
Figure 6.
V
VDD/2
V
AC measurement I/O waveform
VDD/2
0V
AI00610b
AC measurement load circuit
VDD
VDD
25 kW
DEVICE
UNDER
TEST
CL
25 kW
0.1 µF
CL includes JIG capacitance
32/72
ns
0 to VDD
VDD
Figure 7.
pF
AI00609d
M28W640HCT, M28W640HCB
Table 14.
Symbol
CIN
COUT
DC and AC parameters
Capacitance(1)
Parameter
Input capacitance
Output capacitance
Test condition
Min
Max
Unit
VIN = 0 V
6
pF
VOUT = 0 V
12
pF
1. Sampled only, not 100% tested.
33/72
DC and AC parameters
Table 15.
Symbol
M28W640HCT, M28W640HCB
DC characteristics
Parameter
Test condition
Min
Typ
Max
Unit
0 V ≤VIN ≤VDD
±1
µA
±10
µA
ILI
Input Leakage current
ILO
Output Leakage current
0 V ≤ VOUT ≤VDD
IDD
Supply current (Read)
E = VSS, G = VIH,
f = 5 MHz
9
18
mA
IDD1
Supply current (Standby or Automatic
Standby)
E = VDD ± 0.2 V,
RP = VDD ± 0.2 V
15
50
µA
IDD2
Supply current (Reset)
RP = VSS ± 0.2 V
15
50
µA
Program in progress
VPP = 12 V ± 5%
5
10
mA
Program in progress
VPP = VDD
10
20
mA
Erase in progress
VPP = 12 V ± 5%
10
20
mA
Erase in progress
VPP = VDD
10
20
mA
E = VDD ± 0.2 V,
Erase suspended
15
50
µA
IDD3
IDD4
Supply current (Program)
Supply current (Erase)
IDD5
Supply current (Program/Erase Suspend)
IPP
Program current (Read or Standby)
VPP > VDD
400
µA
IPP1
Program current (Read or Standby)
VPP ≤VDD
1
5
µA
IPP2
Program current (Reset)
RP = VSS ± 0.2 V
1
5
µA
Program in progress
VPP = 12 V ± 5%
1
10
mA
Program in progress
VPP = VDD
1
5
µA
Erase in progress
VPP = 12V ± 5%
3
10
mA
Erase in progress
VPP = VDD
1
5
µA
–0.5
0.4
V
VDD – 0.4
VDD + 0.4
V
0.1
V
IPP3
IPP4
Program current (Program)
Program Current (Erase)
VIL
Input Low voltage
VIH
Input High voltage
VOL
Output Low voltage
IOL = 100 µA,
VDD = VDD min
VOH
Output High voltage
IOH = –100 µA,
VDD = VDD min
VPP1
Program voltage (program or erase
operations)
1.65
3.6
V
VPPH
Program voltage (program or erase
operations)
11.4
12.6
V
VPPLK
Program voltage (program and erase lockout)
1
V
VLKO
VDD supply voltage (Program and Erase
lock-out)
2
V
34/72
VDD – 0.1
V
M28W640HCT, M28W640HCB
Figure 8.
DC and AC parameters
Read AC waveforms
tAVAV
VALID
A0-A21
tAVQV
tAXQX
E
tELQV
tELQX
tEHQX
tEHQZ
G
tGLQV
tGHQX
tGLQX
tGHQZ
DQ0DQ15
VALID
ADDR. VALID
CHIP ENABLE
OUTPUTS
ENABLED
DATA VALID
STANDBY
AI04387
Table 16.
Symbol
Read AC characteristics
Alt
M28W640HCT,
M28W640HCB
Parameter
70 ns
Unit
tAVAV
tRC
Address valid to Next Address Valid
Min
70
ns
tAVQV
tACC
Address valid to Random Output Valid
Max
70
ns
tAXQX(1)
tOH
Address Transition to Output Transition
Min
0
ns
tEHQX(1)
tOH
Chip Enable High to Output Transition
Min
0
ns
tEHQZ(1)
tHZ
Chip Enable High to Output Hi-Z
Max
20
ns
tELQV(2)
tCE
Chip Enable Low to Output Valid
Max
70
ns
tELQX(1)
tLZ
Chip Enable Low to Output Transition
Min
0
ns
tGHQX(1)
tOH
Output Enable High to Output Transition
Min
0
ns
tGHQZ(1)
tDF
Output Enable High to Output Hi-Z
Max
20
ns
tGLQV(2)
tOE
Output Enable Low to Output Valid
Max
20
ns
tGLQX(1)
tOLZ
Output Enable Low to Output Transition
Min
0
ns
tAVQV1
tPAGE Page address Valid to Page Output Valid
Max
25
ns
Min
0
ns
tAXQX1
tOH
Address Transition to Page Output Transition
1. Sampled only, not 100% tested.
2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV.
35/72
36/72
DQ0-DQ15
G
E
tAVQV
tELQV
VALID
VALID
tGLQV
VALID
tAVQV1
VALID
VALID
VALID
VALID
tEHQX
VALID
tGHQX
VALID
tEHQZ
tGHQZ
AI06191b
tAXQX1
Figure 9.
A0-A1
A2-A21
DC and AC parameters
M28W640HCT, M28W640HCB
Page Read AC waveforms
VPP
WP
DQ0-DQ15
W
G
E
A0-A21
tWLWH
COMMAND
SET-UP COMMAND
tDVWH
tELWL
tWHDX
tWHWL
tWHEH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHWH
tWPHWH
tAVWH
VALID
tAVAV
tWHEL
tWHGL
tWHAX
PROGRAM OR ERASE
AI04388
tQVVPL
tQVWPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
M28W640HCT, M28W640HCB
DC and AC parameters
Figure 10. Write AC waveforms, Write Enable controlled
37/72
DC and AC parameters
Table 17.
