Mitsubishi M38005E6-XXXFS 8-bit single-chip microcomputer Datasheet

ADVANCED AND EVER ADVANCING
MITSUBISHI ELECTRIC
MITSUBISHI 8-BIT SINGLE-CHIP MICROCOMPUTER
740 FAMILY / 38000 SERIES
3802
Group
User’s Manual
MITSUBISHI
ELECTRIC
keep safety first in your circuit designs !
● Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement
of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention
against any malfunction or mishap.
Notes regarding these materials
● These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights,
or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
● Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product
data, diagrams, charts or circuit application examples contained in these materials.
● All information contained in these materials, including product data, diagrams
and charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.
● Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human
life is potentially at stake. Please contact Mitsubishi Electric Corporation or an
authorized Mitsubishi Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.
● The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.
● If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
Japan and/or the country of destination is prohibited.
● Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.
Preface
This user’s manual describes Mitsubishi’s CMOS 8bit microcomputers 3802 Group.
After reading this manual, the user should have a
through knowledge of the functions and features of
the 3802 Group, and should be able to fully utilize
the product. The manual starts with specifications
and ends with application examples.
For details of software, refer to the “SERIES MELPS
740 <SOFTWARE> USER’S MANUAL.”
For details of development support tools, refer to the
“DEVELOPMENT SUPPORT TOOLS FOR MICROCOMPUTERS” data book.
BEFORE USING THIS USER’S MANUAL
This user’s manual consists of the following three chapters. Refer to the chapter appropriate to your conditions, such
as hardware design or software development. Chapter 3 also includes necessary information for systems development.
Be sure to refer to this chapter.
1. Organization
● CHAPTER 1 HARDWARE
This chapter describes features of the microcomputer and operation of each peripheral function.
● CHAPTER 2 APPLICATION
This chapter describes usage and application examples of peripheral functions, based mainly on setting examples
of related registers.
● CHAPTER 3 APPENDIX
This chapter includes necessary information for systems development using the microcomputer, electric
characteristics, a list of registers, the masking confirmation (mask ROM version), and mark specifications which
are to be submitted when ordering.
2. Structure of register
The figure of each register structure describes its functions, contents at reset, and attributes as follows :
(Note 2)
Bit attributes
Bits
(Note 1)
Contents immediately after reset release
b7 b6 b5 b4 b3 b2 b1 b0
0
CPU mode register (CPUM) [Address : 3B16]
B
0
Name
Function
b1 b0
Processor mode bits
1
0 0 : Single-chip mode
01:
1 0 : Not available
11:
0 : 0 page
1 : 1 page
At reset
R W
0
0
2
Stack page selection bit
3
Nothing arranged for these bits. These are write disabled
bits. When these bits are read out, the contents are “0.”
0
✕
0
✕
Fix this bit to “0.”
1
4
5
6
Main clock (XIN-XOUT) stop bit
7
Internal system clock selection bit
: Bit in which nothing is arranged
0 : Operating
1 : Stopped
0 : XIN-XOUT selected
1 : XCIN-XCOUT selected
0
✻
✻
: Bit that is not used for control of the corresponding function
Note 1. Contents immediately after reset release
0••••••“0” at reset release
1••••••“1” at reset release
Undefined••••••Undefined or reset release
✻ ••••••Contents determined by option at reset release
Note 2. Bit attributes••••••The attributes of control register bits are classified into 3 bytes : read-only, write-only
and read and write. In the figure, these attributes are represented as follows :
R••••••Read
••••••Read enabled
✕••••••Read disabled
W••••••Write
••••••Write enabled
✕ ••••••Write disabled
LIST OF GROUPS HAVING THE SIMILAR FUNCTIONS
3802 group, one of the CMOS 8-bit microcomputer 38000 series presented in this user’s manual is provided with
standard functions.
The basic functions of the 3800, 3802, 3806 and 3807 groups having the same functions are shown below. For the
detailed functions of each group, refer to the related data book and user’s manual.
List of groups having the same functions
Group
As of September 1995
3800 group
3802 group
3806 group
3807 group
Pin
(Package type)
64 pin
• 64P4B
• 64P6N-A
• 64P6D-A
64 pin
• 64P4B
• 64P6N-A
80 pin
• 80P6N-A
• 80P6S-A
• 80P6D-A
80 pin
• 80P6N-A
Clock generating circuit
1 circuit
1 circuit
1 circuit
2 circuit
Timer
<8-bit>
Prescaler : 3
Timer : 4
<8-bit>
Prescaler : 3
Timer : 4
<8-bit>
Prescaler : 3
Timer : 4
Timer : 3
<16-bit>
Timer X/Y : 2
Timer A/B : 2
UART or
Clock synchronous ✕ 1
UART or
Clock synchronous ✕ 1
UART or
Clock synchronous ✕ 1
UART or
Clock synchronous ✕ 1
Clock synchronous ✕ 1
Clock synchronous ✕ 1
Clock synchronous ✕ 1
A-D converter
8-bit ✕ 8-channel
8-bit ✕ 8-channel
8-bit ✕ 13-channel
D-A converter
8-bit ✕ 2-channel
8-bit ✕ 2-channel
8-bit ✕ 4-channel
Function
<8-bit>
Serial I/O
Mask
ROM
Memory
type
One Time
PROM
EPROM
RAM
8K 16K 24K 32K
(Note 1)
(Note 1)
(Note 1)
16K
8K (Note
1)
32K
16K
32K
✽
8K
16K
(Note 1)
(Note 1)
384 384 512 640 384 384
384
24K
32K 12K 16K 24K 32K 48K
(Note 1)
(Note 1)
(Note 1)
(Note 3)
(Note 3)
(Note 3)
32K
24K
48K
(Note 1)
(Note 2)
(Note 3)
32K
24K
48K
(Note 2)
640 1024 384 384 512 1024 1024
PWM output
Remarks
Notes 1:
2:
3:
✽.
Extended operating temperature version available
High-speed version available
Extended operating temperature version and High-speed version available
ROM expansion
16K
16K
16K
512
Real time port output
Analog comparator
Watchdog timer
Table of contents
Table of contents
CHAPTER 1. HARDWARE
DESCRIPTION ................................................................................................................................ 1-2
FEATURES ...................................................................................................................................... 1-2
APPLICATIONS .............................................................................................................................. 1-2
PIN CONFIGURATION ................................................................................................................... 1-2
FUNCTIONAL BLOCK ................................................................................................................... 1-4
PIN DESCRIPTION ......................................................................................................................... 1-5
PART NUMBERING ....................................................................................................................... 1-6
GROUP EXPANSION ..................................................................................................................... 1-7
GROUP EXPANSION (EXTENDED OPERATING TEMPERATURE VERSION) .................... 1-8
FUNCTIONAL DESCRIPTION ....................................................................................................... 1-9
Central Processing Unit (CPU) ............................................................................................... 1-9
Memory .................................................................................................................................... 1-13
I/O Ports .................................................................................................................................. 1-15
Interrupts .................................................................................................................................. 1-18
Timers ...................................................................................................................................... 1-20
Serial I/O.................................................................................................................................. 1-22
Pulse Width Modulation (PWM) ............................................................................................ 1-28
A-D Converter ......................................................................................................................... 1-30
D-A Converter ......................................................................................................................... 1-31
Reset Circuit ............................................................................................................................ 1-32
Clock Generating Circuit ........................................................................................................ 1-34
Processor Modes .................................................................................................................... 1-35
NOTES ON PROGRAMMING ..................................................................................................... 1-37
Processor Status Register ..................................................................................................... 1-37
Interrupts .................................................................................................................................. 1-37
Decimal Calculations .............................................................................................................. 1-37
Timers ...................................................................................................................................... 1-37
Multiplication and Division Instructions ................................................................................ 1-37
Ports ......................................................................................................................................... 1-37
Serial I/O.................................................................................................................................. 1-37
A-D Converter ......................................................................................................................... 1-37
D-A Converter ......................................................................................................................... 1-37
Instruction Execution Time .................................................................................................... 1-37
Memory Expansion Mode....................................................................................................... 1-37
Memory Expansion Mode and Microprocessor Mode ....................................................... 1-37
DATA REQUIRED FOR MASK ORDERS ................................................................................. 1-38
3802 GROUP USER'S MANUAL
i
Table of contents
ROM PROGRAMMING METHOD ............................................................................................... 1-38
FUNCTIONAL DESCRIPTION SUPPLEMENT ..........................................................................1-39
Interrupt .................................................................................................................................... 1-39
Timing After Interrupt ............................................................................................................. 1-40
A-D Converter ......................................................................................................................... 1-41
CHAPTER 2. APPLICATION
2.1 I/O port ..................................................................................................................................... 2-2
2.1.1 Memory map of I/O port ................................................................................................ 2-2
2.1.2 Related registers ............................................................................................................. 2-3
2.1.3 Handling of unused pins ................................................................................................ 2-4
2.2 Timer ......................................................................................................................................... 2-5
2.2.1 Memory map of timer ..................................................................................................... 2-5
2.2.2 Related registers ............................................................................................................. 2-6
2.2.3 Timer application examples ......................................................................................... 2-11
2.3 Serial I/O ................................................................................................................................ 2-23
2.3.1 Memory map of serial I/O ........................................................................................... 2-23
2.3.2 Related registers ........................................................................................................... 2-24
2.3.3 Serial I/O connection examples .................................................................................. 2-30
2.3.4 Setting of serial I/O transfer data format ................................................................. 2-32
2.3.5 Serial I/O application examples .................................................................................. 2-33
2.4 PWM ........................................................................................................................................ 2-53
2.4.1 Memory map of PWM .................................................................................................. 2-53
2.4.2 Related registers ........................................................................................................... 2-54
2.4.3 PWM output circuit application example ................................................................... 2-56
2.5 A-D converter ........................................................................................................................ 2-59
2.5.1 Memory map of A-D conversion .................................................................................2-59
2.5.2 Related registers ........................................................................................................... 2-60
2.5.3 A-D conversion application example ..........................................................................2-62
2.6 Processor mode ................................................................................................................... 2-64
2.6.1 Memory map of processor mode ................................................................................ 2-64
2.6.2 Related register ............................................................................................................. 2-64
2.6.3 Processor mode application examples ...................................................................... 2-65
2.7 Reset ....................................................................................................................................... 2-69
2.7.1 Connection example of reset IC .................................................................................2-69
CHAPTER 3. APPENDIX
3.1 Electrical characteristics ...................................................................................................... 3-2
3.1.1 Absolute maximum ratings ............................................................................................ 3-2
3.1.2 Recommended operating conditions ............................................................................. 3-2
3.1.3 Electrical characteristics................................................................................................. 3-3
ii
3802 GROUP USER'S MANUAL
Table of contents
3.1.4 A-D converter characteristics ........................................................................................ 3-3
3.1.5 D-A converter characteristics ........................................................................................ 3-4
3.1.6 Timing requirements and Switching characteristics .................................................. 3-5
3.1.7 Absolute maximum ratings (Extended operating temperature version) .................. 3-9
3.1.8 Recommended operating conditions(Extended operating temperature version) .... 3-9
3.1.9 Electrical characteristics (Extended operating temperature version) .................... 3-10
3.1.10 A-D converter characteristics (Extended operating temperature version) ........ 3-10
3.1.11 D-A converter characteristics (Extended operating temperature version) ........ 3-11
3.1.12 Timing requirements and Switching characteristics
(Extended operating temperature version) ......................................................... 3-12
3.1.13 Timing diagram ........................................................................................................... 3-14
3.2 Standard characteristics ..................................................................................................... 3-17
3.2.1 Power source current characteristic examples ........................................................ 3-17
3.2.2 Port standard characteristic examples ...................................................................... 3-18
3.2.3 A-D conversion standard characteristics .................................................................. 3-20
3.2.4 D-A conversion standard characteristics .................................................................. 3-21
3.3 Notes on use......................................................................................................................... 3-22
3.3.1 Notes on interrupts ....................................................................................................... 3-22
3.3.2 Notes on the serial I/O1 .............................................................................................. 3-22
3.3.3 Notes on the A-D converter ........................................................................................ 3-23
3.3.4 Notes on the RESET pin ............................................................................................. 3-24
3.3.5 Notes on input and output pins .................................................................................. 3-24
3.3.6 Notes on memory expansion mode and microprocessor mode ............................ 3-25
3.3.7 Notes on built-in PROM ............................................................................................... 3-26
3.4 Countermeasures against noise ....................................................................................... 3-28
3.4.1 Shortest wiring length .................................................................................................. 3-28
3.4.2 Connection of a bypass capacitor across the Vss line and the Vcc line ............ 3-29
3.4.3 Wiring to analog input pins ......................................................................................... 3-30
3.4.4 Consideration for oscillator .......................................................................................... 3-30
3.4.5 Setup for I/O ports ....................................................................................................... 3-31
3.4.6 Providing of watchdog timer function by software .................................................. 3-31
3.5 List of registers .................................................................................................................... 3-33
3.6 Mask ROM ordering method .............................................................................................. 3-47
3.7 Mark specification form ...................................................................................................... 3-61
3.8 Package outline .................................................................................................................... 3-63
3.9 List of instruction codes .................................................................................................... 3-65
3.10 Machine Instructions ......................................................................................................... 3-66
3.11 SFR memory map .............................................................................................................. 3-76
3.12 Pin configuration ................................................................................................................ 3-77
3802 GROUP USER'S MANUAL
iii
List of figures
List of figures
CHAPTER 1 HARDWARE
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
1 Pin configuration of M38022M4-XXXFP ..........................................................................1-2
2 Pin configuration of M38022M4-XXXSP ..........................................................................1-3
3 Functional block diagram ................................................................................................... 1-4
4 Part numbering .................................................................................................................... 1-6
5 Memory expansion plan ..................................................................................................... 1-7
6 Memory expansion plan (Extended operating temperature version) .......................... 1-8
7 740 Family CPU register structure ................................................................................... 1-9
8 Register push and pop at interrupt generation and subroutine call ........................ 1-10
9 Structure of CPU mode register ..................................................................................... 1-11
10 Memory map diagram .................................................................................................... 1-12
11 Memory map of special function register (SFR) ....................................................... 1-13
12 Port block diagram (single-chip mode) (1) ................................................................ 1-16
13 Port block diagram (single-chip mode) (2) ................................................................ 1-17
14 Interrupt control ............................................................................................................... 1-18
15 Structure of interrupt-related registers ........................................................................ 1-18
16 Structure of timer XY register ....................................................................................... 1-19
17 Block diagram of timer X, timer Y, timer 1, and timer 2 ........................................ 1-21
18 Block diagram of clock synchronous serial I/O1....................................................... 1-22
19 Operation of clock synchronous serial I/O1 function ............................................... 1-22
20 Block diagram of UART serial I/O .............................................................................. 1-23
21 Operation of UART serial I/O function ....................................................................... 1-24
22 Structure of serial I/O control registers ...................................................................... 1-25
23 Structure of serial I/O2 control register...................................................................... 1-26
24 Block diagram of serial I/O2 function ......................................................................... 1-26
25 Timing of serial I/O2 function ....................................................................................... 1-27
26 Timing of PWM cycle ..................................................................................................... 1-28
27 Block diagram of PWM function ................................................................................... 1-28
28 Structure of PWM control register............................................................................... 1-29
29 PWM output timing when PWM register or PWM prescaler is changed ............... 1-29
30 Structure of AD/DA control register ............................................................................ 1-30
31 Block diagram of A-D converter ................................................................................... 1-30
32 Block diagram of D-A converter ................................................................................... 1-31
33 Equivalent connection circuit of D-A converter ......................................................... 1-31
34 Example of reset circuit ................................................................................................. 1-32
35 Internal status of microcomputer after reset ............................................................. 1-32
36 Timing of reset ................................................................................................................ 1-33
37 Ceramic resonator circuit............................................................................................... 1-34
38 External clock input circuit ............................................................................................ 1-34
39 Block diagram of clock generating circuit .................................................................................. 1-34
40 Memory maps in various processor modes ............................................................... 1-35
41 Structure of CPU mode register ................................................................................... 1-35
42 ONW function timing ...................................................................................................... 1-36
43 Programming and testing of One Time PROM version ........................................... 1-38
44 Timing chart after an interrupt occurs ........................................................................ 1-40
45 Time up to execution of the interrupt processing routine ....................................... 1-40
46 A-D conversion equivalent circuit ................................................................................. 1-42
47 A-D conversion timing chart .......................................................................................... 1-42
3802 GROUP USER’S MANUAL
i
List of figures
CHAPTER 2 APPLICATION
Fig. 2.1.1 Memory map of I/O port related registers ............................................................... 2-2