Symbol
M28W640HCT, M28W640HCB
Write AC characteristics, Write Enable controlled
Alt
Parameter
70 ns
Unit
tAVAV
tWC
Write Cycle time
Min
70
ns
tAVWH
tAS
Address Valid to Write Enable High
Min
45
ns
tDVWH
tDS
Data Valid to Write Enable High
Min
45
ns
tELWL
tCS
Chip Enable Low to Write Enable Low
Min
0
ns
Chip Enable Low to Output Valid
Min
70
ns
Output Valid to VPP Low
Min
0
ns
Output Valid to Write Protect Low
Min
0
ns
tELQV
tQVVPL(1)(2)
tQVWPL
tVPHWH(1)
tVPS
VPP High to Write Enable High
Min
200
ns
tWHAX
tAH
Write Enable High to Address Transition
Min
0
ns
tWHDX
tDH
Write Enable High to Data Transition
Min
0
ns
tWHEH
tCH
Write Enable High to Chip Enable High
Min
0
ns
tWHEL
Write Enable High to Chip Enable Low
Min
25
ns
tWHGL
Write Enable High to Output Enable Low
Min
20
ns
tWHWL
tWPH
Write Enable High to Write Enable Low
Min
25
ns
tWLWH
tWP
Write Enable Low to Write Enable High
Min
45
ns
Write Protect High to Write Enable High
Min
45
ns
tWPHWH
1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (VPP < 3.6 V).
38/72
M28W640HCT,
M28W640HCB
VPP
WP
DQ0-DQ15
E
G
W
A0-A21
tELEH
COMMAND
POWER-UP AND
SET-UP COMMAND
tDVEH
tWLEL
tEHDX
tEHEL
tEHWH
CMD or DATA
CONFIRM COMMAND
OR DATA INPUT
tVPHEH
tWPHEH
tAVEH
VALID
tAVAV
tEHGL
tEHAX
PROGRAM OR ERASE
AI04389
tQVVPL
tQVWPL
STATUS REGISTER
STATUS REGISTER
READ
1st POLLING
tELQV
M28W640HCT, M28W640HCB
DC and AC parameters
Figure 11. Write AC waveforms, Chip Enable controlled
39/72
DC and AC parameters
Table 18.
M28W640HCT, M28W640HCB
Write AC characteristics, Chip Enable controlled
Symbol
Alt
Parameter
70 ns
Unit
tAVAV
tWC
Write Cycle time
Min
70
ns
tAVEH
tAS
Address Valid to Chip Enable High
Min
45
ns
tDVEH
tDS
Data Valid to Chip Enable High
Min
45
ns
tEHAX
tAH
Chip Enable High to Address Transition
Min
0
ns
tEHDX
tDH
Chip Enable High to Data Transition
Min
0
ns
tEHEL
tCPH
Chip Enable High to Chip Enable Low
Min
25
ns
Chip Enable High to Output Enable Low
Min
25
ns
tEHGL
tEHWH
tWH
Chip Enable High to Write Enable High
Min
0
ns
tELEH
tCP
Chip Enable Low to Chip Enable High
Min
45
ns
Chip Enable Low to Output Valid
Min
70
ns
Output Valid to VPP Low
Min
0
ns
Data Valid to Write Protect Low
Min
0
ns
tVPS
VPP High to Chip Enable High
Min
200
ns
tCS
Write Enable Low to Chip Enable Low
Min
0
ns
Write Protect High to Chip Enable High
Min
45
ns
tELQV
tQVVPL
(1)(2)
tQVWPL
tVPHEH
(1)
tWLEL
tWPHEH
1. Sampled only, not 100% tested.
2. Applicable if VPP is seen as a logic input (VPP < 3.6 V).
40/72
M28W640HCT,
M28W640HCB
M28W640HCT, M28W640HCB
DC and AC parameters
Figure 12. Power-up and Reset AC waveforms
W, E, G
tPHWL
tPHEL
tPHGL
tPHWL
tPHEL
tPHGL
RP
tVDHPH
tPLPH
VDD
Power-up
Reset
AI03537c
Table 19.
Symbol
tPHWL
tPHEL
tPHGL
Power-up and Reset AC characteristics
Parameter
Reset High to Write Enable Low,
Chip Enable Low, Output Enable Low
M28W640HCT,
M28W640HCB
Test condition
70 ns
Unit
During program and
erase
Min
50
µs
others
Min
30
ns
tPLPH(1)(2)
Reset Low to Reset High
Min
100
ns
tVDHPH(3)
Supply voltages High to Reset High
Min
300
µs
1. The device reset is possible but not guaranteed if tPLPH < 100 ns.
2. Sampled only, not 100% tested.
3. It is important to assert RP in order to allow proper CPU initialization during power-up or reset.
41/72
Package mechanical
9
M28W640HCT, M28W640HCB
Package mechanical
In order to meet environmental requirements, Numonyx offers these devices in ECOPACK®
packages. ECOPACK® packages are lead-free. The category of second-level interconnect
is marked on the package and on the inner box label, in compliance with JEDEC Standard
JESD97. The maximum ratings related to soldering conditions are also marked on the inner
box label.
Figure 13. TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package outline
1
48
e
D1
B
24
L1
25
A2
E1
E
A
A1
DIE
α
L
C
CP
TSOP-G
1. Drawing is not to scale.
Table 20.
TSOP48 - 48 lead plastic thin small outline, 12 x 20 mm, package
mechanical data
millimeters
inches
Symbol
Typ
Min
A
Typ
Min
1.20
Max
0.047
A1
0.10
0.05
0.15
0.004
0.002
0.006
A2
1.00
0.95
1.05
0.039
0.037
0.041
B
0.22
0.17
0.27
0.009
0.007
0.011
0.10
0.21
0.004
0.008
C
CP
42/72
Max
0.10
0.004
D1
12.00
11.90
12.10
0.472
0.468
0.476
E
20.00
19.80
20.20
0.787
0.779
0.795
E1
18.40
18.30
18.50
0.724
0.720
0.728
e
0.50
–
–
0.020
–
–
L
0.60
0.50
0.70
0.024
0.020
0.028
L1
0.80
α
3°
0°
5°
0.031
0°
5°
3°
M28W640HCT, M28W640HCB
Package mechanical
Figure 14. TFBGA48 6.39 x 10.5 mm - 8 x 6 ball array, 0.75 mm pitch, bottom view
package outline
D
D1
SD
FD
FE
SE
E
E1
e
BALL "A1"
ddd
e
b
A2
A
A1
BGA-Z34
1. Drawing is not to scale.
Table 21.
TFBGA48 6.39 x 10.5 mm - 8 x 6 ball array, 0.75 mm pitch, package
mechanical data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.20
A1
0.047
0.26
A2
Max
0.010
1.00
0.039
b
0.40
0.35
0.45
0.016
0.014
0.018
D
6.39
6.29
6.49
0.252
0.248
0.255
D1
5.250
–
–
0.207
–
–
ddd
0.10
0.004
E
10.50
10.40
10.60
0.413
0.409
0.417
E1
3.75
–
–
0.148
–
–
e
0.75
–
–
0.029
–
–
FD
0.57
–
–
0.022
–
–
FE
3.37
–
–
0.133
–
–
SD
0.37
–
–
0.015
–
–
SE
0.37
–
–
0.015
–
–
43/72
Ordering information
10
M28W640HCT, M28W640HCB
Ordering information
Table 22.
Ordering information scheme
Example:
M28W640HCT 70
N
6 E
Device type
M28
Operating voltage
W = VDD = 2.7 V to 3.6 V
Device function
640HC = 64 Mbit (4 Mb x 16), boot block
Array matrix
T = top boot
B = bottom boot
Speed
70 = 70 ns
Package
N = TSOP48: 12 x 20 mm
ZB = TFBGA48: 6.39 x 10.5 mm, 0.75 mm pitch
Temperature range
6 = –40 to 85 °C
Option
E = ECOPACK® package, standard packing
F = ECOPACK® package, tape & reel packing
Note:
44/72
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of
available options (speed, package, etc.) or for further information on any aspect of this
device, please contact the Numonyx Sales Office nearest to you.
M28W640HCT, M28W640HCB
Appendix A
Block address tables
Block address tables
Table 23.
Top boot block addresses, M28W640HCT
#
Size (Kword)
Address range
0
4
3FF000-3FFFFF
1
4
3FE000-3FEFFF
2
4
3FD000-3FDFFF
3
4
3FC000-3FCFFF
4
4
3FB000-3FBFFF
5
4
3FA000-3FAFFF
6
4
3F9000-3F9FFF
7
4
3F8000-3F8FFF
8
32
3F0000-3F7FFF
9
32
3E8000-3EFFFF
10
32
3E0000-3E7FFF
11
32
3D8000-3DFFFF
12
32
3D0000-3D7FFF
13
32
3C8000-3CFFFF
14
32
3C0000-3C7FFF
15
32
3B8000-3BFFFF
16
32
3B0000-3B7FFF
17
32
3A8000-3AFFFF
18
32
3A0000-3A7FFF
19
32
398000-39FFFF
20
32
390000-397FFF
21
32
388000-38FFFF
22
32
380000-387FFF
23
32
378000-37FFFF
24
32
370000-377FFF
25
32
368000-36FFFF
26
32
360000-367FFF
27
32
358000-35FFFF
28
32
350000-357FFF
29
32
348000-34FFFF
30
32
340000-347FFF
31
32
338000-33FFFF
45/72
Block address tables
Table 23.
46/72
M28W640HCT, M28W640HCB
Top boot block addresses, M28W640HCT (continued)
#
Size (Kword)
Address range
32
32
330000-337FFF
33
32
328000-32FFFF
34
32
320000-327FFF
35
32
318000-31FFFF
36
32
310000-317FFF
37
32
308000-30FFFF
38
32
300000-307FFF
39
32
2F8000-2FFFFF
40
32
2F0000-2F7FFF
41
32
2E8000-2EFFFF
42
32
2E0000-2E7FFF
43
32
2D8000-2DFFFF
44
32
2D0000-2D7FFF
45
32
2C8000-2CFFFF
46
32
2C0000-2C7FFF
47
32
2B8000-2BFFFF
48
32
2B0000-2B7FFF
49
32
2A8000-2AFFFF
50
32
2A0000-2A7FFF
51
32
298000-29FFFF
52
32
290000-297FFF
53
32
288000-28FFFF
54
32
280000-287FFF
55
32
278000-27FFFF
56
32
270000-277FFF
57
32
268000-26FFFF
58
32
260000-267FFF
59
32
258000-25FFFF
60
32
250000-257FFF
61
32
248000-24FFFF
62
32
240000-247FFF
63
32
238000-23FFFF
64
32
230000-237FFF
65
32
228000-22FFFF
66
32
220000-227FFF
M28W640HCT, M28W640HCB
Table 23.
Block address tables
Top boot block addresses, M28W640HCT (continued)
#
Size (Kword)
Address range
67
32
218000-21FFFF
68
32
210000-217FFF
69
32
208000-20FFFF
70
32
200000-207FFF
71
32
1F8000-1FFFFF
72
32
1F0000-1F7FFF
73
32
1E8000-1EFFFF
74
32
1E0000-1E7FFF
75
32
1D8000-1DFFFF
76
32
1D0000-1D7FFF
77
32
1C8000-1CFFFF
78
32
1C0000-1C7FFF
79
32
1B8000-1BFFFF
80
32
1B0000-1B7FFF
81
32
1A8000-1AFFFF
82
32
1A0000-1A7FFF
83
32
198000-19FFFF
84
32
190000-197FFF
85
32
188000-18FFFF
86
32
180000-187FFF
87
32
178000-17FFFF
88
32
170000-177FFF
89
32
168000-16FFFF
90
32
160000-167FFF
91
32
158000-15FFFF
92
32
150000-157FFF
93
32
148000-14FFFF
94
32
140000-147FFF
95
32
138000-13FFFF
96
32
130000-137FFF
97
32
128000-12FFFF
98
32
120000-127FFF
99
32
118000-11FFFF
100
32
110000-117FFF
101
32
108000-10FFFF
47/72
Block address tables
Table 23.
48/72
M28W640HCT, M28W640HCB
Top boot block addresses, M28W640HCT (continued)
#
Size (Kword)
Address range
102
32
100000-107FFF
103
32
0F8000-0FFFFF
104
32
0F0000-0F7FFF
105
32
0E8000-0EFFFF
106
32
0E0000-0E7FFF
107
32
0D8000-0DFFFF
108
32
0D0000-0D7FFF
109
32
0C8000-0CFFFF
110
32
0C0000-0C7FFF
111
32
0B8000-0BFFFF
112
32
0B0000-0B7FFF
113
32
0A8000-0AFFFF
114
32
0A0000-0A7FFF
115
32
098000-09FFFF
116
32
090000-097FFF
117
32
088000-08FFFF
118
32
080000-087FFF
119
32
078000-07FFFF
120
32
070000-077FFF
121
32
068000-06FFFF
122
32
060000-067FFF
123
32
058000-05FFFF
124
32
050000-057FFF
125
32
048000-04FFFF
126
32
040000-047FFF
127
32
038000-03FFFF
128
32
030000-037FFF
129
32
028000-02FFFF
130
32
020000-027FFF
131
32
018000-01FFFF
132
32
010000-017FFF
133
32
008000-00FFFF
134
32
000000-007FFF
M28W640HCT, M28W640HCB
Table 24.