Fig. 2.1.2 Structure of Port Pi (i=0, 1, 2, 3, 4, 5, 6)............................................................... 2-3
Fig. 2.1.3 Structure of Port Pi direction register (i=0, 1, 2, 3, 4, 5, 6) ................................ 2-3
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
2.2.1 Memory map of timer related registers ......................................................................2-5
2.2.2 Structure of Prescaler 12, Prescaler X, Prescaler Y .............................................. 2-6
2.2.3 Structure of Timer 1 ..................................................................................................... 2-6
2.2.4 Structure of Timer 2, Timer X, Timer Y ....................................................................2-7
2.2.5 Structure of Timer XY mode register ......................................................................... 2-8
2.2.6 Structure of Interrupt request register 1 ....................................................................2-9
2.2.7 Structure of Interrupt request register 2 ....................................................................2-9
2.2.8 Structure of Interrupt control register 1 .................................................................. 2-10
2.2.9 Structure of Interrupt control register 2 .................................................................. 2-10
2.2.10 Connection of timers and setting of division ratios [Clock function] ................ 2-12
2.2.11 Setting of related registers [Clock function] ......................................................... 2-13
2.2.12 Control procedure [Clock function] ........................................................................ 2-14
2.2.13 Example of a peripheral circuit ...............................................................................2-15
2.2.14 Connection of the timer and setting of the division ratio [Piezoelectric buzzer output] ........... 2-15
2.2.15 Setting of related registers [Piezoelectric buzzer output] ................................... 2-16
2.2.16 Control procedure [Piezoelectric buzzer output] .................................................. 2-16
2.2.17 A method for judging if input pulse exists ........................................................... 2-17
2.2.18 Setting of related registers [Measurement of frequency] ................................... 2-18
2.2.19 Control procedure [Measurement of frequency] ................................................... 2-19
2.2.20 Connection of the timer and setting of the division ratio [Measurement of pulse width] ........... 2-20
2.2.21 Setting of related registers [Measurement of pulse width] ................................ 2-21
2.2.22 Control procedure [Measurement of pulse width] ................................................ 2-22
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
2.3.1 Memory map of serial I/O related registers ........................................................... 2-23
2.3.2 Structure of Transmit/Receive buffer register ........................................................ 2-24
2.3.3 Structure of Serial I/O1 status register ................................................................... 2-24
2.3.4 Structure of Serial I/O1 control register .................................................................. 2-25
2.3.5 Structure of UART control register ........................................................................... 2-25
2.3.6 Structure of Baud rate generator ..............................................................................2-26
2.3.7 Structure of Serial I/O2 control register .................................................................. 2-26
2.3.8 Structure of Serial I/O2 register................................................................................ 2-27
2.3.9 Structure of Interrupt edge selection register ........................................................ 2-27
2.3.10 Structure of Interrupt request register 1 ............................................................... 2-28
2.3.11 Structure of Interrupt request register 2 ............................................................... 2-28
2.3.12 Structure of Interrupt control register 1 ................................................................ 2-29
2.3.13 Structure of Interrupt control register 2 ................................................................ 2-29
2.3.14 Serial I/O connection examples (1) ....................................................................... 2-30
2.3.15 Serial I/O connection examples (2) ....................................................................... 2-31
2.3.16 Setting of Serial I/O transfer data format ............................................................. 2-32
2.3.17 Connection diagram [Communication using a clock synchronous serial I/O] .. 2-33
2.3.18 Timing chart [Communication using a clock synchronous serial I/O] ............... 2-33
2.3.19 Setting of related registers at a transmitting side
[Communication using a clock synchronous serial I/O] ................................ 2-34
Fig. 2.3.20 Setting of related registers at a receiving side
[Communication using a clock synchronous serial I/O] ................................ 2-35
ii
3802 GROUP USER’S MANUAL
List of figures
Fig. 2.3.21 Control procedure at a transmitting side
[Communication using a clock synchronous serial I/O] .................................. 2-36
Fig. 2.3.22 Control procedure at a receiving side[Communication using a clock synchronous serial I/O] .. 2-37
Fig. 2.3.23 Connection diagram [Output of serial data] ......................................................... 2-38
Fig. 2.3.24 Timing chart [Output of serial data] ...................................................................... 2-38
Fig. 2.3.25 Setting of serial I/O1 related registers [Output of serial data] .......................... 2-39
Fig. 2.3.26 Setting of serial I/O1 transmission data [Output of serial data]........................ 2-39
Fig. 2.3.27 Control procedure of serial I/O1 [Output of serial data] .................................... 2-40
Fig. 2.3.28 Setting of serial I/O2 related registers [Output of serial data] .......................... 2-41
Fig. 2.3.29 Setting of serial I/O2 transmission data [Output of serial data]........................ 2-41
Fig. 2.3.30 Control procedure of serial I/O2 [Output of serial data] .................................... 2-42
Fig. 2.3.31 Connection diagram
[Cyclic transmission or reception of block data between microcomputers] .. 2-43
Fig. 2.3.32 Timing chart [Cyclic transmission or reception of block data between microcomputers] .......... 2-44
Fig. 2.3.33 Setting of related registers
[Cyclic transmission or reception of block data between microcomputers] .. 2-44
Fig. 2.3.34 Control in the master unit ....................................................................................... 2-45
Fig. 2.3.35 Control in the slave unit .......................................................................................... 2-46
Fig. 2.3.36 Connection diagram [Communication using UART] ............................................ 2-47
Fig. 2.3.37 Timing chart [Communication using UART] ......................................................... 2-47
Fig. 2.3.38 Setting of related registers at a transmitting side [Communication using UART] ........................ 2-49
Fig. 2.3.39 Setting of related registers at a receiving side [Communication using UART] ............................ 2-50
Fig. 2.3.40 Control procedure at a transmitting side [Communication using UART] .......... 2-51
Fig. 2.3.41 Control procedure at a receiving side [Communication using UART] ............. 2-52
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
Memory map of PWM related registers .................................................................. 2-53
Structure of PWM control register ............................................................................ 2-54
Structure of PWM prescaler ...................................................................................... 2-54
Structure of PWM register ......................................................................................... 2-55
Connection diagram .................................................................................................... 2-56
PWM output timing ..................................................................................................... 2-56
Setting of related registers ........................................................................................ 2-57
PWM output ................................................................................................................. 2-57
Control procedure ....................................................................................................... 2-58
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
Memory map of A-D conversion related registers ................................................ 2-59
Structure of AD/DA control register ........................................................................ 2-60
Structure of A-D conversion register ...................................................................... 2-60
Structure of Interrupt request register 2 ................................................................ 2-61
Structure of Interrupt control register 2 ................................................................. 2-61
Connection diagram [Conversion of Analog input voltage] ................................. 2-62
Setting of related registers [Conversion of Analog input voltage] ..................... 2-62
Control procedure [Conversion of Analog input voltage]..................................... 2-63
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
Memory map of processor mode related register ................................................ 2-64
Structure of CPU mode register .............................................................................. 2-64
Expansion example of ROM and RAM .................................................................. 2-65
Read-cycle (OE access, SRAM) ............................................................................. 2-66
Read-cycle (OE access, EPROM) .......................................................................... 2-66
Write-cycle (W control, SRAM)................................................................................. 2-67
Application example of the ONW function ............................................................. 2-68
3802 GROUP USER’S MANUAL
iii
List of figures
Fig. 2.7.1 Example of Poweron reset circuit ........................................................................... 2-69
Fig. 2.7.2 RAM back-up system ................................................................................................. 2-69
CHAPTER 3 APPENDIX
Fig.
Fig.
Fig.
Fig.
3.1.1
3.1.2
3.1.3
3.1.4
Circuit
Timing
Timing
Timing
for measuring output switching characteristics ......................................... 3-13
diagram (in single-chip mode) ..................................................................... 3-14
diagram (in memory expansion mode and microprocessor mode) (1) .. 3-15
diagram (in memory expansion mode and microprocessor mode) (2) .. 3-16
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
Power source current characteristic example ....................................................... 3-17
Power source current characteristic example (in wait mode) ............................. 3-17
Standard characteristic example of CMOS output port at P-channel drive(1) . 3-18
Standard characteristic example of CMOS output port at P-channel drive(2) . 3-18
Standard characteristic example of CMOS output port at N-channel drive(1) . 3-19
Standard characteristic example of CMOS output port at N-channel drive(2) . 3-19
A-D conversion standard characteristics ................................................................ 3-20
D-A conversion standard characteristics ................................................................ 3-21
Fig. 3.3.1 Structure of interrupt control register 2 ................................................................. 3-22
iv
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
Wiring for the RESET pin ......................................................................................... 3-28
Wiring for clock I/O pins ........................................................................................... 3-29
Wiring for the V PP pin of the One Time PROM and the EPROM version ....... 3-29
Bypass capacitor across the V SS line and the V CC line ..................................... 3-29
Analog signal line and a resistor and a capacitor ............................................... 3-30
Wiring for a large current signal line ..................................................................... 3-30
Wiring to a signal line where potential levels change frequently ...................... 3-30
Stepup for I/O ports ................................................................................................... 3-31
Watchdog timer by software ..................................................................................... 3-31
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
3.5.1 Structure of Port Pi (i=0, 1, 2, 3, 4, 5, 6)............................................................. 3-33
3.5.2 Structure of Port Pi direction register (i=0, 1, 2, 3, 4, 5, 6) .............................. 3-33
3.5.3 Structure of Transmit/Receive buffer register ....................................................... 3-34
3.5.4 Structure of Serial I/O1 status register .................................................................. 3-34
3.5.5 Structure of Serial I/O1 control register ................................................................. 3-35
3.5.6 Structure of UART control register ......................................................................... 3-35
3.5.7 Structure of Baud rate generator ............................................................................ 3-36
3.5.8 Structure of Serial I/O2 control register ................................................................. 3-36
3.5.9 Structure of Serial I/O2 register .............................................................................. 3-37
3.5.10 Structure of Prescaler 12, Prescaler X, Prescaler Y ......................................... 3-37
3.5.11 Structure of Timer 1 ................................................................................................ 3-38
3.5.12 Structure of Timer 2, Timer X, Timer Y .............................................................. 3-38
3.5.13 Structure of Timer XY mode register ................................................................... 3-39
3.5.14 Structure of PWM control register ........................................................................ 3-40
3.5.15 Structure of PWM prescaler ...................................................................................3-40
3.5.16 Structure of PWM register ....................................................................................... 3-41
3.5.17 Structure of AD/DA control register ...................................................................... 3-42
3.5.18 Structure of A-D conversion register ..................................................................... 3-42
3.5.19 Structure of D-A 1 conversion, D-A 2 conversion register ................................ 3-43
3.5.20 Structure of Interrupt edge selection register ...................................................... 3-43
3.5.21 Structure of CPU mode register .............................................................................3-44
3802 GROUP USER’S MANUAL
List of figures
Fig.
Fig.
Fig.
Fig.
3.5.22
3.5.23
3.5.24
3.5.25
Structure
Structure
Structure
Structure
of
of
of
of
Interrupt
Interrupt
Interrupt
Interrupt
request register 1 ...............................................................
request register 2 ...............................................................
control register 1 ................................................................
control register 2 ................................................................
3802 GROUP USER’S MANUAL
3-45
3-45
3-46
3-46
v
List of tables
List of tables
CHAPTER 1 HARDWARE
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
1 Pin description.................................................................................................................. 1-5
2 List of supported products .............................................................................................. 1-7
3 List of supported products (Extended operating temperature version) ................... 1-8
4 Push and pop instructions of accumulator or processor status register .............. 1-10
5 Set and clear instructions of each bit of processor status register ...................... 1-11
6 List of I/O port functions .............................................................................................. 1-15
7 Interrupt vector addresses and priority ..................................................................... 1-18
8 Functions of ports in memory expansion mode and microprocessor mode ........ 1-35
9 Programming adapter .................................................................................................... 1-38
10 Interrupt sources, vector addresses and interrupt priority.................................... 1-39
11 Change of A-D conversion register during A-D conversion ................................. 1-41
CHAPTER 2 APPLICATION
Table 2.1.1 Handling of unused pins (in single-chip mode) .................................................... 2-4
Table 2.1.2 Handling of unused pins (in memory expansion mode and microprocessor mode) ......... 2-4
Table 2.2.1 Function of CNTR0 /CNTR1 edge switch bit .......................................................... 2-8
Table 2.3.1 Setting examples of Baud rate generator values and transfer bit rate values ...................... 2-48
CHAPTER 3 APPENDIX
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
3.1.1 Absolute maximum ratings ....................................................................................... 3-2
3.1.2 Recommended operating conditions .......................................................................3-2
3.1.3 Electrical characteristics ........................................................................................... 3-3
3.1.4 A-D converter characteristics................................................................................... 3-3
3.1.5 D-A converter characteristics................................................................................... 3-4
3.1.6 Timing requirements ................................................................................................. 3-5
3.1.7 Timing requirements (2) ........................................................................................... 3-5
3.1.8 Switching characteristics (1) ....................................................................................3-6
3.1.9 Switching characteristics (2) ....................................................................................3-6
3.1.10 Timing requirements in memory expansion mode and microprocessor mode (1) ..................... 3-7
3.1.11 Switching characteristics in memory expansion mode and microprocessor mode (1) ............ 3-7
3.1.12 Timing requirements in memory expansion mode and microprocessor mode (2) ..................... 3-8
3.1.13 Switching characteristics in memory expansion mode and microprocessor mode (2) ............ 3-8
3.1.14 Absolute maximum ratings (Extended operating temperature version) .......... 3-9
3.1.15 Recommended operating conditions (Extended operating temperature version) ...... 3-9
3.1.16 Electrical characteristics (Extended operating temperature version) ............ 3-10
3.1.17 A-D converter characteristics (Extended operating temperature version) .... 3-10
3.1.18 D-A converter characteristics (Extended operating temperature version) .... 3-11
3.1.19 Timing requirements (Extended operating temperature version) ................... 3-12
3.1.20 Switching characteristics (Extended operating temperature version) ........... 3-12
3802 GROUP USER’S MANUAL
i
List of tables
Table 3.1.21 Timing requirements in memory expansion mode and microprocessor mode
(Extended operating temperature version) .................................................. 3-13
Table 3.1.22 Switching characteristics in memory expansion mode and microprocessor mode
(Extended operating temperature version) .................................................. 3-13
Table 3.3.1 Programming adapter .............................................................................................. 3-26
Table 3.3.2 Setting of programming adapter switch .............................................................. 3-26
Table 3.3.3 Setting of PROM programmer address ............................................................... 3-27
Table 3.5.1 Function of CNTR0 /CNTR 1 edge switch bit ....................................................... 3-39
ii
3802 GROUP USER’S MANUAL
CHAPTER 1
HARDWARE
DESCRIPTION
FEATURES
APPLICATIONS
PIN CONFIGURATION
FUNCTIONAL BLOCK
PIN DESCRIPTION
PART NUMBERING
GROUP EXPANSION
FUNCTIONAL DESCRIPTION
NOTES ON PROGRAMMING
DATA REQUIRED FOR
MASK ORDERS
ROM PROGRAMMING METHOD
FUNCTIONAL DESCRIPTION
SUPPLEMENT
HARDWARE
DESCRIPTION/FEATURES/APPLICATIONS/PIN CONFIGURATION
DESCRIPTION
• Programmable input/output ports ............................................. 56
• Interrupts .................................................. 16 sources, 16 vectors
• Timers ............................................................................. 8 bit ✕ 4
• Serial I/O1 .................... 8-bit ✕ 1 (UART or Clock-synchronized)
• Serial I/O2 .................................... 8-bit ✕ 1 (Clock-synchronized)
• PWM ................................................................................ 8-bit ✕ 1
• A-D converter .................................................. 8-bit ✕ 8 channels
• D-A converter .................................................. 8-bit ✕ 2 channels
• Clock generating circuit ....................... Internal feedback resistor
The 3802 group is the 8-bit microcomputer based on the 740 family core technology.
The 3802 group is designed for controlling systems that require
analog signal processing and include two serial I/O functions, A-D
converters, and D-A converters.
The various microcomputers in the 3802 group include variations
of internal memory size and packaging. For details, refer to the
section on part numbering.
For details on availability of microcomputers in the 3802 group, refer to the section on group expansion.
•
FEATURES
•
•
•
• Basic machine-language instructions ....................................... 71
• The minimum instruction execution time ............................ 0.5 µs
(at 8 MHz oscillation frequency)
• Memory size
(connect to external ceramic resonator or quartz-crystal oscillator)
Power source voltage .................................................. 3.0 to 5.5 V
(Extended operating temperature version : 4.0 to 5.5 V)
Power dissipation ............................................................... 32 mW
Memory expansion possible
Operating temperature range .................................... –20 to 85°C
(Extended operating temperature version : –40 to 85°C)
APPLICATIONS
ROM .................................................................. 8 K to 32 K bytes
RAM ................................................................. 384 to 1024 bytes
Office automation, VCRs, tuners, musical instruments, cameras,
air conditioners, etc.
34
33
36
35
39
38
37
41
40
43
42
46
45
44
48
49
32
50
31
51
52
30
53
28
54
27
26
29
55
56
57
25
M38022M4-XXXFP
24
58
23
59
60
22
21
61
20
62
19
63
18
17
15
16
13
14
10
11
12
9
8
7
6
5
3
4
P62/AN2
P61/AN1
P60/AN0
P57/INT3
P56/PWM
P55/CNTR1
P54/CNTR0
P53/SRDY2
P52/SCLK2
P51/SOUT2
P50/SIN2
P47/SRDY1
P46/SCLK1
P45/TXD
P44/RXD
P43/INT2
1
64
2
P37/RD
P36/WR
P35/SYNC
P34/φ
P33/RESETOUT
P32/ONW
P31/DA2
P30/DA1
VCC
VREF
AVSS
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63 /AN3
47
P00/AD0
P01/AD1
P02/AD2
P03/AD3
P04/AD4
P05/AD5
P06/AD6
P07/AD7
P10/AD8
P11/AD9
P12/AD10
P13/AD11
P14/AD12
P15/AD13
P16/AD14
P17/AD15
PIN CONFIGURATION (TOP VIEW)
Package type : 64P6N-A
64-pin plastic-molded QFP
Fig. 1 Pin configuration of M38022M4-XXXFP
1-2
3802 GROUP USER’S MANUAL
P20/DB0
P21/DB1
P22/DB2
P23/DB3
P24/DB4
P25/DB5
P26/DB6
P27/DB7
VSS
XOUT
XIN
P40/INT4
P41/INT0
RESET
CNVSS
P42/INT1
HARDWARE
PIN CONFIGURATION
PIN CONFIGURATION (TOP VIEW)
1
64
2
63
3
62
4
61
5
60
6
59
7
58
8
57
9
56
10
55
11
54
12
53
13
14
15
16
17
18
19
20
M38022M4-XXXSP
VCC
VREF
AV SS
P67/AN 7
P66/AN 6
P65/AN 5
P64/AN 4
P63/AN 3
P62/AN 2
P61/AN 1
P60/AN 0
P57/INT 3
P56/PWM
P55/CNTR 1
P54/CNTR 0
P53/SRDY2
P52/SCLK2
P51/SOUT2
P50/SIN2
P47/SRDY1
P46/SCLK1
P45/TXD
P44/RXD
P43/INT 2
P42/INT 1
CNV SS
RESET
P41/INT 0
P40/INT 4
XIN
XOUT
VSS
52
51
50
49
48
47
46
45
21
44
22
43
23
42
24
41
25
40
26
39
27
38
28
37
29
36
30
35
31
34
32
33
P30/DA 1
P31/DA 2
P32/ONW
P33/RESET OUT
P34/φ
P35/SYNC
P36/WR
P37/RD
P00/AD 0
P01/AD 1
P02/AD 2
P03/AD 3
P04/AD 4
P05/AD 5
P06/AD 6
P07/AD 7
P10/AD 8
P11/AD 9
P12/AD 10
P13/AD 11
P14/AD 12
P15/AD 13
P16/AD 14
P17/AD 15
P20/DB 0
P21/DB 1
P22/DB 2
P23/DB 3
P24/DB 4
P25/DB 5
P26/DB 6
P27/DB 7
Package type : 64P4B
64-pin shrink plastic-molded DIP
Fig.2 Pin configuration of M38022M4-XXXSP
3802 GROUP USER'S MANUAL
1-3
1-4
31
Clock output
XOUT
Fig. 3 Functional block diagram
3802 GROUP USER’S MANUAL
3
I/O port P5
12 13 14 15 16 17 18 19
4 5 6 7 8 9 10 11
I/O port P6
P5(8)
SI/O2 (8)
ROM
P6(8)
INT3
PWM (8)
RAM
SI/O1 (8)
32
VSS
PS
PC L
S
Y
X
A
INT0
D-A
converter 2
(8)
INT2
INT4
I/O port P4
20 21 22 23 24 25 28 29
P4(8)
PC H
CPU
1
VCC
~
VREF AVSS
2
A-D
converter
(8)
Clock generating circuit
30
Clock input
XIN
FUNCTIONAL BLOCK DIAGRAM (Package : 64P4B)
P3(8)
CNTR0
P2(8)
CNTR1
Prescaler Y (8)
Prescaler X (8)
P1(8)
I/O port P3
I/O port P2
I/O port P1
I/O port P0
49 50 51 52 53 54 55 56
P0(8)
Timer Y (8)
Timer X (8)
Timer 2 (8)
Timer 1 (8)
57 58 59 60 61 62 63 64 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
D-A
converter 1
(8)
26
27
Prescaler 12 (8)
CNVSS
RESET
Reset input
HARDWARE
FUNCTIONAL BLOCK
FUNCTIONAL BLOCK
HARDWARE
PIN DESCRIPTION
PIN DESCRIPTION
Table 1. Pin description
Pin
Function
Name
Function except a port function
VCC , VSS
Power source
• Apply voltage of 3.0 V–5.5 V to VCC, and 0 V to VSS.
(Extended operating temperature version : 4.0 V to 5.5 V)
CNVSS
CNVSS
• This pin controls the operation mode of the chip.
• Normally connected to VSS.
• If this pin is connected to VCC, the internal ROM is inhibited and external memory is accessed.
VREF
Analog reference
voltage
• Reference voltage input pin for A-D and D-A converters
AVSS
Analog power
source
• GND input pin for A-D and D-A converters
• Connect to VSS .
RESET
Reset input
• Reset input pin for active “L”
XIN
Clock input
XOUT
Clock output
• Input and output signals for the clock generating circuit.
• Connect a ceramic resonator or quartz-crystal oscillator between the XIN and X OUT pins to set the
oscillation frequency.
• If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.
• The clock is used as the oscillating source of system clock.
P00–P07
I/O port P0
P10–P17
I/O port P1
P20–P27
I/O port P2
P30 /DA1 ,
P31/DA2
I/O port P3
•
•
•
•
•
•
8 bit CMOS I/O port
I/O direction register allows each pin to be individually programmed as either input or output.
At reset this port is set to input mode.
In modes other than single-chip, these pins are used as address, data, and control bus I/O pins.
CMOS compatible input level
CMOS 3-state output structure
• D–A conversion output pins
P32–P37
P40/INT4,
P41/INT0,
P42/INT1,
P43/INT2
I/O port P4
• 8-bit CMOS I/O port with the same function as port P0
• CMOS compatible input level
• CMOS 3-state output structure
P44/RXD,
P45/T XD,
P46/SCLK1 ,
P47/SRDY1
P50/SIN2 ,
P51/SOUT2,
P52/SCLK2 ,
P53/SRDY2
• External interrupt input pin
• Serial I/O1 I/O pins
I/O port P5
• 8-bit CMOS I/O port with the same function as port P0
• CMOS compatible input level
• CMOS 3-state output structure
• Serial I/O2 I/O pins
P54/CNTR0,
P55/CNTR 1
• Timer X and Timer Y I/O pins
P56/PWM
• PWM output pin
P57/INT3
• External interrupt input pin
P60/AN0–
P67/AN7
I/O port P6
• 8-bit CMOS I/O port with the same function as port P0
• CMOS compatible input level
• CMOS 3-state output structure
3802 GROUP USER'S MANUAL
• A-D conversion input pins
1-5
HARDWARE
PART NUMBERING
PART NUMBERING
Product
M3802 2 M 4 - XXX SP
Package type
SP : 64P4B package
FP : 64P6N-A package
SS : 64S1B-E package
FS : 64D0 package
ROM number
Omitted in some types.
Normally, using hyphen.
When electrical characteristic, or division of quality
identification code using alphanumeric character
– : standard
D : Extended operating temperature version
ROM/PROM size
1 : 4096 bytes
2 : 8192 bytes
3 : 12288 bytes
4 : 16384 bytes
5 : 20480 bytes
6 : 24576 bytes
7 : 28672 bytes
8 : 32768 bytes
The first 128 bytes and the last 2 bytes of ROM
are reserved areas ; they cannot be used.
Memory type
M : Mask ROM version
E : EPROM or One Time PROM version
RAM size
0 : 192 bytes
1 : 256 bytes
2 : 384 bytes
3 : 512 bytes
4 : 640 bytes
5 : 768 bytes
6 : 896 bytes
7 : 1024 bytes
Fig.4 Part numbering
1-6
3802 GROUP USER’S MANUAL
HARDWARE
GROUP EXPANSION
GROUP EXPANSION
(2) Packages
64P4B ............................................ Shrink plastic molded DIP
64P6N-A ................................................... Plastic molded QFP
64S1B-E .................................................... Shrink ceramic DIP
64D0 ................................................................... Ceramic LCC
Mitsubishi plans to expand the 3802 group as follows:
(1) Support for mask ROM, One Time PROM, and EPROM
versions
ROM/PROM capacity ................................... 8 K to 32 K bytes
RAM capacity .............................................. 384 to 1024 bytes
Memory Expansion Plan
Mass product
ROM size (bytes)
32K
M38027M8/E8
28K
Mass product
24K
M38024M6
20K
Mass product
16K
M38022M4
12K
Mass product
8K
M38022M2
4K
192 256
384
512
640
768
896
1024
RAM size (bytes)
Fig. 5 Memory expansion plan
Currently supported products are listed below
Table 2. List of supported products
(P) ROM size (bytes)
Product
ROM size for User in ( )
M38022M2-XXXSP
M38022M2-XXXFP
M38022M4-XXXSP
M38022M4-XXXFP
M38024M6-XXXSP
M38024M6-XXXFP
M38027M8-XXXSP
M38027E8-XXXSP
M38027E8SP
M38027M8-XXXFP
M38027E8-XXXFP
M38027E8FP
M38027E8SS
M38027E8FS
As of May 1996
RAM size (bytes)
8192
(8062)
384
16384
(16254)
384
24576
(24446)
640
Package
64P4B
64P6N-A
64P4B
64P6N-A
64P4B
64P6N-A
64P4B
32768
(32638)
1024
64P6N-A
64S1B-E
64D0
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Mask ROM version
One Time PROM version
One Time PROM version (blank)
EPROM version
EPROM version
3802 GROUP USER'S MANUAL
1-7
HARDWARE
GROUP EXPANSION
GROUP EXPANSION
(Extended operating temperature version)
Mitsubishi plans to expand the 3802 group (extended operating
temperature version) as follows:
(1) Support for mask ROM One Time PROM, and EPROM versions
ROM/PROM capacity ................................... 8 K to 32 K bytes
RAM capacity .............................................. 384 to 1024 bytes
(2) Packages
64P4B ............................................ Shrink plastic molded DIP
64P6N-A ................................................... Plastic molded QFP
Memory Expansion Plan (Extended operating temperature version)
Mass product
ROM size (bytes)
32K
M38027M8D/E8D
28K
24K
20K
Mass product
16K
M38022M4D
12K
Mass product
8K
M38022M2D
4K
192 256
384
512
640
768
896
1024
RAM size (bytes)
Fig. 6 Memory expansion plan (Extended operating temperature version)
Currently supported products are listed below.
Table 3. List of supported products (Extended operating temperature version)
(P) ROM size (bytes)
RAM size (bytes)
Package
Product
M38022M2DXXXSP
M38022M2DXXXFP
M38022M4DXXXSP
M38022M4DXXXFP
M38027M8DXXXSP
M38027E8DXXXSP
M38027E8DSP
M38027M8DXXXFP
M38027E8DXXXFP
M38027E8DFP
1-8
8192
(8062)
16384
(16254)
384
384
64P4B
64P6N-A
64P4B
64P6N-A
64P4B
32768
(32638)
1024
64P6N-A
As of May 1996
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Mask ROM version
One Time PROM version
One Time PROM version (blank)
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
FUNCTIONAL DESCRIPTION
Central Processing Unit (CPU)
Stack pointer (S)
The stack pointer is an 8-bit register used during sub-routine calls
and interrupts. The stack is used to store the current address data
and processor status when branching to subroutines or interrupt routines.
The lower eight bits of the stack address are determined by the contents of the stack pointer. The upper eight bits of the stack address
are determined by the Stack Page Selection Bit. If the Stack Page
Selection Bit is “0”, then the RAM in the zero page is used as the
stack area. If the Stack Page Selection Bit is “1”, then RAM in page
1 is used as the stack area.
The Stack Page Selection Bit is located in the SFR area in the zero
page. Note that the initial value of the Stack Page Selection Bit varies with each microcomputer type. Also some microcomputer types
have no Stack Page Selection Bit and the upper eight bits of the
stack address are fixed. The operations of pushing register contents
onto the stack and popping them from the stack are shown in Fig.7.
The 3802 group uses the standard 740 family instruction set. Refer
to the table of 740 family addressing modes and machine instructions or the SERIES 740 <Software> User´s Manual for details on
the instruction set.
Machine-resident 740 family instructions are as follows:
The FST and SLW instructions cannot be used.
The MUL, DIV, WIT and STP instruction can be used.
The central processing unit (CPU) has the six registers.
Accumulator (A)
The accumulator is an 8-bit register. Data operations such as data
transfer, etc., are executed mainly through the accumulator.
Index register X (X), Index register Y (Y)
Both index register X and index register Y are 8-bit registers. In the
index addressing modes, the value of the OPERAND is added to the
contents of register X or register Y and specifies the real address.
When the T flag in the processor status register is set to “1”, the
value contained in index register X becomes the address for the second OPERAND.
b7
Program counter (PC)
The program counter is a 16-bit counter consisting of two 8-bit registers
PCH and PCL. It is used to indicate the address of the next instruction to
be executed.
b0
Accumulator
A
b7
b0
Index Register X
X
b7
b0
Index Register Y
Y
b7
b0
Stack Pointer
S
b15
b7
PCH
b0
Program Counter
PCL
b7
b0
N V T B D I Z C Processor Status Register (PS)
Carry Flag
Zero Flag
Interrupt Disable Flag
Decimal Mode Flag
Break Flag
Index X Mode Flag
Overflow Flag
Negative Flag
Fig. 7. 740 Family CPU register structure
3802 GROUP USER’S MANUAL
1-9
HARDWARE
FUNCTIONAL DESCRIPTION
On-going Routine
Interrupt request
(Note 1)
M (S)
(PCH)
(S)
(S – 1)
M (S)
(PCL)
(S)
(S – 1)
M (S)
(PS)
(S)
(S – 1)
Execute JSR
M (S)
Store Return Address
on Stack (Note 2)
(S)
M (S)
(S)
(PCH)
(S – 1)
(PCL)
(S – 1)
Subroutine
Interrupt
Service Routine
Execute RTS
Restore Return
Address
(S)
(PCL)
Execute RTI
(S + 1)
(S)
(S + 1)
(PS)
M (S)
(S)
(S + 1)
(PCL)
M (S)
(S)
(S + 1)
(PCH)
M (S)
M (S)
(S)
(S + 1)
(PCH)
M (S)
Store Return Address
on Stack (Note 2)
Store Contents of Processor
Status Register on Stack
I Flag “0” to “1”
Fetch the Jump Vector
Restore Contents of
Processor Status Register
Restore Return
Address
Note 1 : The condition to enable the interrupt
Interrupt enable bit is “1”
Interrupt disable flag is “0”
2 : When an interrupt occurs, the address of the next instruction to be executed is stored in
the stack area. When a subroutine is called, the address one before the next instruction
to be executed is stored in the stack area.
Fig. 8. Register push and pop at interrupt generation and subroutine call
Table. 4. Push and pop instructions of accumulator or processor status register
Accumulator
Processor status register
1-10
Push instruction to stack
Pop instruction from stack
PHA
PHP
PLA
PLP
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
Processor status register (PS)
The processor status register is an 8-bit register consisting of flags
which indicate the status of the processor after an arithmetic operation. Branch operations can be performed by testing the Carry (C)
flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid.
After reset, the Interrupt disable (I) flag is set to “1”, but all other flags
are undefined. Since the Index X mode (T) and Decimal mode (D)
flags directly affect arithmetic operations, they should be initialized in
the beginning of a program.
(1) Carry flag (C)
The C flag contains a carry or borrow generated by the arithmetic
logic unit (ALU) immediately after an arithmetic operation. It can
also be changed by a shift or rotate instruction.
(2) Zero flag (Z)
The Z flag is set if the result of an immediate arithmetic operation
or a data transfer is “0”, and cleared if the result is anything other
than “0”.
(3) Interrupt disable flag (I)
The I flag disables all interrupts except for the interrupt
generated by the BRK instruction.
Interrupts are disabled when the I flag is “1”.
When an interrupt occurs, this flag is automatically set to “1” to
prevent other interrupts from interfering until the current interrupt
is serviced.
(4) Decimal mode flag (D)
The D flag determines whether additions and subtractions are
executed in binary or decimal. Binary arithmetic is executed when
this flag is “0”; decimal arithmetic is executed when it is “1”.
Decimal correction is automatic in decimal mode. Only the ADC
and SBC instructions can be used for decimal arithmetic.
(5) Break flag (B)
The B flag is used to indicate that the current interrupt was
generated by the BRK instruction. The BRK flag in the processor
status register is always “0”. When the BRK instruction is used to
generate an interrupt, the processor status register is pushed
onto the stack with the break flag set to “1”. The saved processor
status is the only place where the break flag is ever set.
(6) Index X mode flag (T)
When the T flag is “0”, arithmetic operations are performed
between accumulator and memory, e.g. the results of an
operation between two memory locations is stored in the
accumulator. When the T flag is “1”, direct arithmetic operations
and direct data transfers are enabled between memory locations,
i.e. between memory and memory, memory and I/O, and I/O and
I/O. In this case, the result of an arithmetic operation performed
on data in memory location 1 and memory location 2 is stored in
memory location 1. The address of memory location 1 is
specified by index register X, and the address of memory
location 2 is specified by normal addressing modes.
(7) Overflow flag (V)
The V flag is used during the addition or subtraction of one byte
of signed data. It is set if the result exceeds +127 to -128. When
the BIT instruction is executed, bit 6 of the memory location
operated on by the BIT instruction is stored in the overflow flag.
(8) Negative flag (N)
The N flag is set if the result of an arithmetic operation or data
transfer is negative. When the BIT instruction is executed, bit 7 of
the memory location operated on by the BIT instruction is stored
in the negative flag.
Table. 5. Set and clear instructions of each bit of processor status register
C flag
Set instruction
Clear instruction
SEC
CLC
Z flag
_
_
I flag
SEI
CLI
D flag
SED
CLD
3802 GROUP USER’S MANUAL
B flag
_
_
T flag
SET
CLT
V flag
_
CLV
N flag
_
_
1-11
HARDWARE
FUNCTIONAL DESCRIPTION
CPU Mode Register
The CPU mode register is allocated at address 003B 16. The CPU mode
register contains the stack page selection bit.
b7
b0
CPU mode register
(CPUM : address 003B16)
Processor mode bits
b1 b0
0 0 : Single-chip mode
0 1 : Memory expansion mode
1 0 : Microprocessor mode
1 1 : Not available
Stack page selection bit
0 : 0 page
1 : 1 page
Not used (return “0” when read)
Fig. 9. Structure of CPU mode register
1-12
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
Zero page
Memory
Special function register (SFR) area
The 256 bytes from addresses 0000 16 to 00FF16 are called the
zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory
and register addresses in the zero page area. Access to this area
with only 2 bytes is possible in the zero page addressing mode.
The Special Function Register area in the zero page contains control registers such as I/O ports and timers.
RAM
RAM is used for data storage and for stack area of subroutine
calls and interrupts.
Special page
ROM
The 256 bytes from addresses FF0016 to FFFF 16 are called the
special page area. The special page addressing mode can be
used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page
addressing mode.
The first 128 bytes and the last 2 bytes of ROM are reserved for
device testing and the rest is user area for storing programs.
Interrupt vector area
The interrupt vector area contains reset and interrupt vectors.