Block address tables
Bottom boot block addresses, M28W640HCB
#
Size (Kword)
Address range
134
32
3F8000-3FFFFF
133
32
3F0000-3F7FFF
132
32
3E8000-3EFFFF
131
32
3E0000-3E7FFF
130
32
3D8000-3DFFFF
129
32
3D0000-3D7FFF
128
32
3C8000-3CFFFF
127
32
3C0000-3C7FFF
126
32
3B8000-3BFFFF
125
32
3B0000-3B7FFF
124
32
3A8000-3AFFFF
123
32
3A0000-3A7FFF
122
32
398000-39FFFF
121
32
390000-397FFF
120
32
388000-38FFFF
119
32
380000-387FFF
118
32
378000-37FFFF
117
32
370000-377FFF
116
32
368000-36FFFF
115
32
360000-367FFF
114
32
358000-35FFFF
113
32
350000-357FFF
112
32
348000-34FFFF
111
32
340000-347FFF
110
32
338000-33FFFF
109
32
330000-337FFF
108
32
328000-32FFFF
107
32
320000-327FFF
106
32
318000-31FFFF
105
32
310000-317FFF
104
32
308000-30FFFF
103
32
300000-307FFF
102
32
2F8000-2FFFFF
101
32
2F0000-2F7FFF
100
32
2E8000-2EFFFF
49/72
Block address tables
Table 24.
50/72
M28W640HCT, M28W640HCB
Bottom boot block addresses, M28W640HCB (continued)
#
Size (Kword)
Address range
99
32
2E0000-2E7FFF
98
32
2D8000-2DFFFF
97
32
2D0000-2D7FFF
96
32
2C8000-2CFFFF
95
32
2C0000-2C7FFF
94
32
2B8000-2BFFFF
93
32
2B0000-2B7FFF
92
32
2A8000-2AFFFF
91
32
2A0000-2A7FFF
90
32
298000-29FFFF
89
32
290000-297FFF
88
32
288000-28FFFF
87
32
280000-287FFF
86
32
278000-27FFFF
85
32
270000-277FFF
84
32
268000-26FFFF
83
32
260000-267FFF
82
32
258000-25FFFF
81
32
250000-257FFF
80
32
248000-24FFFF
79
32
240000-247FFF
78
32
238000-23FFFF
77
32
230000-237FFF
76
32
228000-22FFFF
75
32
220000-227FFF
74
32
218000-21FFFF
73
32
210000-217FFF
72
32
208000-20FFFF
71
32
200000-207FFF
70
32
1F8000-1FFFFF
69
32
1F0000-1F7FFF
68
32
1E8000-1EFFFF
67
32
1E0000-1E7FFF
66
32
1D8000-1DFFFF
65
32
1D0000-1D7FFF
M28W640HCT, M28W640HCB
Table 24.
Block address tables
Bottom boot block addresses, M28W640HCB (continued)
#
Size (Kword)
Address range
64
32
1C8000-1CFFFF
63
32
1C0000-1C7FFF
62
32
1B8000-1BFFFF
61
32
1B0000-1B7FFF
60
32
1A8000-1AFFFF
59
32
1A0000-1A7FFF
58
32
198000-19FFFF
57
32
190000-197FFF
56
32
188000-18FFFF
55
32
180000-187FFF
54
32
178000-17FFFF
53
32
170000-177FFF
52
32
168000-16FFFF
51
32
160000-167FFF
50
32
158000-15FFFF
49
32
150000-157FFF
48
32
148000-14FFFF
47
32
140000-147FFF
46
32
138000-13FFFF
45
32
130000-137FFF
44
32
128000-12FFFF
43
32
120000-127FFF
42
32
118000-11FFFF
41
32
110000-117FFF
40
32
108000-10FFFF
39
32
100000-107FFF
38
32
0F8000-0FFFFF
37
32
0F0000-0F7FFF
36
32
0E8000-0EFFFF
35
32
0E0000-0E7FFF
34
32
0D8000-0DFFFF
33
32
0D0000-0D7FFF
32
32
0C8000-0CFFFF
31
32
0C0000-0C7FFF
30
32
0B8000-0BFFFF
51/72
Block address tables
Table 24.
52/72
M28W640HCT, M28W640HCB
Bottom boot block addresses, M28W640HCB (continued)
#
Size (Kword)
Address range
29
32
0B0000-0B7FFF
28
32
0A8000-0AFFFF
27
32
0A0000-0A7FFF
26
32
098000-09FFFF
25
32
090000-097FFF
24
32
088000-08FFFF
23
32
080000-087FFF
22
32
078000-07FFFF
21
32
070000-077FFF
20
32
068000-06FFFF
19
32
060000-067FFF
18
32
058000-05FFFF
17
32
050000-057FFF
16
32
048000-04FFFF
15
32
040000-047FFF
14
32
038000-03FFFF
13
32
030000-037FFF
12
32
028000-02FFFF
11
32
020000-027FFF
10
32
018000-01FFFF
9
32
010000-017FFF
8
32
008000-00FFFF
7
4
007000-007FFF
6
4
006000-006FFF
5
4
005000-005FFF
4
4
004000-004FFF
3
4
003000-003FFF
2
4
002000-002FFF
1
4
001000-001FFF
0
4
000000-000FFF
M28W640HCT, M28W640HCB
Appendix B
Common Flash interface (CFI)
Common Flash interface (CFI)
The Common Flash interface is a JEDEC approved, standardized data structure that can be
read from the Flash memory device. It allows a system software to query the device to
determine various electrical and timing parameters, density information and functions
supported by the memory. The system can interface easily with the device, enabling the
software to upgrade itself when necessary.
When the CFI Query command (RCFI) is issued the device enters CFI Query mode and the
data structure is read from the memory. Tables 25, 26, 27, 28, 29 and 30 show the
addresses used to retrieve the data.
The CFI data structure also contains a security area where a 64 bit unique security number
is written (see Table 30: Security code area). This area can be accessed only in Read mode
by the final user. It is impossible to change the security number after it has been written by
Numonyx. Issue a Read command to return to Read mode.
Table 25.
Query structure overview(1)
Offset
Sub-section name
Description
00h
Reserved
Reserved for algorithm-specific information
10h
CFI Query identification string
Command set ID and algorithm data offset
1Bh
System interface information
Device timing & voltage information
27h
Device geometry definition
Flash device layout
P
Primary algorithm-specific extended query
table
Additional information specific to the primary
algorithm (optional)
A
Alternate algorithm-specific extended query Additional information specific to the
table
alternate algorithm (optional)
1. Query data are always presented on the lowest order data outputs.
53/72
Common Flash interface (CFI)
Table 26.
M28W640HCT, M28W640HCB
CFI query identification string(1)
Offset
Data
Description
00h
0020h
Manufacturer code
01h
8848h
8849h
Device code
Value
Numonyx
Top
Bottom
02h-0Fh reserved Reserved
10h
0051h
11h
0052h
12h
0059h
13h
0003h
14h
0000h
15h
0035h
16h
0000h
17h
0000h
18h
0000h
19h
0000h
1Ah
0000h
‘Q’
Query unique ASCII string ‘QRY’
‘R’
‘Y’
Primary algorithm command set and control interface ID code 16
bit ID code defining a specific algorithm
Address for primary algorithm extended query table (see Table 28)
Intel
compatible
P = 35h
Alternate vendor command set and control interface ID code
second vendor - specified algorithm supported (0000h means
none exists)
NA
Address for Alternate algorithm extended query table
(0000h means none exists)
NA
1. Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
54/72
M28W640HCT, M28W640HCB
Table 27.
Common Flash interface (CFI)
CFI query system interface information
Offset
Data
1Bh
0027h
VDD logic supply minimum program/erase or write voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV
2.7 V
1Ch
0036h
VDD logic supply maximum Program/Erase or Write voltage
bit 7 to 4BCD value in volts
bit 3 to 0BCD value in 100 mV
3.6 V
1Dh
00B4h
VPP [programming] supply minimum Program/Erase voltage
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
11.4 V
1Eh
00C6h
VPP [programming] supply maximum Program/Erase voltage
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
12.6 V
1Fh
0004h
Typical time-out per single word program = 2n µs
16 µs
20h
0004h
Description
Value
n
Typical time-out for Double/Quadruple Word Program = 2 µs
n
16 µs
21h
000Ah
Typical time-out per individual block erase = 2 ms
1s
22h
0000h
Typical time-out for full chip erase = 2n ms
NA
0005h
n
23h
Maximum time-out for Word program = 2 times typical
512 µs
n
24h
0005h
Maximum time-out for Double/Quadruple Word Program = 2 times
typical
25h
0003h
Maximum time-out per individual block erase = 2n times typical
26h
0000h
n
Maximum time-out for chip erase = 2 times typical
512 µs
8s
NA
55/72
Common Flash interface (CFI)
M28W640HCB
M28W640HCT
Table 28.
56/72
M28W640HCT, M28W640HCB
Device geometry definition
Offset
Word
Mode
Data
27h
0017h
Device size = 2n in number of bytes
8 Mbyte
28h
29h
0001h
0000h
Flash device interface code description
x 16
Async.
2Ah
2Bh
0003h
0000h
Maximum number of bytes in multi-byte program or page = 2n
8
2Ch
0002h
Number of Erase block regions within the device.
It specifies the number of regions within the device containing
contiguous Erase blocks of the same size.
2
2Dh
2Eh
007Eh
0000h
Region 1 information
Number of identical-size erase block = 007Eh+1
2Fh
30h
0000h
0001h
Region 1 information
Block size in Region 1 = 0100h * 256 byte
31h
32h
0007h
0000h
Region 2 information
Number of identical-size erase block = 0007h+1
33h
34h
0020h
0000h
Region 2 information
Block size in region 2 = 0020h * 256 byte
2Dh
2Eh
0007h
0000h
Region 1 information
Number of identical-size erase block = 0007h+1
2Fh
30h
0020h
0000h
Region 1 information
Block size in region 1 = 0020h * 256 byte
31h
32h
007Eh
0000h
Region 2 information
Number of identical-size erase block = 007Eh=1
33h
34h
0000h
0001h
Region 2 information
Block size in region 2 = 0100h * 256 byte
Description
Value
127
64 Kbyte
8
8 Kbyte
8
8 Kbyte
127
64 Kbyte
M28W640HCT, M28W640HCB
Table 29.
Common Flash interface (CFI)
Primary algorithm-specific extended query table
Offset
P = 35h(1)
Data
(P+0)h = 35h
0050h
(P+1)h = 36h
0052h
(P+2)h = 37h
0049h
(P+3)h = 38h
0031h
Major version number, ASCII
‘1’
(P+4)h = 39h
0030h
Minor version number, ASCII
‘0’
(P+5)h = 3Ah
0066h
(P+6)h = 3Bh
0000h
(P+7)h = 3Ch
0000h
(P+8)h = 3Dh
0000h
Extended query table contents for primary algorithm. address
(P+5)h contains less significant byte.
bit 0Chip Erase supported(1 = Yes, 0 = No)
bit 1Suspend Erase supported(1 = Yes, 0 = No)
bit 2Suspend Program supported(1 = Yes, 0 = No)
bit 3Legacy Lock/Unlock supported(1 = Yes, 0 = No)
bit 4Queued Erase supported(1 = Yes, 0 = No)
bit 5Instant individual block locking supported(1 = Yes, 0 = No)
bit 6Protection bits supported(1 = Yes, 0 = No)
bit 7Page mode read supported(1 = Yes, 0 = No)
bit 8Synchronous read supported(1 = Yes, 0 = No)
bit 31 to 9Reserved; undefined bits are ‘0’
No
Yes
Yes
No
No
Yes
Yes
No
No
Supported functions after Suspend
Read Array, Read Status Register and CFI query are always
supported during erase or program operation
bit 0Program supported after Erase Suspend (1 = Yes, 0 = No)
bit 7 to 1Reserved; undefined bits are ‘0’
Yes
(P+9)h = 3Eh
0001h
(P+A)h = 3Fh
0003h
(P+B)h = 40h
0000h
Description
Value
‘P’
Primary algorithm extended query table unique ASCII string ‘PRI’
‘R’
‘I’
Block Lock status
Defines which bits in the block Status Register section of the
query are implemented.