RAM area
RAM capacity
(bytes)
192
256
384
512
640
768
896
1024
Address
XXXX16
000016
SFR area
00FF16
013F16
01BF16
023F16
02BF16
033F16
03BF16
043F16
Zero page
004016
RAM
010016
XXXX16
Reserved area
044016
ROM area
ROM capacity
(bytes)
4096
8192
12288
16384
20480
24576
28672
32768
Not used
Address
YYYY16
Address
ZZZZ16
F00016
E00016
D00016
C00016
B00016
A00016
900016
800016
F08016
E08016
D08016
C08016
B08016
A08016
908016
808016
YYYY16
Reserved ROM area
(128 bytes)
ZZZZ16
ROM
FF0016
FFDC16
Interrupt vector area
FFFE16
FFFF16
Special page
Reserved ROM area
Fig. 10 Memory map diagram
3802 GROUP USER’S MANUAL
1-13
HARDWARE
FUNCTIONAL DESCRIPTION
000016
Port P0 (P0)
002016
Prescaler 12 (PRE12)
000116
Port P0 direction register (P0D)
002116
Timer 1 (T1)
000216
Port P1 (P1)
002216
Timer 2 (T2)
000316
Port P1 direction register (P1D)
002316
Timer XY mode register (TM)
000416
Port P2 (P2)
002416
Prescaler X (PREX)
000516
Port P2 direction register (P2D)
002516
Timer X (TX)
000616
Port P3 (P3)
002616
Prescaler Y (PREY)
000716
Port P3 direction register (P3D)
002716
Timer Y (TY)
000816
Port P4 (P4)
002816
000916
Port P4 direction register (P4D)
002916
000A16
Port P5 (P5)
002A16
000B16
Port P5 direction register (P5D)
002B16
PWM control register (PWMCON)
000C16
Port P6 (P6)
002C16
PMW prescaler (PREPWM)
000D16
Port P6 direction register (P6D)
002D16
PWM register (PWM)
000E16
002E16
000F16
002F16
001016
003016
001116
003116
001216
003216
001316
003316
001416
003416
AD/DA control register (ADCON)
001516
003516
A-D conversion register (AD)
001616
003616
D-A1 conversion register (DA1)
001716
003716
D-A2 conversion register (DA2)
001816
Transmit/Receive buffer register (TB/RB)
003816
001916
Serial I/O1 status register (SIO1STS)
003916
001A16
Serial I/O1 control register (SIO1CON)
003A16
Interrupt edge selection register
001B16
UART control register (UARTCON)
003B16
CPU mode register (CPUM)
001C16
Baud rate generator (BRG)
003C16
Interrupt request register 1(IREQ1)
001D16
Serial I/O2 control register (SIO2CON)
003D16
Interrupt request register 2(IREQ2)
001E16
001F16
Serial I/O2 register (SIO2)
003E16
Interrupt control register 1(ICON1)
003F16
Interrupt control register 2(ICON2)
Fig. 11 Memory map of special function register (SFR)
1-14
(INTEDGE)
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
I/O Ports
Direction registers
The 3802 group has 56 programmable I/O pins arranged in seven
I/O ports (ports P0 to P6). The I/O ports have direction registers
which determine the input/output direction of each individual pin.
Each bit in a direction register corresponds to one pin, each pin
can be set to be input port or output port.
When “0” is written to the bit corresponding to a pin, that pin becomes an input pin. When “1” is written to that bit, that pin becomes an output pin.
If data is read from a pin which is set to output, the value of the
port output latch is read, not the value of the pin itself. Pins set to
input are floating. If a pin set to input is written to, only the port
output latch is written to and the pin remains floating.
Table 6. list of I/O port functions
Pin
Name
Input/Output
P00 –P07
Port P0
Input/output,
individual bits
P10 –P17
Port P1
Input/output,
individual bits
P20 –P27
Port P2
Input/output,
individual bits
Port P3
Input/output,
individual bits
P30/DA1
P31/DA2
P32 –P37
P40 /INT4 ,
P41 /INT0 ,
P43 /INT2
P44/RXD,
P45/TXD,
P46 /SCLK1 ,
P47/SRDY1
P50 /SIN2 ,
P51 /SOUT2,
P52 /SCLK2 ,
P53/SRDY2
P54 /CNTR0 ,
P55 /CNTR1
P56 /PWM
P57 /INT3
P60 /AN0–
P67 /AN7
Port P4
Port P5
Port P6
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
I/O Format
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
Non-Port Function
Related SFRs
Address low-order byte
output
CPU mode register
Address high-order
byte output
CPU mode register
Data bus I/O
CPU mode register
D-A conversion output
AD/DA control register
CPU mode register
CPU mode register
Control signal I/O
External interrupt input
Interrupt edge selection
register
Serial I/O1 function I/O
Serial I/O1 control
register
UART control register
Serial I/O2 function I/O
Serial I/O2 control
register
Timer X and Timer Y
function I/O
PWM output
External interrupt input
A-D conversion input
Ref.No.
(1)
(2)
(1)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
Timer XY mode register
(12)
PWM control register
Interrupt edge selection register
(13)
(3)
(14)
Note 1: For details of the functions of ports P0 to P3 in modes other than single-chip mode, and how to use double-function ports as function I/O ports, refer to the applicable sections.
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.
3802 GROUP USER’S MANUAL
1-15
HARDWARE
FUNCTIONL DESCRIPTION
(1) Ports P0, P1, P2, P32–P37
(2) Ports P30, P31
Direction register
Direction register
Port latch
Data bus
Port latch
Data bus
D–A conversion output
DA1 output enable bit (P3 0)
DA2 output enable bit (P3 1)
(3) Ports P40–P43, P57
(4) Port P44
Serial I/O1 enable bit
Receive enable bit
Direction register
Direction register
Port latch
Data bus
Port latch
Data bus
Interrupt input
Serial I/O1 input
(5) Port P45
(6) Port P46
Serial I/O1 synchronous
clock selection bit
Serial I/O1 enable bit
P45/TXD P-channel output disable bit
Serial I/O1 enable bit
Transmit enable bit
Serial I/O1 mode selection bit
Serial I/O1 enable bit
Direction register
Direction register
Port latch
Data bus
Port latch
Data bus
Serial I/O1 output
Serial I/O1 clock output
(7) Port P47
(8) Port P50
Serial I/O1 mode selection bit
Serial I/O1 enable bit
SRDY1 output enable bit
Direction register
Direction register
Data bus
Data bus
Port latch
Port latch
Serial I/O2 input
Serial I/O1 ready output
Fig. 12 Port block diagram (single-chip mode) (1)
1-16
3802 GROUP USER’S MANUAL
Serial I/O1
external
clock input
HARDWARE
FUNCTIONAL DESCRIPTION
(9) Port P51
(10) Port P52
P51/SOUT2 P-channel output disable bit
Serial I/O2
synchronous clock selection bit
Serial I/O2 port selection bit
Serial I/O2 transmit end signal
Serial I/O2 port selection bit
Direction register
Direction register
Port latch
Data bus
Port latch
Data bus
Serial I/O2 clock output
Serial I/O2 output
Serial I/O2 external clock input
(11) Port P53
(12) Ports P54, 55
SRDY2 output enable bit
Direction register
Direction register
Data bus
Port latch
Port latch
Data bus
Pulse output mode
Serial I/O2 ready output
Timer output
CNTR0, CNTR1
Interrupt input
(13) Port P56
(14) Port P6
PWM output enable bit
Direction register
Direction register
Data bus
Data bus
Port latch
Port latch
A-D conversion input
PWM output
Analog input pin selection bit
Fig. 13 Port block diagram (single-chip mode) (2)
3802 GROUP USER’S MANUAL
1-17
HARDWARE
FUNCTIONAL DESCRIPTION
INTERRUPTS
Interrupt operation
Interrupts occur by sixteen sources: seven external, eight internal,
and one software.
When an interrupt is received, the contents of the program counter
and processor status register are automatically stored into the
stack. The interrupt disable flag is set to inhibit other interrupts
from interfering.The corresponding interrupt request bit is cleared
and the interrupt jump destination address is read from the vector
table into the program counter.
Interrupt control
Each interrupt is controlled by an interrupt request bit, an interrupt
enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are “1” and the interrupt disable flag is “0”.
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be
set by software.
The BRK instruction cannot be disabled with any flag or bit. The I
(interrupt disable) flag disables all interrupts except the BRK instruction interrupt.
When several interrupts occur at the same time, the interrupts are
received according to priority.
Notes on use
When the active edge of an external interrupt (INT 0 to INT 4 ,
CNTR0 , or CNTR1 ) is changed, the corresponding interrupt request bit may also be set. Therefore, please take following sequence;
(1) Disable the external interrupt which is selected.
(2) Change the active edge selection.
(3) Clear the interrupt request bit which is selected to “0”.
(4) Enable the external interrupt which is selected.
Table 7. Interrupt vector addresses and priority
Reset (Note 2)
1
INT 0
2
FFFB16
FFFA16
INT 1
3
FFF916
FFF816
Serial I/O1
reception
4
FFF716
FFF616
Serial I/O1
transmission
5
FFF516
FFF416
Timer X
Timer Y
Timer 1
Timer 2
6
7
8
9
FFF316
FFF116
FFEF16
FFED16
FFF216
FFF016
FFEE 16
FFEC16
CNTR 0
10
FFEB 16
FFEA 16
CNTR 1
11
FFE916
FFE816
Serial I/O2
12
FFE716
FFE616
INT 2
13
FFE516
FFE416
INT 3
14
FFE316
FFE216
INT 4
15
FFE116
FFE016
A-D converter
16
FFDF 16
FFDE16
Interrupt Request
Generating Conditions
At reset
At detection of either rising or
falling edge of INT0 input
At detection of either rising or
falling edge of INT1 input
At completion of serial I/O1
data reception
At completion of serial I/O1
transfer shift or when
transmission buffer is empty
At timer X underflow
At timer Y underflow
At timer 1 underflow
At timer 2 underflow
At detection of either rising or
falling edge of CNTR0 input
At detection of either rising or
falling edge of CNTR1 input
At completion of serial I/O2
data transfer
At detection of either rising or
falling edge of INT2 input
At detection of either rising or
falling edge of INT3 input
At detection of either rising or
falling edge of INT4 input
At completion of A-D conversion
BRK instruction
17
FFDD 16
FFDC16
At BRK instruction execution
Interrupt Source
Priority
Vector Addresses (Note 1)
High
Low
FFFD 16
FFFC 16
Note 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.
1-18
3802 GROUP USER’S MANUAL
Remarks
Non-maskable
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O1 is selected
Valid when serial I/O1 is selected
STP release timer underflow
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O2 is selected
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Non-maskable software interrupt
HARDWARE
FUNCTIONAL DESCRIPTION
Interrupt request bit
Interrupt enable bit
Interrupt disable flag (I)
BRK instruction
Reset
Interrupt request
Fig. 14 Interrupt control
b7
b0 Interrupt edge selection register
(INTEDGE : address 003A16)
INT0 active edge selection bit
INT1 active edge selection bit
Not used (returns “0” when read)
INT2 active edge selection bit
INT3 active edge selection bit
INT4 active edge selection bit
Not used (returns “0” when read)
b7
0 : Falling edge active
1 : Rising edge active
b0 Interrupt request register 1
(IREQ1 : address 003C16)
b7
b0 Interrupt request register 2
(IREQ2 : address 003D16)
CNTR0 interrupt request bit
CNTR1 interrupt request bit
Serial I/O2 interrupt request bit
INT2 interrupt request bit
INT3 interrupt request bit
INT4 interrupt request bit
AD converter interrupt request bit
Not used (returns “0” when read)
INT0 interrupt request bit
INT1 interrupt request bit
Serial I/O1 receive interrupt request bit
Serial I/O1 transmit interrupt request bit
Timer X interrupt request bit
Timer Y interrupt request bit
Timer 1 interrupt request bit
Timer 2 interrupt request bit
0 : No interrupt request issued
1 : Interrupt request issued
b7
b0 Interrupt control register 1
(ICON1 : address 003E16)
b7
INT0 interrupt enable bit
INT1 interrupt enable bit
Serial I/O1 receive interrupt enable bit
Serial I/O1 transmit interrupt enable bit
Timer X interrupt enable bit
Timer Y interrupt enable bit
Timer 1 interrupt enable bit
Timer 2 interrupt enable bit
b0 Interrupt control register 2
(ICON2 : address 003F16)
CNTR0 interrupt enable bit
CNTR1 interrupt enable bit
Serial I/O2 interrupt enable bit
INT2 interrupt enable bit
INT3 interrupt enable bit
INT4 interrupt enable bit
AD converter interrupt enable bit
Not used (returns “0” when read)
(Do not write “1” to this bit)
0 : Interrupts disabled
1 : Interrupts enabled
Fig. 15 Structure of interrupt-related registers
3802 GROUP USER’S MANUAL
1-19
HARDWARE
FUNCTIONAL DESCRIPTION
Timers
Timer 1 and Timer 2
The 3802 group has four timers: timer X, timer Y, timer 1, and timer
2.
All timers are count down. When the timer reaches “0016 ”, an underflow occurs at the next count pulse and the corresponding
timer latch is reloaded into the timer and the count is continued.
When a timer underflows, the interrupt request bit corresponding
to that timer is set to “1”.
The division ratio of each timer or prescaler is given by 1/(n + 1),
where n is the value in the corresponding timer or prescaler latch.
The count source of prescaler 12 is the oscillation frequency divided by 16. The output of prescaler 12 is counted by timer 1 and
timer 2, and a timer underflow sets the interrupt request bit.
b7
b0
Timer XY mode register
(TM : address 002316)
Timer X operating mode bit
b1b0
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR0 active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
Timer X count stop bit
0: Count start
1: Count stop
Timer Y operating mode bit
b4b5
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR1 active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
Timer Y count stop bit
0: Count start
1: Count stop
Timer X and Timer Y
Timer X and Timer Y can each be selected in one of four operating
modes by setting the timer XY mode register.
Timer Mode
The timer counts f(XIN)/16 in timer mode.
Pulse Output Mode
Timer X (or timer Y) counts f(XIN )/16. Whenever the contents of
the timer reach “0016 ”, the signal output from the CNTR0 (or
CNTR 1 ) pin is inverted. If the CNTR 0 (or CNTR1 ) active edge
switch bit is “0”, output begins at “ H”.
If it is “1”, output starts at “L”. When using a timer in this mode, set
the corresponding port P54 ( or port P5 5) direction register to output mode.
Event Counter Mode
Operation in event counter mode is the same as in timer mode,
except the timer counts signals input through the CNTR 0 or
CNTR1 pin.
Pulse Width Measurement Mode
If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer
counts at the oscillation frequency divided by 16 while the CNTR0
(or CNTR1 ) pin is at “H”. If the CNTR0 (or CNTR1 ) active edge
switch bit is “1”, the count continues during the time that the
CNTR0 (or CNTR1 ) pin is at “L”.
In all of these modes, the count can be stopped by setting the
timer X (timer Y) count stop bit to “1”. Every time a timer
underflows, the corresponding interrupt request bit is set.
Fig. 16 Structure of timer XY register
1-20
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
Data bus
Oscillator
Divider
f(XIN )
1/16
Pulse width
measurement
mode
P54/CNTR0 pin
CNTR0 active
edge switch bit
“0”
Timer X latch (8)
Prescaler X (8)
Timer X (8)
Event
counter
mode
Timer X count stop bit
CNTR0 active
edge switch
bit
Q
“1”
“0”
Port P5 4
latch
Toggle flip- flop
Q
Timer X latch write pulse
Pulse output mode
Data bus
Pulse width
measurement
mode
CNTR1 active
edge switch bit
“0”
Prescaler Y latch (8)
Timer Y latch (8)
Prescaler Y (8)
Timer Y (8)
Timer mode
Pulse output
mode
Event
counter
mode
To timer Y interrupt
request bit
Timer Y count stop bit
To CNTR 1 interrupt
request bit
“1”
CNTR1 active
edge switch
bit
Q
“1”
Port P55
direction register
T
R
Pulse output
mode
P55/CNTR1 pin
To timer X interrupt
request bit
To CNTR 0 interrupt
request bit
“1”
Port P54
direction register
Prescaler X latch (8)
Timer mode
Pulse output
mode
Port P5 5
latch
“0”
Toggle flip- flop
Q
T
R
Timer Y latch write pulse
Pulse output mode
Pulse output
mode
Data bus
Prescaler
12 latch (8)
Timer 1 latch (8)
Timer 2 latch (8)
Prescaler 12 (8)
Timer 1 (8)
Timer 2 (8)
To timer 2 interrupt
request bit
To timer 1 interrupt
request bit
Fig. 17 Block diagram of timer X, timer Y, timer 1, and timer 2
3802 GROUP USER’S MANUAL
1-21
HARDWARE
FUNCTIONAL DESCRIPTION
Serial I/O
Serial I/O1
Clock synchronous serial I/O mode
Clock synchronous serial I/O1 mode can be selected by setting
the mode selection bit of the serial I/O1 control register to “1”.
For clock synchronous serial I/O1, the transmitter and the receiver
must use the same clock. If an internal clock is used, transfer is
started by a write signal to the TB/RB (address 001816).
Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for
baud rate generation.
Data bus
Serial I/O1 control register
Address 0018 16
Receive buffer
Receive interrupt request (RI)
Receive shift register
P44/RXD
Address 001A 16
Receive buffer full flag (RBF)
Shift clock
Clock control circuit
P46/SCLK1
f(X
IN)
XIN
Serial I/O1 synchronous
clock selection bit
Frequency division ratio 1/(n+1)
BRG count source selection bit
Baud rate generator
Address 001C 16
1/4
P47/SRDY1
F/F
1/4
Clock control circuit
Falling-edge detector
Shift clock
P45/TXD
Transmit shift completion flag (TSC)
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Transmit shift register
Transmit buffer
Transmit buffer empty flag (TBE)
Serial I/O1 status register
Address 0019 16
Address 0018 16
Data bus
Fig. 18 Block diagram of clock synchronous serial I/O1
Transfer shift clock
(1/2 to 1/2048 of the internal
clock, or an external clock)
Serial output TxD
D0
D1
D2
D3
D4
D5
D6
D7
Serial input RxD
D0
D1
D2
D3
D4
D5
D6
D7
Receive enable signal SRDY1
Write pulse to receive/transmit
buffer (address 0018 16)
TBE = 0
TBE = 1
TSC = 0
RBF = 1
TSC = 1
Overrun error (OE)
detection
Notes 1 : The transmit interrupt (TI) can be selected to occur either when the transmit buffer has emptied (TBE=1) or after the
transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1
control register.
2 : If data is written to the transmit buffer when TSC=0, the transmit clock is generated continuously and serial data is
output continuously from the TxD pin.
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .
Fig. 19 Operation of clock synchronous serial I/O1 function
1-22
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
Asynchronous serial I/O (UART) mode
two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is
written to the transmit buffer, and receive data is read from the receive buffer.
The transmit buffer can also hold the next data to be transmitted,
and the receive buffer can hold a character while the next character is being received.
Clock asynchronous serial I/O mode (UART) can be selected by
clearing the serial I/O mode selection bit of the serial I/O control
register to “0”.