Address (P+A)h contains less significant byte
bit 0Block Lock Status Register Lock/Unlock bit active(1 = Yes, 0
= No)
bit 1Block Lock Status Register Lock-down bit active (1 = Yes, 0 =
No)
bit 15 to 2Reserved for future use; undefined bits are ‘0’
VDD logic supply optimum Program/Erase voltage (highest
performance)
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
(P+C)h = 41h
0030h
(P+D)h = 42h
VPP supply optimum Program/Erase voltage
00C0h bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV
(P+E)h = 43h
0001h
Number of protection register fields in JEDEC ID space.
"00h," indicates that 256 protection bytes are available
Yes
Yes
3V
12 V
01
57/72
Common Flash interface (CFI)
Table 29.
M28W640HCT, M28W640HCB
Primary algorithm-specific extended query table (continued)
Offset
P = 35h(1)
Data
(P+F)h = 44h
0080h
(P+10)h = 45h
0000h
(P+11)h = 46h
0003h
(P+12)h = 47h
0004h
(P+13)h = 48h
Description
80h
Protection field 1: protection description
This field describes user-available one-time-programmable
00h
(OTP) protection register bytes. Some are pre-programmed with
8 byte
device unique serial numbers. Others are user programmable.
bits 0–15 point to the Protection Register Lock byte, the section’s
first byte.
The following bytes are factory pre-programmed and userprogrammable.
16 byte
bit 0 to 7 Lock/bytes JEDEC-plane physical low address
bit 8 to 15Lock/bytes JEDEC-plane physical high address
bit 16 to 23 "n" such that 2n = factory pre-programmed bytes
bit 24 to 31 "n" such that 2n = user programmable bytes
Reserved
1. See Table 26, offset 15 for P pointer definition.
Table 30.
Security code area
Offset
Data
80h
00XX
81h
XXXX
82h
XXXX
83h
XXXX
84h
XXXX
85h
XXXX
86h
XXXX
87h
XXXX
88h
XXXX
89h
XXXX
8Ah
XXXX
8Bh
XXXX
8Ch
XXXX
Description
Protection Register Lock
64 bits: unique device number
128 bits: user programmable OTP
58/72
Value
M28W640HCT, M28W640HCB
Appendix C
Flowcharts and pseudocodes
Flowcharts and pseudocodes
Figure 15. Program flowchart and pseudocode
Start
program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0x40) ;
/*or writeToFlash (any_address, 0x10) ; */
Write 40h or 10h
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
Write Address
& Data
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03538b
1. Status check of b1 (protected block), b3 (VPP invalid) and b4 (program error) can be made after each program operation or
after a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase controller operations.
59/72
Flowcharts and pseudocodes
M28W640HCT, M28W640HCB
Figure 16. Double Word Program flowchart and pseudocode
Start
Write 30h
double_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2)
{
writeToFlash (any_address, 0x30) ;
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
/*Memory enters read status state after
the Program command*/
Write Address 1
& Data 1 (3)
Write Address 2
& Data 2 (3)
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
YES
b4 = 0
YES
b1 = 0
NO
Program to Protected
Block Error (1, 2)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03539b
1. Status check of b1 (protected block), b3 (VPP invalid) and b4 (program error) can be made after each program operation or
after a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 and address 2 must be consecutive addresses differing only for bit A0.
60/72
M28W640HCT, M28W640HCB
Flowcharts and pseudocodes
Figure 17. Quadruple Word Program flowchart and pseudocode
Start
quadruple_word_program_command (addressToProgram1, dataToProgram1,
addressToProgram2, dataToProgram2,
addressToProgram3, dataToProgram3,
addressToProgram4, dataToProgram4)
{
writeToFlash (any_address, 0x56) ;
Write 56h
Write Address 1
& Data 1 (3)
writeToFlash (addressToProgram1, dataToProgram1) ;
/*see note (3) */
Write Address 2
& Data 2 (3)
writeToFlash (addressToProgram2, dataToProgram2) ;
/*see note (3) */
writeToFlash (addressToProgram3, dataToProgram3) ;
/*see note (3) */
Write Address 3
& Data 3 (3)
writeToFlash (addressToProgram4, dataToProgram4) ;
/*see note (3) */
Write Address 4
& Data 4 (3)
/*Memory enters read status state after
the Program command*/
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI06233
1. Status check of b1 (protected block), b3 (VPP invalid) and b4 (program error) can be made after each program operation or
after a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase operations.
3. Address 1 to address 4 must be consecutive addresses differing only for bits A0 and A1.
61/72
Flowcharts and pseudocodes
M28W640HCT, M28W640HCB
Figure 18. Program Suspend & Resume flowchart and pseudocode
Start
program_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
Write B0h
writeToFlash (any_address, 0x70) ;
/* read status register to check if
program has already completed */
Write 70h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b2 = 1
NO
Program Complete
YES
Write FFh
}
Read data from
another address
Write D0h
if (status_register.b2==0) /*program completed */
{ writeToFlash (any_address, 0xFF) ;
read_data ( ) ; /*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
else
{ writeToFlash (any_address, 0xFF) ;
read_data ( ); /*read data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume program*/
}
Write FFh
}
Program Continues
Read Data
AI03540b
62/72
M28W640HCT, M28W640HCB
Flowcharts and pseudocodes
Figure 19. Erase flowchart and pseudocode
Start
erase_command ( blockToErase ) {
writeToFlash (any_address, 0x20) ;
Write 20h
writeToFlash (blockToErase, 0xD0) ;
/* only A12-A20 are significannt */
/* Memory enters read status state after
the Erase Command */
Write Block
Address & D0h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1)
YES
Command
Sequence Error (1)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
YES
b4, b5 = 1
if ( (status_register.b4==1) && (status_register.b5==1) )
/* command sequence error */
error_handler ( ) ;
NO
b5 = 0
NO
Erase Error (1)
if ( (status_register.b5==1) )
/* erase error */
error_handler ( ) ;
YES
b1 = 0
NO
Erase to Protected
Block Error (1)
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI03541b
1. If an error is found, the Status Register must be cleared before further program/erase operations.
63/72
Flowcharts and pseudocodes
M28W640HCT, M28W640HCB
Figure 20. Erase Suspend & Resume flowchart and pseudocode
Start
erase_suspend_command ( ) {
writeToFlash (any_address, 0xB0) ;
Write B0h
writeToFlash (any_address, 0x70) ;
/* read status register to check if
erase has already completed */
Write 70h
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b6 = 1
NO
Erase Complete
if (status_register.b6==0) /*erase completed */
{ writeToFlash (any_address, 0xFF) ;
YES
read_data ( ) ;
/*read data from another block*/
/*The device returns to Read Array
(as if program/erase suspend was not issued).*/
Write FFh
Read data from
another block
or
Program/Protection Program
or
Block Protect/Unprotect/Lock
}
else
Write D0h
Write FFh
Erase Continues
Read Data
{ writeToFlash (any_address, 0xFF) ;
read_program_data ( );
/*read or program data from another address*/
writeToFlash (any_address, 0xD0) ;
/*write 0xD0 to resume erase*/
}
}
AI03542b
64/72
M28W640HCT, M28W640HCB
Flowcharts and pseudocodes
Figure 21. Locking operations flowchart and pseudocode
Start
locking_operation_command (address, lock_operation) {
writeToFlash (any_address, 0x60) ; /*configuration setup*/
Write 60h
if (lock_operation==LOCK) /*to protect the block*/
writeToFlash (address, 0x01) ;
else if (lock_operation==UNLOCK) /*to unprotect the block*/
writeToFlash (address, 0xD0) ;
else if (lock_operation==LOCK-DOWN) /*to lock the block*/
writeToFlash (address, 0x2F) ;
Write
01h, D0h or 2Fh
writeToFlash (any_address, 0x90) ;
Write 90h
Read Block
Lock States
Locking
change
confirmed?
if (readFlash (address) ! = locking_state_expected)
error_handler () ;
/*Check the locking state (see Read Block Signature table )*/
NO
YES
writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/
Write FFh
}
End
AI04364
65/72
Flowcharts and pseudocodes
M28W640HCT, M28W640HCB
Figure 22. Protection Register Program flowchart and pseudocode
Start
protection_register_program_command (addressToProgram, dataToProgram) {:
writeToFlash (any_address, 0xC0) ;
Write C0h
writeToFlash (addressToProgram, dataToProgram) ;
/*Memory enters read status state after
the Program Command*/
Write Address
& Data
do {
status_register=readFlash (any_address) ;
/* E or G must be toggled*/
Read Status
Register
b7 = 1
NO
} while (status_register.b7== 0) ;
YES
b3 = 0
NO
VPP Invalid
Error (1, 2)
if (status_register.b3==1) /*VPP invalid error */
error_handler ( ) ;
NO
Program
Error (1, 2)
if (status_register.b4==1) /*program error */
error_handler ( ) ;
NO
Program to Protected
Block Error (1, 2)
YES
b4 = 0
YES
b1 = 0
if (status_register.b1==1) /*program to protect block error */
error_handler ( ) ;
YES
End
}
AI04381
1. Status check of b1 (protected block), b3 (VPP invalid) and b4 (program error) can be made after each program operation or
after a sequence.
2. If an error is found, the Status Register must be cleared before further Program/Erase controller operations.
66/72
M28W640HCT, M28W640HCB
Appendix D
Table 31.
Command interface and Program/Erase controller state
Command interface and Program/Erase
controller state
Write state machine current/next(1)
.
Command input (and next state)
Current
state
SR
Data when
bit
Read
7
Read Array ‘1’
Read
Array
(FFh)
Program
Setup
(10/40h)
Erase
Setup
(20h)
Erase
Confirm
(D0h)
Prog/Ers
Suspend
(B0h)
Prog/Ers
Resume
(D0h)
Read Clear
Status Status
(70h)
(50h)
Array
Read
Ers.
Prog.Setup
Array
Setup
Read Array
Read
Sts.
Read
Array
Read
Status
‘1’
Status
Read
Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read
Array
Read
Elect.Sg.
‘1’
Electronic
signature
Read
Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read
Array
Read CFI
Query
‘1’
CFI
Read
Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read
Array
Lock
Lock Cmd
Lock
Lock Command
(complete)
Error
(complete)
Error
Lock Setup ‘1’
Status
Lock Cmd
Error
‘1’
Status
Read
Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read
Array
Lock
(complete)
‘1’
Status
Read
Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read
Array
Prot. Prog.
Setup
‘1’
Status
Protection Register Program
Prot. Prog.
(continue)
‘0’
Status
Protection Register Program continue
Prot. Prog.
(complete)
‘1’
Status
Read
Status
Read
Array
Prog.
Setup
‘1’
Status
Program
(continue)
‘0’
Status
Prog. Sus
Status
‘1’
Prog. Sus
‘1’
Read Array
Prog. Sus
Read
Elect.Sg.
‘1’
Lock Command Error
Read
Array
Program
Setup
Erase
Setup
Read Array
Program
Program (continue)
Prog. Sus
Read Sts
Program (continue)
Status
Prog.
Prog. Sus
Sus Program Suspend to Program
Program
Read
Read
Read Array
(continue)
(continue)
Array
Array
Prog.
Sus
Read
Sts
Prog.
Sus
Read
Array
Array
Prog.
Prog. Sus
Sus Program Suspend to Program
Program
Read
Read
Read Array
(continue)
(continue)
Array
Array
Prog.
Sus
Read
Sts
Prog.
Sus
Read
Array
Electronic
signature
Prog.
Prog. Sus
Sus Program Suspend to Program
Program
Read
Read
Read Array
(continue)
(continue)
Array
Array
Prog.
Sus
Read
Sts
Prog.
Sus
Read
Array
67/72
Command interface and Program/Erase controller state
Table 31.
M28W640HCT, M28W640HCB
Write state machine current/next(1) (continued)
Command input (and next state)
Current
state
SR
Data when
bit
Read
7
Prog. Sus
Read CFI
‘1’
CFI
Program
(complete)
‘1’
Status
Erase
Setup
‘1’
Status
Erase
Cmd.Error
‘1’
Status
Erase
(continue)
‘0’
Status
Erase Sus
Read Sts
‘1’
Erase Sus
‘1’
Read Array
Erase Sus
Read
Elect.Sg.
‘1’
Read
Array
(FFh)
Program
Setup
(10/40h)
Erase
Setup
(20h)
Erase
Confirm
(D0h)
Prog/Ers
Suspend
(B0h)
Prog/Ers
Resume
(D0h)
Read Clear
Status Status
(70h)
(50h)
Prog.