Eight serial data transfer formats can be selected, and the transfer
formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but the
Data bus
Address 0018 16
Serial I/O1 control register Address 001A16
Receive buffer
OE
Character length selection bit
P44/RXD
STdetector
7 bits
Receive buffer full flag (RBF)
Receive interrupt request (RI)
Receive shift register
1/16
8 bits
PE FE
SP detector
Clock control circuit
UART control register
Address 001B16
Serial I/O1 synchronous clock selection bit
P46/SCLK1
f(XIN)
BRG count source selection bit Frequency division ratio 1/(n+1)
Baud rate generator
Address 001C 16
1/4
ST/SP/PA generator
Transmit shift completion flag (TSC)
1/16
Transmit shift register
P45/TXD
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Character length selection bit
Transmit buffer
Address 001816
Transmit buffer empty flag (TBE)
Serial I/O1 status register Address 001916
Data bus
Fig. 20 Block diagram of UART serial I/O
3802 GROUP USER’S MANUAL
1-23
HARDWARE
FUNCTIONAL DESCRIPTION
Transmit or receive clock
Transmit buffer write
signal
TBE=0
TSC=0
TBE=1
Serial output TXD
TBE=0
TSC=1✽
TBE=1
ST
D0
D1
SP
ST
D0
Receive buffer read
signal
SP
D1
✽
1 start bit
7 or 8 data bit
1 or 0 parity bit
1 or 2 stop bit (s)
Generated at 2nd bit in 2-stop-bit mode
RBF=0
RBF=1
Serial input RXD
ST
D0
D1
SP
RBF=1
ST
D0
D1
SP
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception).
2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt
source selection bit (TIC) of the serial I/O control register.
3: The receive interrupt (RI) is set when the RBF flag becomes "1".
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.
Fig. 21 Operation of UART serial I/O function
Serial I/O1 control register (SIO1CON) 001A16
The serial I/O control register consists of eight control bits for the
serial I/O function.
UART control register (UARTCON) 001B16
The UART control register consists of four control bits (bits 0 to 3)
which are valid when asynchronous serial I/O is selected and set
the data format of an data transfer. One bit in this register (bit 4) is
always valid and sets the output structure of the P45/T XD pin.
Serial I/O1 status register (SIO1STS) 001916
The read-only serial I/O1 status register consists of seven flags
(bits 0 to 6) which indicate the operating status of the serial I/O
function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to “0” when the receive
buffer is read.
If there is an error, it is detected at the same time that data is
transferred from the receive shift register to the receive buffer, and
the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, re-
1-24
spectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of
the Serial I/O Control Register) also clears all the status flags, including the error flags.
All bits of the serial I/O1 status register are initialized to “0” at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to “1”, the transmit shift completion flag (bit 2)
and the transmit buffer empty flag (bit 0) become “1”.
Transmit buffer/Receive buffer register (TB/
RB) 001816
The transmit buffer and the receive buffer are located at the same
address. The transmit buffer is write-only and the receive buffer is
read-only. If a character bit length is 7 bits, the MSB of data stored
in the receive buffer is “0”.
Baud rate generator (BRG) 001C16
The baud rate generator determines the baud rate for serial transfer.
The baud rate generator divides the frequency of the count source
by 1/(n + 1), where n is the value written to the baud rate generator.
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
b7
b0
b7
Serial I/O1 status register
(SIO1STS : address 0019 16)
Transmit buffer empty flag (TBE)
0: Buffer full
1: Buffer empty
Transmit shift completion flag (TSC)
0: Transmit shift in progress
1: Transmit shift completed
SRDY1 output enable bit (SRDY)
0: P4 7 pin operates as ordinaly I/O pin
1: P4 7 pin operates as S RDY1 output pin
Overrun error flag (OE)
0: No error
1: Overrun error
Transmit interrupt source selection bit (TIC)
0: Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Parity error flag (PE)
0: No error
1: Parity error
Transmit enable bit (TE)
0: Transmit disabled
1: Transmit enabled
Framing error flag (FE)
0: No error
1: Framing error
Receive enable bit (RE)
0: Receive disabled
1: Receive enabled
Summing error flag (SE)
0: (OE) U (PE) U (FE)=0
1: (OE) U (PE) U (FE)=1
Serial I/O1 mode selection bit (SIOM)
0: Asynchronous serial I/O (UART)
1: Clock synchronous serial I/O
Not used (returns "1" when read)
b0
Serial I/O1 control register
(SIO1CON : address 001A 16)
BRG count source selection bit (CSS)
0: f(X IN)
1: f(X IN)/4
Serial I/O1 synchronous clock selection bit (SCS)
0: BRG output divided by 4 when clock synchronous
serial I/O is selected, BRG output divided by 16
when UART is selected.
1: External clock input when clock synchronous serial
I/O is selected, external clock input divided by 16
when UART is selected.
Receive buffer full flag (RBF)
0: Buffer empty
1: Buffer full
b7
b0
Serial I/O enable bit (SIOE)
0: Serial I/O disabled
(pins P4 4 to P4 7 operate as ordinary I/O pins)
1: Serial I/O enabled
(pins P4 4 to P4 7 operate as serial I/O pins)
UART control register
(UARTCON : address 001B 16)
Character length selection bit (CHAS)
0: 8 bits
1: 7 bits
Parity enable bit (PARE)
0: Parity checking disabled
1: Parity checking enabled
Parity selection bit (PARS)
0: Even parity
1: Odd parity
Stop bit length selection bit (STPS)
0: 1 stop bit
1: 2 stop bits
P45/TXD P-channel output disable bit (POFF)
0: CMOS output (in output mode)
1: N-channel open drain output (in output mode)
Not used (return "1" when read)
Fig. 22 Structure of serial I/O control registers
3802 GROUP USER’S MANUAL
1-25
HARDWARE
FUNCTIONAL DESCRIPTION
Serial I/O2
b7
b0
The serial I/O2 function can be used only for clock synchronous
serial I/O.
For clock synchronous serial I/O the transmitter and the receiver
must use the same clock. If the internal clock is used, transfer is
started by a write signal to the serial I/O2 register.
Serial I/O2 control register
(SIO2CON : address 001D16)
Internal synchronous clock selection bits
b2 b1 b0
0 0 0: f(XIN)/8
0 0 1: f(XIN)/16
0 1 0: f(XIN)/32
0 1 1: f(XIN)/64
1 1 0: f(XIN)/128
1 1 1: f(XIN)/256
Serial I/O2 control register (SIO2CON) 001D16
The serial I/O2 control register contains seven bits which control
various serial I/O functions.
Serial I/O2 port selection bit (SM23)
0: I/O port
1: SOUT2,SCLK2 output pin
SRDY2 output enable bit (SM24)
0: I/O port
1: SRDY2 output pin
Transfer direction selection bit (SM25)
0: LSB first
1: MSB first
Serial I/O2 synchronous clock selection bit (SM26)
0: External clock
1: Internal clock
P51/SOUT2 P-channel output disable bit
0: CMOS output (in output mode)
1: N-channel open-drain output (in output mode)
Fig. 23 Structure of serial I/O2 control register
1/8
Divider
1/16
XIN
Internal synchronous
clock selection bits
1/32
Data bus
1/64
1/128
1/256
P53 latch
Serial I/O2 synchronous
clock selection bit
P53/SRDY2
SRDY2
"1"
Synchronization circuit
"1"
SRDY2 output enable bit
SCLK2
"0"
"0"
External clock
P52 latch
"0"
P52/SCLK2
"1"
Serial I/O2 port selection bit
Serial I/O counter 2 (3)
P51 latch
"0"
P51/SOUT2
"1"
Serial I/O2 port selection bit
P50/SIN2
Serial I/O shift register 2 (8)
Fig. 24 Block diagram of serial I/O2 function
1-26
3802 GROUP USER’S MANUAL
Serial I/O2
interrupt request
HARDWARE
FUNCTIONAL DESCRIPTION
Transfer clock (Note 1)
Serial I/O2 register
write signal
(Note 2)
Serial I/O2 output S OUT2
D0
D1
D2
D3
D4
D5
D6
D7
Serial I/O2 input S IN2
Receive enable signal SRDY2
Serial I/O2 interrupt request bit set
Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial
I/O2 control register.
2: When the internal clock is selected as the transfer clock, the S OUT2 pin goes to high impedance after transfer completion.
Fig. 25 Timing of serial I/O2 function
3802 GROUP USER’S MANUAL
1-27
HARDWARE
FUNCTIONAL DESCRIPTION
PULSE WIDTH MODULATION (PWM)
PWM Operation
The 3802 group has a PWM function with an 8-bit resolution,
based on a signal that is the clock input XIN or that clock input divided by 2.
When bit 0 (PWM enable bit) of the PWM control register is set to
“1”, operation starts by initializing the PWM output circuit, and
pulses are output starting at an “H”.
If the PWM register or PWM prescaler is updated during PWM
output, the pulses will change in the cycle after the one in which
the change was made.
Data Setting
The PWM output pin also functions as port P56. Set the PWM period by the PWM prescaler, and set the period during which the
output pulse is an “H” by the PWM register.
If the value in the PWM prescaler is n and the value in the PWM
register is m (where n = 0 to 255 and m = 0 to 255) :
PWM period = 255 ✕ (n+1)/f(XIN)
= 51 ✕ (n+1) µs (when X IN = 5 MHz)
Output pulse “H” period = PWM period ✕ m/255
= 0.2 ✕ (n+1) ✕ m µs
(when XIN = 5 MHz)
51 ✕ m ✕ (n+1)
µs
255
PWM output
T = [51 ✕ (n+1)] µs
m: Contents of PWM register
n : Contents of PWM prescaler
T : PWM cycle (when X IN = 5 MHz)
Fig. 26 Timing of PWM cycle
Data bus
PWM
prescaler pre-latch
PWM
register pre-latch
Transfer control circuit
PWM
prescaler latch
PWM
register latch
PWM prescaler
PWM register
Count source
selection bit
“0”
X IN
1/2
Port P56
“1”
Port P56 latch
PWM enable bit
Fig. 27 Block diagram of PWM function
1-28
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
b7
b0
PWM control register
(PWMCON : address 002B 16)
PWM function enable bit
0: PWM disabled
1: PWM enabled
Count source selection bit
0: f(XIN)
1: f(XIN)/2
Not used (return “0” when read)
Fig. 28 Structure of PWM control register
A
B
B = C
T2
T
C
PWM output
T
PWM register
write signal
PWM prescaler
write signal
T
T2
(Changes from “A” to “B” during “H” period)
(Changes from “T” to “T2” during PWM period)
When the contents of the PWM register or PWM prescaler have changed, the PWM
output will change from the next period after the change.
Fig. 29 PWM output timing when PWM register or PWM prescaler is changed
3802 GROUP USER’S MANUAL
1-29
HARDWARE
FUNCTIONAL DESCRIPTION
A-D Converter
[Comparator and Control circuit]
The functional blocks of the A-D converter are described below.
The comparator and control circuit compares an analog input voltage with the comparison voltage, then stores the result in the A-D
conversion register. When an A-D conversion is complete, the
control circuit sets the AD conversion completion bit and the AD
interrupt request bit to “1”.
Note that the comparator is constructed linked to a capacitor, so
set f(XIN) to 500 kHz or more during an A-D conversion.
[A-D conversion register]
The A-D conversion register is a read-only register that stores the
result of an A-D conversion. When reading this register during an
A-D conversion, the previous conversion result is read.
[AD/DA control register]
The AD/DA control register controls the A-D conversion process.
Bits 0 to 2 select a specific analog input pin. Bit 3 signals the
completion of an A-D conversion. The value of this bit remains at
“0” during an A-D conversion, and changes to “1” when an A-D
conversion ends. Writing “0” to this bit starts the A-D conversion.
Bits 6 and 7 are used to control the output of the D-A converter.
b7
b0
AD/DA control register
(ADCON : address 0034 16)
Analog input pin selection bits
b2 b1 b0
0
0
0
0
1
1
1
1
[Comparison voltage generator]
The comparison voltage generator divides the voltage between
AVSS and VREF into 256, and outputs the divided voltages.
[Channel selector]
The channel selector selects one of the ports P6 0/AN0 to P67 /AN7,
and inputs the voltage to the comparator.
0
0
1
1
0
0
1
1
0: P60/AN0
1: P61/AN1
0: P62/AN2
1: P63/AN3
0: P64/AN4
1: P65/AN5
0: P66/AN6
1: P67/AN7
AD conversion completion bit
0: Conversion in progress
1: Conversion completed
Not used (return "0" When read)
DA1 output enable bit
0: DA1 output disabled
1: DA1 output enabled
DA2 output enable bit
0: DA2 output disabled
1: DA2 output enabled
Fig.30 Structure of AD/DA control register
Data bus
AD/DA control register
(Address 0034 16)
b7
b0
3
A-D control circuit
Channel selector
P60/AN0
P61/AN 1
P62/AN 2
P63/AN 3
P64/AN 4
P65/AN 5
P66/AN 6
P67/AN 7
Comparator
A-D interrupt request
A-D conversion register (Address 0035 16 )
8
Resistor ladder
VREF AV SS
Fig. 31 Block diagram of A-D converter
1-30
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
D-A Converter
The 3802 group has two internal D-A converters (DA1 and DA2)
with 8-bit resolutions.
The D-A converter is performed by setting the value in the D-A
conversion register. The result of D-A converter is output from the
DA 1 or DA2 pin by setting the DA output enable bit to “1”.
When using the D-A converter, the corresponding port direction
register bit (P30 /DA1 or P31/DA 2 ) should be set to “0” (input status).
The output analog voltage V is determined by the value n (base
10) in the D-A conversion register as follows:
Data bus
D-A1 conversion register (8)
V = VREF ✕ n/256 (n = 0 to 255)
Where VREF is the reference voltage.
R-2R resistor ladder
DA1 output enable bit
P30/DA1
D-A2 conversion register (8)
At reset, the D-A conversion registers are cleared to “0016 ”, the DA
output enable bits are cleared to “0”, and the P3 0/DA1 and P31 /
DA 2 pins are set to input (high impedance).
The D-A output is not buffered, so connect an external buffer when
driving a low-impedance load.
Set VCC to 3.0 V or more when using the D-A converter.
R-2R resistor ladder
DA2 output enable bit
P31/DA2
Fig. 32 Block diagram of D-A converter
"0" DA1 output enable bit
R
P30/DA1
"1"
2R
R
2R
R
2R
R
2R
MSB
D-A1 conversion
register
"0"
R
2R
R
2R
R
2R
2R
2R
LSB
"1"
AV SS
VREF
Fig. 33 Equivalent connection circuit of D-A converter
3802 GROUP USER’S MANUAL
1-31
HARDWARE
FUNCTIONAL DESCRIPTION
Reset Circuit
To reset the microcomputer, the RESET pin should be held at an
“L” level for 2 µs or more. Then the RESET pin is returned to an “H”
level (the power source voltage should be between 4.0 V and 5.5
V), reset is released. Internal operation begin until after 8 to 13 XIN
clock cycles are completed. After the reset is completed, the program starts from the address contained in address FFFD 16 (highorder byte) and address FFFC16 (low-order byte).
Make sure that the reset input voltage is less than 0.6 V for VCC of
3.0 V (Extended operating temperature version : the reset input
voltage is less than 0.8 V for VCC of 4.0 V).
4.0V
Power source
0V
voltage
0.8V
Reset input
0V
voltage
VCC
1
5
M51953AL
3
RESET
4
0.1 µ F
VSS
3802 group
Fig. 34 Example of reset circuit
Address
Register contents
(1) Port P0 direction register
(000116) · · ·
0016
(2) Port P1 direction register
(000316) · · ·
0016
(3) Port P2 direction register
(000516) · · ·
0016
(4) Port P3 direction register
(000716) · · ·
0016
(5) Port P4 direction register
(000916) · · ·
0016
(6) Port P5 direction register
(000B16) · · ·
0016
(7) Port P6 direction register
(000D16) · · ·
0016
(8) Serial I/O1 status register
(001916) · · · 1 0 0 0 0 0 0 0
(9) Serial I/O1 control register
(001A16) · · ·
(10) UART control register
(001B16) · · · 1 1 1 0 0 0 0 0
(11) Serial I/O2 control register
(001D16) · · ·
0016
(12) Prescaler 12
(002016) · · ·
FF16
(13) Timer 1
(002116) · · ·
0116
(14) Timer 2
(002216) · · ·
FF16
(15) Timer XY mode register
(002316) · · ·
0016
(16) Prescaler X
(002416) · · ·
FF16
(17) Timer X
(002516) · · ·
FF16
(18) Prescaler Y
(002616) · · ·
FF16
(19) Timer Y
(002716) · · ·
FF16
(20) PWM control register
(002B16) · · ·
0016
(21) AD/DA control register
(003416) · · · 0 0 0 0 1 0 0 0
(22) D-A1 conversion register
(003616) · · ·
0016
(23) D-A2 conversion register
(003716) · · ·
0016
(24) Interrupt edge selection register (003A16) · · ·
0016
0016
(25) CPU mode register
(003B16) · · · 0 0 0 0 0 0 ✽ 0
(26) Interrupt request register 1
(003C16) · · ·
0016
(27) Interrupt request register 2
(003D16) · · ·
0016
(28) Interrupt control register 1
(003E16) · · ·
0016
(29) Interrupt control register 2
(003F16) · · ·
0016
(30) Processor status register
(31) Program counter
(PS) ✕ ✕ ✕ ✕ ✕ 1 ✕ ✕
(PCH) Contents of address FFFD16
(PCL) Contents of address FFFC16
Note. ✕ : Undefined
✽ : The initial values of CM 1 are determined by the level at the
CNVSS pin.
The contents of all other registers and RAM are undefined
after a reset, so they must be initialized by software.
Fig. 35 Internal status of microcomputer after reset
1-32
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION
XIN
φ
RESET
RESETOUT
(internal reset)
SYNC
Address
?
?
?
?
?
FFFC
FFFD
ADH, ADL
Reset address from the vector table
?
Data
XIN: 8 to 13 clock cycles
?
?
?
?
ADL
ADH
Notes 1: f(XIN) and f(φ) are in the relationship: f(X IN)=2 • f(φ).
2: A question mark (?) indicates an undefined status that depends on the previous status.
Fig. 36 Timing of reset
3802 GROUP USER’S MANUAL
1-33
HARDWARE
FUNCTIONAL DESCRIPTION
Clock Generating Circuit
An oscillation circuit can be formed by connecting a resonator between XIN and X OUT. To supply a clock signal externally, input it to
the X IN pin and make the XOUT pin open.
When the STP status is released, prescaler 12 and timer 1 will
start counting and reset will not be released until timer 1
underflows, so set the timer 1 interrupt enable bit to “0” before the
STP instruction is executed.
Oscillation control
Stop Mode
If the STP instruction is executed, the internal clock φ stops at an
“H”. Timer 1 is set to “01 16” and prescaler 12 is set to “FF 16”.
Oscillator restarts when an external interrupt is received, but the
internal clock φ remains at an “H” until timer 1 underflow.
This allows time for the clock circuit oscillation to stabilize.
If oscillator is restarted by a reset, no wait time is generated, so
keep the RESET pin at an “L” level until oscillation has stabilized.
Wait Mode
If the WIT instruction is executed, the internal clock φ stops at an
“H” level, but the oscillator itself does not stop. The internal clock
restarts if a reset occurs or when an interrupt is received.
Since the oscillator does not stop, normal operation can be started
immediately after the clock is restarted.
To ensure that interrupts will be received to release the STP or
WIT state, interrupt enable bits must be set to “1” before the STP
or WIT instruction is executed.
XIN
XOUT
CIN
COUT
Fig. 37 Ceramic resonator circuit
XIN
XOUT
Open
Vcc
External oscillation
circuit
Vss
Fig. 38 External clock input circuit
Interrupt request
Interrupt disable
flag (I)
S
Q
S
Q
Q
Reset
S
Reset
R
STP instruction
WIT
instruction
R
STP instruction
R
φ output
Internal clock φ
ONW pin
Single-chip mode
ONW
control
1/2
1/8
Prescaler 12
Timer 1
Rd
FF16
Rf
XIN
X OUT
Fig. 39 Block diagram of clock generating circuit
1-34
3802 GROUP USER’S MANUAL
0116
Reset or STP instruction
HARDWARE
FUNCTIONAL DESCRIPTION
Processor Modes
Single-chip mode, memory expansion mode, and microprocessor
mode can be selected by changing the contents of the processor
mode bits CM 0 and CM 1 (bits 0 and 1 of address 003B 16). In
memory expansion mode and microprocessor mode, memory can
be expanded externally through ports P0 to P3. In these modes,
ports P0 to P3 lose their I/O port functions and become bus pins.
Table 8.
Functions of ports in memory expansion mode and
microprocessor mode
Port Name
Function
Port P0
Outputs low-order byte of address.
Port P1
Outputs high-order byte of address.
Operates as I/O pins for data D7 to D0
Port P2
(including instruction codes).
P30 and P31 function only as output pins
(except that the port latch cannot be read).
P32 is the ONW input pin.
P33 is the RESETOUT output pin. (Note)
Port P3
P34 is the φ output pin.
P35 is the SYNC output pin.
P36 is the WR output pin, and P3 7 is the
RD output pin.
000016
000816
000016
000816
SFR area
004016
SFR area
004016
Internal RAM
reserved area
Internal RAM
reserved area
044016
044016
✽
YYYY16
Internal ROM
FFFF16
FFFF16
Memory expansion mode
Microprocessor mode
The shaded areas are external memory areas.
✽ : YYYY16 is the start address of internal ROM.
Fig. 40 Memory maps in various processor modes
b7
b0
CPU mode register
(CPUM : address 003B 16)
Note: If CNV SS is connected to V SS , the microcomputer goes to
single-chip mode after a reset, so this pin cannot be used
as the RESETOUT output pin.
Processor mode bits
b1 b0
0 0 : Single-chip mode
0 1 : Memory expansion mode
1 0 : Microprocessor mode
1 1 : Not available
Single-Chip Mode
Select this mode by resetting the microcomputer with CNV SS connected to VSS.
Memory Expansion Mode
Select this mode by setting the processor mode bits to “01” in software with CNVSS connected to VSS . This mode enables external
memory expansion while maintaining the validity of the internal
ROM. Internal ROM will take precedence over external memory if
addresses conflict.
Stack page selection bit
0 : 0 page
1 : 1 page
Not used (return “0” when read)
Fig. 41 Structure of CPU mode register
Microprocessor Mode
Select this mode by resetting the microcomputer with CNV SS connected to V CC, or by setting the processor mode bits to “10” in
software with CNVSS connected to VSS . In microprocessor mode,
the internal ROM is no longer valid and external memory must be
used.
3802 GROUP USER’S MANUAL
1-35
HARDWARE
FUNCTIONAL DESCRIPTION
Bus control with memory expansion
The 3802 group has a built-in ONW function to facilitate access to
external memory and I/O devices in memory expansion mode or
microprocessor mode.
If an “L” level signal is input to the ONW pin when the CPU is in a
read or write state, the corresponding read or write cycle is extended by one cycle of φ. During this extended period, the RD or
WR signal remains at “L”. This extension period is valid only for
writing to and reading from addresses 0000 16 to 0007 16 and
044016 to FFFF16 in microprocessor mode, 0440 16 to YYYY16 in
memory expansion mode, and only read and write cycles are extended.
Read cycle
Dummy cycle Write cycle
Read cycle Dummy cycle
Write cycle
φ
AD15 to AD0
RD
WR
ONW
✽
✽
✽
✽ : Period during which ONW input signal is received
During this period, the ONW signal must be fixed at either “H” or “L”. At all other times, the input level of the ONW
signal has no affect on operations.
The bus cycles is not extended for an address in the area 000816 to 043F16, regardless of whether the ONW signal
is received.
Fig. 42 ONW function timing
1-36
3802 GROUP USER’S MANUAL
HARDWARE
NOTE ON PROGRAMMING
NOTES ON PROGRAMMING
Processor Status Register
Serial I/O
The contents of the processor status register (PS) after a reset are
undefined, except for the interrupt disable flag (I) which is “1”. After a reset, initialize flags which affect program execution.
In particular, it is essential to initialize the index X mode (T) and
the decimal mode (D) flags because of their effect on calculations.
In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the S RDY1 signal, set the transmit
enable bit, the receive enable bit, and the SRDY1 output enable bit
to “1”.
Serial I/O1 continues to output the final bit from the T XD pin after
transmission is completed. The S OUT2 pin from serial I/O2 goes to
high impedance after transmission is completed.
Interrupts
The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before executing a
BBC or BBS instruction.
Decimal Calculations
To calculate in decimal notation, set the decimal mode flag (D) to
“1”, then execute an ADC or SBC instruction. Only the ADC and
SBC instructions yield proper decimal results. After executing an
ADC or SBC instruction, execute at least one instruction before
executing a SEC, CLC, or CLD instruction.
In decimal mode, the values of the negative (N), overflow (V), and
zero (Z) flags are invalid.
The carry flag can be used to indicate whether a carry or borrow
has occurred. Initialize the carry flag before each calculation.
Clear the carry flag before an ADC and set the flag before an
SBC.
Timers
If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n + 1).
Multiplication and Division Instructions
The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
The execution of these instructions does not change the contents
of the processor status register.
Ports
The contents of the port direction registers cannot be read.
The following cannot be used:
• The data transfer instruction (LDA, etc.)
• The operation instruction when the index X mode flag (T) is “1”
• The addressing mode which uses the value of a direction register as an index
• The bit-test instruction (BBC or BBS, etc.) to a direction register
• The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a
direction register
Use instructions such as LDM and STA, etc., to set the port direction registers.
A-D Converter
The comparator uses internal capacitors whose charge will be lost
if the clock frequency is too low.
Make sure that f(X IN ) is at least 500 kHz during an A-D conversion. (If the ONW pin has been set to “L”, the A-D conversion will
take twice as long to match the longer bus cycle, and so f(XIN )
must be at least 1 MHz.)
Do not execute the STP or WIT instruction during an A-D conversion.
D-A Converter
The accuracy of the D-A converter becomes poor rapidly under
the VCC = 3.0 V or less condition.
Instruction Execution Time
The instruction execution time is obtained by multiplying the frequency of the internal clock φ by the number of cycles needed to
execute an instruction.
The number of cycles required to execute an instruction is shown
in the list of machine instructions.
The frequency of the internal clock φ is half of the X IN frequency.
When the ONW function is used in modes other than single-chip
mode, the frequency of the internal clock φ may be one fourth the
XIN frequency.
Memory Expansion Mode
The memory expansion mode is not available in the following microcomputers.
• M38024M6-XXXSP
• M38024M6-XXXFP
Memory Expansion Mode and Microprocessor Mode
Execute the LDM or STA instruction for writing to port P3 (address
000616 ) in memory expansion mode and microprocessor mode.
Set areas which can be read out and write to port P3 (address
0006 16) in a memory, using the read-modify-write instruction
(SEB, CLB).
3802 GROUP USER’S MANUAL
1-37
HARDWARE
DATA REQUIRED FOR MASK ORDERS/ROM PROGRAMMING METHOD
DATA REQUIRED FOR MASK ORDERS
ROM PROGRAMMING METHOD
The following are necessary when ordering a mask ROM production:
1. Mask ROM Order Confirmation Form
2. Mark Specification Form
3. Data to be written to ROM, in EPROM form (three identical
copies)
The built-in PROM of the blank One Time PROM version and builtin EPROM version can be read or programmed with a generalpurpose PROM programmer using a special programming
adapter. Set the address of PROM programmer in the user ROM
area.
Table 9. Programming adapter
Package
Name of Programming Adapter
64P4B, 64S1B
PCA4738S-64A
64P6N
PCA4738F-64A
64D0
PCA4738L-64A
The PROM of the blank One Time PROM version is not tested or
screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in
Figure 35 is recommended to verify programming.
Programming with PROM
programmer
Screening (Caution)
(150°C for 40 hours)
Verification with
PROM programmer
Functional check in
target device
Caution : The screening temperature is far higher
than the storage temperature. Never
expose to 150 °C exceeding 100 hours.
Fig. 43 Programming and testing of One Time PROM version
1-38
3802 GROUP USER’S MANUAL
HARDWARE
FUNCTIONAL DESCRIPTION SUPPLEMENT
FUNCTIONAL DESCRIPTION SUPPLEMENT
Interrupt
3802 group permits interrupts on the basis of 16
sources. It is vector interrupts with a fixed priority
system. Accordingly, when two or more interrupt
requests occur during the same sampling, the higherpriority interrupt is accepted first. This priority is
determined by hardware, but variety of priority
processing can be performed by software, using an
interrupt enable bit and an interrupt disable flag.
For interrupt sources, vector addresses and interrupt priority, refer to “Table 10.”
Table 10. Interrupt sources, vector addresses and interrupt priority
Vector addresses
Priority
Interrupt sources
Remarks
High-order Low-order
1
2
Reset (Note)
INT0 interrupt
FFFD 16
FFFB16
FFFC16
FFFA 16
3
INT1 interrupt
FFF9 16
FFF8 16
4
5
6
7
8
9
10
Serial I/O1 receive interrupt
Serial I/O1 transmit interrupt
Timer X interrupt
Timer Y interrupt
Timer 1 interrupt
Timer 2 interrupt
CNTR 0 interrupt
FFF7 16
FFF5 16
FFF3 16
FFF1 16
FFEF16
FFED16
FFEB 16
FFF6 16
FFF4 16
FFF2 16
FFF0 16
FFEE16
FFEC 16
FFEA16
11
CNTR 1 interrupt
FFE9 16
FFE816
12
13
Serial I/O2 interrupt
INT2 interrupt
FFE7 16
FFE5 16
FFE616
FFE416
14
INT3 interrupt
FFE3 16
FFE216
15
INT4 interrupt
FFE1 16
FFE016
16
17
A-D conversion interrupt
BRK instruction interrupt
FFDF 16
FFDD 16
FFDE 16
FFDC16
Non-maskable
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O1 is selected
Valid when serial I/O1 is selected
STP release timer underflow
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O2 is selected
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Non-maskable software interrupt
Note: Reset functions in the same way as an interrupt with the highest priority.
3802 GROUP USER’S MANUAL
1-39
HARDWARE
FUNCTIONAL DESCRIPTION SUPPLEMENT
Timing After Interrupt
The interrupt processing routine begins with the
machine cycle following the completion of the instruction that is currently in execution.
Figure 44 shows a timing chart after an interrupt
occurs, and Figure 45 shows the time up to execution of the interrupt processing routine.
SYNC
RD
WR
Address bus
Data bus
SYNC
BL, BH
AL, AH
SPS
PC
S, SPS
Not used
S-1, SPS S-2, SPS
PCH PCL
BL
PS
BH
AL
AL, AH
AH
: CPU operation code fetch cycle
: Vector address of each interrupt
: Jump destination address of each interrupt
: “0016” or “0116”
Fig. 44 Timing chart after an interrupt occurs
Start of interrupt processing
Generation of interrupt request
Main routine
0 to 16 ✻ cycles
Waiting time for
post-processing
of pipeline
Stack push and
Vector fetch
2 cycles
5 cycles
7 to 23 cycles
(At performing 8.0 MHz, 1.75 µs to 5.75 µs)
✻ : at execution of DIV instruction (16 cycles)
Fig. 45 Time up to execution of the interrupt processing routine
1-40
3802 GROUP USER’S MANUAL
Interrupt processing routine
HARDWARE
FUNCTIONAL DESCRIPTION SUPPLEMENT
A-D Converter
By repeating the above operations up to the lowestorder bit of the A-D conversion register, an analog
value converts into a digital value.
A-D conversion completes at 50 clock cycles (12.5
µ s at f(XIN) = 8.0 MHz) after it is started, and the
result of the conversion is stored into the A-D conversion register.
Concurrently with the completion of A-D conversion,
A-D conversion interrupt request occurs, so that the
AD conversion interrupt request bit is set to “1.”
A-D conversion is started by setting AD conversion
completion bit to “0.” During A-D conversion, internal operations are performed as follows.
1. After the start of A-D conversion, A-D conversion
register goes to “0016 .”
2. The highest-order bit of A-D conversion register
is set to “1,” and the comparison voltage Vref is
input to the comparator. Then, Vref is compared
with analog input voltage V IN.
3. As a result of comparison, when Vref < V IN, the
highest-order bit of A-D conversion register be
comes “1.” When Vref > V IN, the highest-order
bit becomes “0.”
Relative formula for a reference voltage V REF of A-D converter and Vref
When n = 0
Vref = 0
Vref = VREF ✕ (n – 0.5)
256
n : the value of A-D converter (decimal numeral)
When n = 1 to 255
Table 11. Change of A-D conversion register during A-D conversion
Change of A-D conversion register
Value of comparison voltage (Vref)
At start of conversion
0
0
0
0
0
0
0
0
First comparison
1
0
0
0
0
0
0
0
V REF
2
– V REF
512
1
0
0
0
0
0
0
V REF
2
±
V REF
4
–
V REF
512
1
0
0
0
0
0
V REF
2
±
V REF
4
±
V REF
8
Second comparison
✽
1
Third comparison
✽
1
After completion of eighth
comparison
✽1:
✽3:
✽5:
✽7:
A
A
A
A
result
result
result
result
of
of
of
of
the
the
the
the
✽
2
0
–
V REF
512
A result of A-D conversion
✽
1
✽
2
✽
first comparison
third comparison
fifth comparison
seventh comparison
3
✽
4
✽
✽2:
✽4:
✽6:
✽8:
5
A
A
A
A
✽
6
✽
result
result
result
result
7
✽
of
of
of
of
8
the
the
the
the
second comparison
fourth comparison
sixth comparison
eighth comparison
3802 GROUP USER’S MANUAL
1-41
HARDWARE
FUNCTIONAL DESCRIPTION SUPPLEMENT
Figures 46 shows A-D conversion equivalent circuit, and Figure 47 shows A-D conversion timing
chart.
VCC
VSS
about 2 kΩ
VCC AVSS
VIN
AN0
Sampling
clock
AN1
C
AN2
Chopper amplifier
AN3
AN4
AN5
AN6
A-D conversion register
AN7
b2 b1 b0
A-D conversion interrupt request
AD/DA control register
Vref
VREF
Build-in
D-A converter
Reference
clock
AVSS
Fig. 46 A-D conversion equivalent circuit
Write signal for AD/DA control register
50 cycles
AD conversion completion bit
Sampling clock
Fig. 47 A-D conversion timing chart
1-42
3802 GROUP USER’S MANUAL
CHAPTER 2
APPLICATION
2.1
2.2
2.3
2.4
2.5
2.6
2.7
I/O port
Timer
Serial I/O
PWM
A-D converter
Processor mode
Reset
APPLICATION
2.1 I/O port
2.1 I/O port
2.1.1 Memory map of I/O port
000016
Port P0 (P0)
000116
Port P0 direction register (P0D)
000216
Port P1 (P1)
000316
Port P1 direction register (P1D)
000416
Port P2 (P2)
000516
Port P2 direction register (P2D)
000616
Port P3 (P3)
000716
Port P3 direction register (P3D)
000816
Port P4 (P4)
000916
Port P4 direction register (P4D)
000A16
Port P5 (P5)
000B16
Port P5 direction register (P5D)
000C16
Port P6 (P6)
000D16
Port P6 direction register (P6D)
Fig. 2.1.1 Memory map of I/O port related registers
2-2
3802 GROUP USER’S MANUAL
APPLICATION
2.1 I/O port
2.1.2 Related registers
Port Pi
b7 b6 b5 b4 b3 b2 b1 b0
Port Pi (Pi) (i = 0, 1, 2, 3, 4, 5, 6)
[Address : 0016, 0216, 0416, 0616, 0816, 0A16, 0C16]
B
Name
0 Port Pi0
Function
●
In output mode
Write
Port latch
Read
●
In input mode
Write : Port latch
Read : Value of pins
1 Port Pi1
2 Port Pi2
At reset
R W
?
?
?
3 Port Pi3
?
4 Port Pi4
?
5 Port Pi5
?
6 Port Pi6
?
7 Port Pi7
?