Prog. Sus
Sus Program Suspend to Program
Program
Read
Read
Read Array
(continue)
(continue)
Array
Array
Prog.
Sus
Read
Sts
Prog.
Sus
Read
Array
Read
Array
Read
Status
Read
Array
Program
Setup
Erase
Setup
Erase Command Error
Read
Array
Program
Setup
Erase
Setup
Erase (continue)
Read Array
Erase
Erase
Erase
Erase Command
(continue) CmdError (continue)
Error
Read
Status
Read Array
Erase Sus
Read Sts
Erase (continue)
Status
Erase
Sus
Read
Array
Program
Setup
Erase
Sus
Read
Array
Erase Sus
Erase
Erase
Read
(continue)
(continue)
Array
Erase
Sus
Read
Sts
Erase
Sus
Read
Array
Array
Erase
Sus
Read
Array
Program
Setup
Erase
Sus
Read
Array
Erase Sus
Erase
Erase
Read
(continue)
(continue)
Array
Erase
Sus
Read
Sts
Erase
Sus
Read
Array
Electronic
Signature
Erase
Sus
Read
Array
Program
Setup
Erase
Sus
Read
Array
Erase Sus
Erase
Erase
Read
(continue)
(continue)
Array
Erase
Sus
Read
Sts
Erase
Sus
Read
Array
Program
Setup
Erase
Sus
Read
Array
Erase Sus
Erase
Erase
Read
(continue)
(continue)
Array
Erase
Sus
Read
Sts
Erase
Sus
Read
Array
Program
Setup
Erase
Setup
Read Array
Read
Status
Read
Array
Erase Sus
Read CFI
‘1’
CFI
Erase
Sus
Read
Array
Erase
(complete)
‘1’
Status
Read
Array
1. Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend.
68/72
Read
Array
M28W640HCT, M28W640HCB
Table 32.
Command interface and Program/Erase controller state
Write state machine current/next(1)
.
Command input (and next state)
Current
state
Read
Elect.Sg.
Read CFI
Query
(90h)
(98h)
Read Array
Read
Elect.Sg.
Read CFI
Query
Lock Setup
Prot. Prog.
Setup
Read Array
Read Status
Read
Elect.Sg.
Read CFI
Query
Lock Setup
Prot. Prog.
Setup
Read Array
Read
Elect.Sg.
Read
Elect.Sg.
Read CFI
Query
Lock Setup
Prot. Prog.
Setup
Read Array
Read CFI
Query
Read
Elect.Sg.
Read CFI
Query
Lock Setup
Prot. Prog.
Setup
Read Array
Lock Setup
Lock Setup
(60h)
Prot. Prog.
Setup (C0h)
Lock
Confirm
(01h)
Lock Command Error
Lock Down
Confirm
(2Fh)
Read
Elect.Sg.
Read CFI
Query
Lock Setup
Prot. Prog.
Setup
Read Array
Lock
(complete)
Read
Elect.Sg.
Read CFI
Query
Lock Setup
Prot. Prog.
Setup
Read Array
Prot. Prog.
Setup
Protection Register Program
Prot. Prog.
(continue)
Protection Register Program (continue)
Read
Elect.Sg.
Read CFI
Query
(D0h)
Lock (complete)
Lock Cmd
Error
Prot. Prog.
(complete)
Unlock
Confirm
Lock Setup
Prot. Prog.
Setup
Prog. Setup
Program
Program
(continue)
Program (continue)
Read Array
Prog.
Suspend
Read Status
Prog.
Suspend
Read
Elect.Sg.
Prog.
Suspend
Read CFI
Query
Program Suspend Read Array
Program
(continue)
Prog.
Suspend
Read Array
Prog.
Suspend
Read
Elect.Sg.
Prog.
Suspend
Read CFI
Query
Program Suspend Read Array
Program
(continue)
Prog.
Suspend
Read
Elect.Sg.
Prog.
Suspend
Read
Elect.Sg.
Prog.
Suspend
Read CFI
Query
Program Suspend Read Array
Program
(continue)
Prog.
Suspend
Read CFI
Prog.
Suspend
Read
Elect.Sg.
Prog.
Suspend
Read CFI
Query
Program Suspend Read Array
Program
(continue)
Program
(complete)
Read
Elect.Sg.
Read
CFIQuery
Lock Setup
Prot. Prog.
Setup
Read Array
69/72
Command interface and Program/Erase controller state
Table 32.
M28W640HCT, M28W640HCB
Write state machine current/next(1) (continued)
Command input (and next state)
Current
state
Read
Elect.Sg.
Read CFI
Query
(90h)
(98h)
Erase Setup
Erase
Cmd.Error
Lock Setup
(60h)
Prot. Prog.
Setup (C0h)
Lock
Confirm
(01h)
Lock Down
Confirm
(2Fh)
Read CFI
Query
Erase
(continue)
Lock Setup
Prot. Prog.
Setup
(D0h)
Erase
(continue)
Erase Command Error
Read
Elect.Sg.
Unlock
Confirm
Read Array
Erase (continue)
Erase
Suspend
Read Ststus
Erase
Suspend
Read
Elect.Sg.
Erase
Suspend
Read CFI
Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase
Suspend
Read Array
Erase
Suspend
Read
Elect.Sg.
Erase
Suspend
Read CFI
Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase
Suspend
Read
Elect.Sg.
Erase
Suspend
Read
Elect.Sg.
Erase
Suspend
Read CFI
Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase
Suspend
Read CFI
Query
Erase
Suspend
Read
Elect.Sg.
Erase
Suspend
Read CFI
Query
Lock Setup
Erase Suspend Read Array
Erase
(continue)
Erase
(complete)
Read
Elect.Sg.
Read CFI
Query
Lock Setup
Prot. Prog.
Setup
1. Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection.
70/72
Read Array
M28W640HCT, M28W640HCB
11
Revision history
Revision history
Table 33.
Document revision history
Date
Version
Changes
29-Jan-2008
1
Initial release.
20-Mar-2008
2
Applied Numonyx branding.
71/72
M28W640HCT, M28W640HCB
Please Read Carefully:
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY
WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.
Numonyx may make changes to specifications and product descriptions at any time, without notice.
Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied,
by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by
visiting Numonyx's website at http://www.numonyx.com.
Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved.
72/72
Similar pages