Fig. 2.1.2 Structure of Port Pi (i = 0, 1, 2, 3, 4, 5, 6)
Port Pi direction register
b7 b6 b5 b4 b3 b2 b1 b0
Port Pi direction register (PiD) (i = 0, 1, 2, 3, 4, 5, 6)
[Address : 0116, 0316, 0516, 0716, 0916, 0B16, 0D16]
B
Function
Name
At reset
R W
0 Port Pi direction register
0 : Port Pi0 input mode
1 : Port Pi0 output mode
0
✕
1
0 : Port Pi1 input mode
1 : Port Pi1 output mode
0 : Port Pi2 input mode
1 : Port Pi2 output mode
0 : Port Pi3 input mode
1 : Port Pi3 output mode
0 : Port Pi4 input mode
1 : Port Pi4 output mode
0
✕
0
✕
0
✕
0
✕
0 : Port Pi5 input mode
1 : Port Pi5 output mode
0 : Port Pi6 input mode
1 : Port Pi6 output mode
0 : Port Pi7 input mode
1 : Port Pi7 output mode
0
✕
0
✕
0
✕
2
3
4
5
6
7
Fig. 2.1.3 Structure of Port Pi direction register (i = 0, 1, 2, 3, 4, 5, 6)
3802 GROUP USER’S MANUAL
2-3
APPLICATION
2.1 I/O port
2.1.3 Handling of unused pins
Table 2.1.1 Handling of unused pins (in single-chip mode)
Name of Pins/Ports
P0, P1, P2, P3, P4, P5, P6
V REF
AV SS
X OUT
Handling
• Set to the input mode and connect to V CC or V SS through a
resistor of 1 k to 10 k .
• Set to the output mode and open at “L” or “H.”
Connect to VSS (GND) or open.
Connect to VSS(GND).
Open (only when using external clock).
Table 2.1.2 Handling of unused pins (in memory expansion mode and microprocessor mode)
Name of Pins/Ports
P3 0 , P31
P4, P5, P6
V REF
____
ONW
_________
RESET OUT
SYNC
AV SS
X OUT
2-4
Handling
Open
• Set to the input mode and connect to V CC or V SS through a
resistor of 1 k to 10 k .
• Set to the output mode and open at “L” or “H.”
Connect to VSS (GND) or open.
Connect to VCC through a resistor of 1 k to 10 k .
Open
Open
Open
Connect to VSS(GND).
Open (only when using external clock).
3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
2.2 Timer
2.2.1 Memory map of timer
002016
Prescaler 12 (PRE12)
002116
Timer 1 (T1)
002216
Timer 2 (T2)
002316
Timer XY mode register (TM)
002416
Prescaler X (PREX)
002516
Timer X (TX)
002616
Prescaler Y (PREY)
002716
Timer Y (TY)
003C16
Interrupt request register 1 (IREQ1)
003D16
Interrupt request register 2 (IREQ2)
003E16
Interrupt control register 1 (ICON1)
003F16
Interrupt control register 2 (ICON2)
Fig. 2.2.1 Memory map of timer related registers
3802 GROUP USER’S MANUAL
2-5
APPLICATION
2.2 Timer
2.2.2 Related registers
Prescaler 12, Prescaler X, Prescaler Y
b7 b6 b5 b4 b3 b2 b1 b0
Prescaler 12 (PRE12), Prescaler X (PREX), Prescaler Y (PREY)
[Address : 2016, 2416, 2616]
B
0
1
Function
●
●
●
2
The count value of each prescaler is set.
The value set in this register is written to both the prescaler and
the prescaler latch at the same time.
When the prescaler is read out, the value (count value) of the
prescaler is read out.
At reset
R W
1
1
1
3
1
4
1
5
1
6
1
7
1
Fig. 2.2.2 Structure of Prescaler 12, Prescaler X, Prescaler Y
Timer 1
b7 b6 b5 b4 b3 b2 b1 b0
Timer 1 (T1) [Address : 2116]
B
0
●
●
1
2
●
Function
At reset
The count value of the Timer 1 is set.
The value set in this register is written to both the Timer 1 and
the Timer 1 latch at the same time.
When the Timer 1 is read out, the value (count value) of the
Timer 1 is read out.
1
0
3
0
4
0
5
0
6
0
7
0
Fig. 2.2.3 Structure of Timer 1
2-6
0
3802 GROUP USER’S MANUAL
R W
APPLICATION
2.2 Timer
Timer 2, Timer X, Timer Y
b7 b6 b5 b4 b3 b2 b1 b0
Timer 2 (T2), Timer X (TX), Timer Y (TY)
[Address : 2216, 2516, 2716]
B
0
Function
●
●
1
2
●
The count value of each timer is set.
The value set in this register is written to both the Timer and the
Timer latch at the same time.
When the Timer is read out, the value (count value) of the Timer
is read out.
At reset
R W
1
1
1
3
1
4
1
5
1
6
1
7
1
Fig. 2.2.4 Structure of Timer 2, Timer X, Timer Y
3802 GROUP USER’S MANUAL
2-7
APPLICATION
2.2 Timer
A AA
Timer XY mode register
b7 b6 b5 b4 b3 b2 b1 b0
Timer XY mode register (TM) [Address : 2316]
Name
B
0 Timer X operating mode bit
Function
b1 b0
0 0 : Timer mode
0 1 : Pulse output mode
1 0 : Event counter mode
1
1 1 : Pulse width measurement mode
It
2 CNTR0 active edge switch bit depends on the operating mode
of the Timer X (refer to Table 2.2.1).
0 : Count start
3 Timer X count stop bit
1 : Count stop
4 Timer Y operating mode bit
b5 b4
0 0 : Timer mode
0 1 : Pulse output mode
1 0 : Event counter mode
5
1 1 : Pulse width measurement mode
6 CNTR1 active edge switch bit It depends on the operating mode
of the Timer Y (refer to Table 2.2.1).
0 : Count start
7 Timer Y count stop bit
1 : Count stop
At reset
R W
0
0
0
0
0
0
0
0
Fig. 2.2.5 Structure of Timer XY mode register
Table. 2.2.1 Function of CNTR 0/CNTR 1 edge switch bit
Operating mode of
Timer X/Timer Y
Timer mode
Function of CNTR 0/CNTR 1 edge switch bit (bits 2 and 6)
“0”
“1”
Pulse output mode
“0”
“1”
Event counter mode
“0”
“1”
Pulse width measurement mode
“0”
“1”
2-8
• Generation of CNTR0 /CNTR1 interrupt request : Falling
(No effect on timer count)
• Generation of CNTR 0/CNTR 1 interrupt request : Rising
(No effect on timer count)
• Start of pulse output : From “H” level
• Generation of CNTR0 /CNTR1 interrupt request : Falling
• Start of pulse output : From “L” level
• Generation of CNTR 0/CNTR 1 interrupt request : Rising
• Timer X/Timer Y : Count of rising edge
• Generation of CNTR0 /CNTR1 interrupt request : Falling
• Timer X/Timer Y : Count of falling edge
• Generation of CNTR0/CNTR 1 interrupt request : Rising
• Timer X/Timer Y : Measurement of “H” level width
• Generation of CNTR0 /CNTR1 interrupt request : Falling
• Timer X/Timer Y : Measurement of “L” level width
• Generation of CNTR 0/CNTR 1 interrupt request : Rising
3802 GROUP USER’S MANUAL
edge
edge
edge
edge
edge
edge
edge
edge
APPLICATION
2.2 Timer
Interrupt request register 1
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt request reigster 1 (IREQ1) [Address : 3C16]
Function
Name
B
At reset
R W
0 INT0 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0
✻
1 INT1 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0
✻
2 Serial I/O1 receive interrupt
0 : No interrupt request
1 : Interrupt request
0
✻
3 Serial I/O1 transmit interrupt
0 : No interrupt request
1 : Interrupt request
0
✻
4 Timer X interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0
✻
0
✻
A
AAAAAAA
AAAAAAA
AA
AA
A
AAAAAAAA
AAAAAAA
AA
AA
A
AAAAAAAA
AAAAAAA
AA
AA
A
request bit
request bit
bit
5 Timer Y interrupt request
bit
6 Timer 1 interrupt request bit
7 Timer 2 interrupt request bit
✻ “0” is set by software, but not “1.”
Fig. 2.2.6 Structure of Interrupt request register 1
Interrupt request register 2
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt request reigster 2 (IREQ2) [Address : 3D16]
Name
B
0 CNTR0 interrupt request bit
1 CNTR1 interrupt request bit
2 Serial I/O2 interrupt request
bit
3 INT2 interrupt request bit
4 INT3 interrupt request bit
5 INT4 interrupt request bit
6 AD conversion interrupt
request bit
Function
At reset
R W
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0
✻
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0
✻
0
✻
0
✕
7 Nothing is allocated for this bit. This is a write disabled bit.
When this bit is read out, the value is “0.”
✻ “0” is set by software, but not “1.”
Fig. 2.2.7 Structure of Interrupt request register 2
3802 GROUP USER’S MANUAL
2-9
APPLICATION
2.2 Timer
Interrupt control register 1
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt control register 1 (ICON1) [Address : 3E16]
Function
Name
B
0 INT0 interrupt enable bit
1 INT1 interrupt enable bit
2 Serial I/O1 receive interrupt
At reset
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
R W
0
AAAAAAAA
AAAAAAA
AAAAAAA
AA
AA
A
AAAAAAAAA
AAAAAAA
AA
AA
A
AAAAAAA
AA
AA
A
enable bit
3 Serial I/O1 transmit interrupt
enable bit
4 Timer X interrupt enable bit
5 Timer Y interrupt enable bit
6 Timer 1 interrupt enable bit
7 Timer 2 interrupt enable bit
0
0
0
0
Fig. 2.2.8 Structure of Interrupt control register 1
Interrupt control register 2
b7 b6 b5 b4 b3 b2 b1 b0
0
Interrupt control reigster 2 (ICON2) [Address : 3F16]
Name
B
CNTR
0
interrupt
enable bit
0
Function
0
4 INT3 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0
5 INT4 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
6 AD conversion interrupt
enable bit
7 Fix this bit to “0.”
Fig. 2.2.9 Structure of Interrupt control register 2
2-10
At reset
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 CNTR1 interrupt enable bit
1 : Interrupt enabled
0
2 Serial I/O2 interrupt enable bit : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
3 INT2 interrupt enable bit
1 : Interrupt enabled
3802 GROUP USER’S MANUAL
0
0
0
0
0
R W
APPLICATION
2.2 Timer
2.2.3 Timer application examples
(1) Basic functions and uses
[Function 1] Control of Event interval (Timer X, Timer Y, Timer 1, Timer 2)
The Timer count stop bit is set to “0” after setting a count value to a timer. Then a timer interrupt
request occurs after a certain period.
[Use] • Generation of an output signal timing
• Generation of a waiting time
[Function 2] Control of Cyclic operation (Timer X, Timer Y, Timer 1, Timer 2)
The value of a timer latch is automatically written to a corresponding timer every time a timer
underflows, and each cyclic timer interrupt request occurs.
[Use] • Generation of cyclic interrupts
• Clock function (measurement of 250m second)
• Control of a main routine cycle
Application example 1
[Function 3] Output of Rectangular waveform (Timer X, Timer Y)
The output level of the CNTR pin is inverted every time a timer underflows (Pulse output mode).
[Use] • A piezoelectric buzzer output
Application example 2
• Generation of the remote-control carrier waveforms
[Function 4] Count of External pulse (Timer X, Timer Y)
External pulses input to the CNTR pin are selected as a timer count source (Event counter
mode).
[Use] • Measurement of frequency
Application example 3
• Division of external pulses.
• Generation of interrupts in a cycle based on an external pulse.
(count of a reel pulse)
[Function 5] Measurement of External pulse width (Timer X, Timer Y)
The “H” or “L” level width of external pulses input to CNTR pin is measured (Pulse width
measurement mode).
[Use] • Measurement of external pulse frequency (Measurement of pulse width of FG pulse ✽ generated by motor)
Application example 4
• Measurement of external pulse duty (when the frequency is fixed)
✽FG pulse : Pulse used for detecting the motor speed to control the motor speed.
3802 GROUP USER’S MANUAL
2-11
APPLICATION
2.2 Timer
(2) Timer application example 1 : Clock function (measurement of 250 ms)
Outline : The input clock is divided by a timer so that the clock counts up every 250 ms.
Specifications : • The clock f(X IN) = 4.19 MHz (2 22 Hz) is divided by a timer.
• The clock is counted at intervals of 250 ms by the Timer X interrupt.
Figure 2.2.10 shows a connection of timers and a setting of division ratios, Figures 2.2.11 show a
setting of related registers, and Figure 2.2.12 shows a control procedure.
f(XIN) =
4.19 MHz
Fixed
Prescaler X
Timer X
1/16
1/256
1/256
Timer X interrupt request bit
The clock is divided by 4 by software.
0 or 1
1/4
250 ms
0 : No interrupt request
1 : Interrupt request
Fig. 2.2.10 Connection of timers and setting of division ratios [Clock function]
2-12
3802 GROUP USER’S MANUAL
1 second
APPLICATION
2.2 Timer
Timer XY mode register (Address : 2316)
b7
b0
1
TM
0 0
Timer X operating mode bits : Timer mode
Timer X count stop bit : Count stop
Set to “0” at starting to count.
Prescaler X (Address : 2416)
b7
PREX
b0
255
Timer X (Address:2516)
b7
TX
b0
Set “division ratio – 1”
255
Interrupt control register 1 (Address : 3E16)
b7
b0
1
ICON1
Timer X interrupt enable bit : Interrupt enabled
Interrupt request register 1 (Address : 3C16)
b7
IREQ1
b0
0
Timer X interrupt request bit
(becomes “1” every 250 ms)
Fig. 2.2.11 Setting of related registers [Clock function]
3802 GROUP USER’S MANUAL
2-13
APPLICATION
2.2 Timer
Control procedure :
Figure 2.2.12 shows a control procedure.
●
RESET
Initialization
SEI
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
●
....
TM
XXXX1X002
(Address : 2316)
ICON1 (Address : 3E16), bit4
1
●
●
All interrupts : Disabled
Timer X : Timer mode
Timer X interrupt : Enabled
....
PREX (Address : 2416)
TX
(Address : 2516)
256 – 1
256 – 1
●
Set “division ratio – 1” to the Prescaler X
and Timer X.
....
TM
(Address : 2316), bit3
0
●
....
CLI
●
●
Main processing
....
[Processing for completion of setting clock]
(Note 1)
PREX (Address : 2416)
TX
(Address : 2516)
IREQ1 (Address : 3C16), bit4
Timer X count : Operating
Interrupts : Enabled
When restarting the clock from zero
second after completing to set the
clock, re-set timers.
Note 1: This processing is performed only
at completing to set the clock.
256 – 1
256 – 1
0
Timer X interrupt processing routine
Note 2: When using the Index X mode flag (T).
Note 3: When using the Decimal mode flag (D).
CLT (Note 2)
CLD (Note 3)
Push register to stack
Clock stop?
●
Y
Push the register used in the interrupt
processing routine into the stack.
●
Check if the clock has already been set.
●
Count up the clock.
●
Pop registers which is pushed to stack
N
Clock count up (1/4 second-year)
Pop registers
RTI
Fig. 2.2.12 Control procedure [Clock function]
2-14
3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
(3) Timer application example 2 : Piezoelectric buzzer output
Outline : The rectangular waveform output function of a timer is applied for a piezoelectric buzzer
output.
Specifications : • The rectangular waveform resulting from dividing clock f(X IN ) = 4.19 MHz into about
2 kHz (2048 Hz) is output from the P5 4/CNTR 0 pin.
• The level of the P5 4/CNTR0 pin fixes to “H” while a piezoelectric buzzer output is
stopped.
Figure 2.2.13 shows an example of a peripheral circuit, and Figure 2.2.14 shows a connection of the
timer and setting of the division ratio.
The “H” level is output while a piezoelectric buzzer output is stopped.
CNTR0 output
3802 group
P54/CNTR0
PiPiPi....
244 µ s
244 µ s
Set a division ratio so that the underflow output cycle of the Timer X becomes this value.
Fig. 2.2.13 Example of a peripheral circuit
f(XIN) = 4.19 MHz
Fixed
Prescaler X
Timer X
Fixed
1/16
1
1/64
1/2
CNTR0
Fig. 2.2.14 Connection of the timer and setting of the division ratio [Piezoelectric buzzer output]
3802 GROUP USER’S MANUAL
2-15
APPLICATION
2.2 Timer
Timer XY mode register (Address : 2316)
b7
b0
TM
1 0 0 1
Timer X operating mode bits : Pulse output mode
CNTR0 active edge switch bit : Output from the “H” level
Timer X count stop bit : Count Stop
Set to “0” at starting to count.
Timer X (Address : 2516)
b7
b0
TX
63
Prescaler X (Address : 2416)
b7
Set “division ratio – 1”
b0
PREX
0
Fig. 2.2.15 Setting of related registers [Piezoelectric buzzer output]
Control procedure :
Figure 2.2.16 shows a control procedure.
RESET
●X
Initialization
....
P5
P5D
: This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
(Address : 0A16), bit4
1
(Address : 0B16)
XXX1XXXX2
....
0
ICON1(Address : 3E16), bit4
XXXX10012
(Address : 2316)
TM
●
64 – 1
1–1
●
Timer X interrupts : Disabled
The CNTR0 output is stopped at this point (stop
outputting a piezoelectric buzzer).
Set “division ratio – 1” to the Prescaler X and
Timer X.
....
(Address : 2516)
TX
PREX (Address : 2416)
●
Main processing
Output unit
●
A piezoelectric buzzer
is requested?
Y
The piezoelectric buzzer request occured in the
main processing is processed in the output unit.
N
TM (Address : 2316), bit3
TX (Address : 2516)
1
64 –1
During stopping outputting a piezoelectric buzzer
TM (Address : 2316), bit3
During outputting a piezoelectric buzzer
Fig. 2.2.16 Control procedure [Piezoelectric buzzer output]
2-16
0
3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
(4) Timer application example 3 : Measurement of frequency
Outline : The following two values are compared for judging if the frequency is within a certain range.
• A value counted a pulse which is input to P5 5/CNTR 1 pin by a timer.
• A referance value
Specifications : • The pulse is input to the P55 /CNTR1 pin and counted by the Timer Y.
• A count value is read out at the interval of about 2 ms (Timer 1 interrupt interval
: 244 µ s ✕ 8). When the count value is 28 to 40, it is regarded the input pulse
as a valid.
• Because the timer is a down-counter, the count value is compared with 227 to 215 ✽ .
✽227 to 215 = 255 (initialized value of counter) – 28 to 40 (the number of valid
value).
Figure 2.2.17 shows a method for judging if input pulse exists, and Figure 2.2.18 shows a setting of
related registers.
Input pulse
••••
71.4 µ s or more
(14 kHz or less)
••••
71.4 µ s
(14 kHz)
Invalid
••••
50 µ s
(20 kHz)
Valid
2 ms
= 28 counts
71.4 µ s
50 µ s or less
(20 kHz or more)
Invalid
2 ms
50 µ s
= 40 counts
Fig 2.2.17 A method for judging if input pulse exists
3802 GROUP USER’S MANUAL
2-17
APPLICATION
2.2 Timer
Timer XY mode register (Address : 2316)
b7
TM
b0
1 1 1 0
Timer Y operating mode bit : Event counter mode
CNTR1 active edge switch bit : Count at falling edge
Timer Y count stop bit : Count stop
Set to “0” at starting to count.
Prescaler 12 (Address : 2016)
b7
b0
PRE12
63
Timer 1 (Address : 2116)
b7
b0
T1
7
Set “division ratio – 1”
Prescaler Y (Address : 2616)
b7
b0
0
PREY
Timer Y (Address : 2716)
b7
b0
255
TY
Set “255” to this register immediately before
counting pulse.
(After a certain time, this value is decreased by
the number of input pulses)
Interrupt control register 1 (Address : 3E16)
b7
b0
1 0
ICON1
Timer Y interrupt enable bit : Interrupt disabled
Timer 1 interrupt enable bit : Interrupt enabled
Interrupt request register 1 (Address : 3C16)
b7
IREQ1
b0
0
Judgment of Timer Y interrupt request bit
(When this bit is set to “1” at reading out
the count value of the Timer Y (address : 2716),
256 pulses or more are input (at setting 255 to
the Timer Y).)
Fig. 2.2.18 Setting of related registers [Measurement of frequency]
2-18
3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
Control procedure :
Figure 2.2.19 shows a control procedure.
●X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
RESET
Initialization
●
All interrupts : Disabled
....
SEI
1110XXXX2
TM
(Address : 2316)
PRE12 (Address : 2016)
64–1
T1
8–1
(Address : 2116)
PREY (Address : 2616)
1–1
TY
256–1
(Address : 2716)
ICON1 (Address : 3E16), bit6
1
●
●
....
●
TM
....
(Address : 2316), bit7
0
●
●
Timer Y : Event counter mode
(Count at falling edge of pulse input from CNTR1 pin)
Set the division ratio so that the Timer 1 interrupt
occurs every 2 ms.
Timer 1 interrupt : Enabled
Timer Y count : Start
Interrupts : Enabled
CLI
~
~
Timer 1 interrupt processing routine
CLT (Note 1)
CLD (Note 2)
Push register to stack
1
●
IREQ1 (Address : 3C16), bit5?
●
Note 1: When using the Index X mode flag (T).
Note 2: When using the Decimal mode flag (D).
Push the register used in the interrupt
processing routine into the stack.
When the count value is 256 or more, the
processing is performed as out of range.
0
(A)
●
TY (Address : 2716)
●
Read the count value.
Store the count value in the accumulator (A).
In range
214 < (A) < 228?
●
●
Out of range
Fpulse
0
(Address : 2716)
TY
IREQ1 (Address : 3C16), bit5
Fpulse
256 – 1
0
●
●
Compare the count value read with the
reference value.
Store the comparison result in flag Fpulse.
1
Initialize the count value.
Set the Timer Y interrupt request bit to “0.”
Processing for a result of judgment
Pop registers
●
Pop registers which is pushed to stack.
RTI
Fig. 2.2.19 Control procedure [Measurement of frequency]
3802 GROUP USER’S MANUAL
2-19
APPLICATION
2.2 Timer
(5) Timer application example 4 : Measurement of pulse width of FG pulse generated by motor
Outline : The “H” level width of a pulse input to the P5 4 /CNTR0 pin is counted by Timer X. An
underflow is detected by Timer X interrupt and an end of the input pulse “H” level is
detected by CNTR 0 interrupt.
Specifications : • The “H” level width of a FG pulse input to the P54 /CNTR0 pin is counted by Timer
X. (Example : When the clock frequency is 4.19 MHz, the count source would be
3.8 µ s that is obtained by dividing the clock frequency by 16.
Measurement can be made up to 250 ms in the range of FFFF 16
to 000016 .)
Figure 2.2.20 shows a connection of the timer and a setting of the division ration, and Figure 2.2.21
shows a setting of related registers.
f(XIN) = 4.19 MHz
Fixed
Prescaler X
Timer X
1/16
1/256
1/256
Timer X interrupt request bit
0 or 1
250 ms
0 : No interrupt request
1 : Interrupt request
Fig. 2.2.20 Connection of the timer and setting of the division ratio [Measurement of pulse width]
2-20
3802 GROUP USER’S MANUAL
APPLICATION
2.2 Timer
Timer XY mode register (Address : 2316)
b7
b0
TM
1 0 1 1
Timer X operating mode bits : Pulse width
measurement mode
CNTR0 active edge switch bit : Count “H” level width
Timer X count stop bit : Count stop
Set to “0” at starting to count.
Prescaler X (Address : 2416)
b7
PREX
b0
255
Timer X (Address : 2516)
b7
TX
Set “division ratio – 1”
b0
255
Interrupt control register 1 (Address : 3E16)
b7
b0
1
ICON1
Timer X interrupt enable bit : Interrupt enabled
Interrupt request register (Address : 3C16)
b7
IREQ1
b0
0
Timer X interrupt request bit
(This bit is set to “1” at underflow of Timer X.)
Interrupt control register 2 (Address : 3F16)
b7
b0
1
ICON2
CNTR0 interrupt enable bit : Interrupt enabled
Interrupt request register 2 (Address : 3D16)
b7
IREQ2
b0
0
CNTR0 interrupt request bit
(This bit is set to “1” at completion of inputting
“H” level signal.)
Fig. 2.2.21 Setting of related registers [Measurement of pulse width]
3802 GROUP USER’S MANUAL
2-21
APPLICATION
2.2 Timer
Figure 2.2.22 shows a control procedure.
●
RESET
Initialization
SEI
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
●
....
(Address : 2316)
PREX
TX
ICON1
IREQ1
ICON2
IREQ2
(Address : 2416)
(Address : 2516)
(Address : 3E16), bit4
(Address : 3C16), bit4
(Address : 3F16), bit0
(Address : 3D16), bit0
256–1
256–1
1
0
1
0
(Address : 2316), bit3
0
....
TM
....
TM
XXXX10112
●
●
●
●
All interrupts : Disabled
Timer X : Pulse width measurement mode
(Count “H” level width of pulse input from CNTR0 pin.)
Set the division ratio so that the Timer X interrupt occurs
every 250 ms.
Timer X interrupt : Enabled
CNTR0 interrupt : Enabled
●
Timer X count : Operating
●
Interrupts : Enabled
●
Error occurs
CLI
~
~
Timer X interrupt processing routine
Processing for error
RTI
CNTR0 interrupt processing routine
CLT (Note 1)
CLD (Note 2)
Push register to stack
(A)
Result of pulse width measurement
low–order 8-bit
(A)
Result of pulse width measurement
high–order 8-bit
PREX (Address : 2416)
TX
(Address : 2516)
Pop registers
Note 1:When using the Index X mode flag (T).
Note 2: When using the Decimal mode flag (D).
●
PREX
●
Push the register used in the interrupt
processing routine into the stack.
A count value is read out and stored to RAM.
Inversion of (A)
TX
Inversion of (A)
256 – 1
256– 1
●
●
Set the division ratio so that the Timer X
interrupt occurs every 250 ms.
Pop registers which is pushed to stack.
RTI
Fig. 2.2.22 Control procedure [Measurement of pulse width]
2-22
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
2.3 Serial I/O
2.3.1 Memory map of serial I/O
001816
Trans mit/Receive buffer register (TB/RB )
001916
Ser ial I/O1 status register (SIO 1STS)
001A16
Ser ial I/O1 c ontrol register (SIO 1CON)
001B16
UART control register (UA RT CO N)
001C16
Baud rate generator (BR G )
001D16
Serial I/O2 cont rol register (SIO 2 CO N)
001F16
Ser ial I/O2 register (SIO2 )
003A16
Interrupt edge select ion register (INT EDG E)
003C16
Interrupt request register 1 (IREQ 1)
003D16
Interrupt request register 2 (IREQ 2)
003E16
Interrupt control register 1 (I CO N1)
003F16
Interrupt control register 2 (I CO N2)
Fig. 2.3.1 Memory map of serial I/O related registers
3802 GROUP USER’S MANUAL
2-23
APPLICATION
2.3 Serial I/O
2.3.2 Related registers
Transmit/Receive buffer register
b7 b6 b5 b4 b3 b2 b1 b0
Transmit/Receive buffer register (TB/RB) [Address : 1816]
Function
B
0 A transmission data is written to or a receive data is read out
from this buffer register.
At reset
1 • At writing : a data is written to the Transmit buffer register.
?
2
?
3
?
4
?
5
?
6
?
7
?
• At reading : a content of the Receive buffer register is read out.
R W
?
Note: A content of the transmit buffer register cannot be read out.
A data cannot be written to the receive buffer register.
Fig. 2.3.2 Structure of Transmit/Receive buffer register
Serial I/O1 status register
b7 b6 b5 b4 b3 b2 b1 b0
Serial I/O1 status register (SIO1STS) [Address : 1916]
Name
B
Transmit
buffer
empty flag
0
(TBE)
1 Receive buffer full flag (RBF)
2 Transmit shift register shift
completion flag (TSC)
3 Overrun error flag (OE)
4 Parity error flag (PE)
5 Framing error flag (FE)
6 Summing error flag (SE)
Function
0 : Buffer full
1 : Buffer empty
0 : Buffer empty
1 : Buffer full
0 : Transmit shift in progress
1 : Transmit shift completed
0
R W
✕
0
✕
0
✕
0 : No error
1 : Overrun error
0 : No error
1 : Parity error
0
✕
0
✕
0 : No error
1 : Framing error
0 : (OE) (PE) (FE) = 0
1 : (OE) (PE) (FE) = 1
0
✕
0
✕
1
✕
7 Nothing is allocated for this bit. It is a write disabled bit.
When this bit is read out, the value is “0.”
Fig. 2.3.3 Structure of Serial I/O1 status register
2-24
3802 GROUP USER’S MANUAL
At reset
APPLICATION
2.3 Serial I/O
Serial I/O1 control register
b7 b6 b5 b4 b3 b2 b1 b0
Serial I/O1 control register (SIO1CON) [Address : 1A16]
B
Name
Function
At reset
0 BRG count source selection
bit (CSS)
0
1
0
2
3
4
5
6
7
0 : f(XIN)
1 : f(XIN)/4
Serial I/O1 synchronous clock At selecting clock synchronous serial I/O
selection bit (SCS)
0 : BRG output divided by 4
1 : External clock input
At selecting UART
0 : BRG output divided by 16
1 : External clock input divided by 16
SRDY1 output enable bit
0 : I/O port (P47)
(SRDY)
1 : SRDY1 output pin
0 : Transmit buffer empty
Transmit interrupt
1 : Transmit shift operating completion
source selection bit (TIC)
0 : Transmit disabled
Transmit enable bit (TE)
1 : Transmit enabled
Receive enable bit (RE)
0 : Receive disabled
1 : Receive enabled
0 : UART
Serial I/O1 mode
1 : Clock synchronous serial I/O
selection bit (SIOM)
Serial I/O1 enable bit (SIOE) 0 : Serial I/O1 disabled
(P44–P47 : I/O port)
1 : Serial I/O1 enabled
(P44–P47 : Serial I/O function pin)
R W
0
0
0
0
0
0
Fig. 2.3.4 Structure of Serial I/O1 control register
UART control register
b7 b6 b5 b4 b3 b2 b1 b0
UART control register (UARTCON) [Address : 1B16]
B
0
1
2
3
4
5
6
7
Name
Character length
selection bit (CHAS)
Parity enable bit
(PARE)
Parity selection bit
(PARS)
Stop bit length
selection bit (STPS)
P45/TxD P-channel
output disable bit (POFF)
Function
0 : 8 bits
1 : 7 bits
0 : Parity checking disabled
1 : Parity checking enabled
0 : Even parity
1 : Odd parity
0 : 1 stop bit
1 : 2 stop bits
In output mode
0 : CMOS output
1 : N-channel open-drain output
Nothing is allocated for these bits. These are write disabled
bits. When these bits are read out, the values are “1.”
At reset
R W
0
0
0
0
0
1
1
1
Fig. 2.3.5 Structure of UART control register
3802 GROUP USER’S MANUAL
2-25
APPLICATION
2.3 Serial I/O
Baud rate generator
b7 b6 b5 b4 b3 b2 b1 b0
Baud rate generator (BRG) [Address : 1C16]
Function
B
At reset
0 A count value of Baud rate generator is set.
?
1
?
2
?
3
?
4
?
5
?
6
?
7
?
R W
Fig. 2.3.6 Structure of Baud rate generator
Serial I/O2 control register
b7 b6 b5 b4 b3 b2 b1 b0
Serial I/O2 control register (SIO2CON) [Address : 1D16]
Name
B
Internal
synchronous
clock
0
selection bits
1
2
Function
b2 b1 b0
0
0
0
0
1
1
0
0
1
1
1
1
0 : f(XIN)/8
1 : f(XIN)/16
0 : f(XIN)/32
1 : f(XIN)/64
0 : f(XIN)/128
1 : f(XIN)/256
0
0
0
3 Serial I/O2 port selection bit
0
4
0
5
6
7
0 : I/O port (P51, P52)
1 : SOUT2, SCLK2 output pin
0 : I/O port (P53)
SRDY2 output enable bit
1 : SRDY2 output pin
Transfer direction selection bit 0 : LSB first
1 : MSB first
Serial I/O2 synchronous clock 0 : External clock
1 : Internal clock
selection bit
In output mode
P51/SOUT2 P-channel
0 : CMOS output
output disable bit
1 : N-channel open-drain output
Fig. 2.3.7 Structure of Serial I/O2 control register
2-26
At reset
3802 GROUP USER’S MANUAL
0
0
0
R W
APPLICATION
2.3 Serial I/O
Serial I/O2 register
b7 b6 b5 b4 b3 b2 b1 b0
Serial I/O2 register (SIO2) [Address : 1F16]
Function
B
At reset
0 A shift register for serial transmission and reception.
● At transmitting : Set a transmission data.
1 ● At receiving : Store a reception data.
?
2
?
3
?
4
?
5
?
6
?
7
?
R W
?
Fig. 2.3.8 Structure of Serial I/O2 register
Interrupt edge selection register
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt edge selection register (INTEDGE) [Address : 3A16]
Name
B
INT
0 interrupt edge
0
selection bit
1 INT1 interrupt edge
2
3
4
5
6
7
Function
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
selection bit
Nothing is allocated for this bit. This is a write
disabled bit.When this bit is read out, the value is “0.”
INT2 interrupt edge
0 : Falling edge active
selection bit
1 : Rising edge active
0 : Falling edge active
INT3 interrupt edge
1 : Rising edge active
selection bit
INT4 interrupt edge
0 : Falling edge active
selection bit
1 : Rising edge active
Nothing is allocated for these bits. These are write disabled
bits. When these bits are read out, the values are “0.”
At reset
R W
0
0
0
0
0
0
0
0
Fig. 2.3.9 Structure of Interrupt edge selection register
3802 GROUP USER’S MANUAL
2-27
APPLICATION
2.3 Serial I/O
Interrupt request register 1
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt request reigster 1 (IREQ1) [Address : 3C16]
Function
Name
B
At reset
R W
0 INT0 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0
✻
1 INT1 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0
✻
2 Serial I/O1 receive interrupt
request bit
3 Serial I/O1 transmit interrupt
request bit
4 Timer X interrupt request bit
bit
5 Timer Y interrupt request bit
6 Timer 1 interrupt request bit
7 Timer 2 interrupt request bit
✻ “0” is set by software, but not “1.”
Fig. 2.3.10 Structure of Interrupt request register 1
Interrupt request register 2
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt request reigster 2 (IREQ2) [Address : 3D16]
Name
B
0 CNTR0 interrupt request bit
At reset
R W
0
✻
0
✻
0
✻
0
✻
0
✻
0
✻
0
✻
7 Nothing is allocated for this bit. This is a write disabled bit.
0
✕
1
2
3
4
5
6
When this bit is read out, the value is “0.”
✻ “0” is set by software, but not “1.”
Fig. 2.3.11 Structure of Interrupt request register 2
2-28
Function
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
CNTR1 interrupt request bit
1 : Interrupt request
Serial I/O2 interrupt request bit 0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
INT2 interrupt request bit
1 : Interrupt request
0 : No interrupt request
INT3 interrupt request bit
1 : Interrupt request
0
: No interrupt request
INT4 interrupt request bit
1 : Interrupt request
0 : No interrupt request
AD conversion interrupt
1 :Interrupt request
request bit
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Interrupt control register 1
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt control register 1 (ICON1) [Address : 3E16]
B
Function
Name
0 INT0 interrupt enable bit
1 INT1 interrupt enable bit
2 Serial I/O1 receive interrupt
enable bit
3 Serial I/O1 transmit interrupt
enable bit
4 Timer X interrupt enable bit
5 Timer Y interrupt enable bit
6 Timer 1 interrupt enable bit
7 Timer 2 interrupt enable bit
At reset
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
R W
0
0
0
0
0
0
Fig. 2.3.12 Structure of Interrupt control register 1
Interrupt control register 2
b7 b6 b5 b4 b3 b2 b1 b0
0
Interrupt control reigster 2 (ICON2) [Address : 3F16]
Name
B
0 CNTR0 interrupt enable bit
Function
At reset
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 CNTR1 interrupt enable bit
1 : Interrupt enabled
0
: Interrupt disabled
2 Serial I/O2 interrupt enable bit
1 : Interrupt enabled
0
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
3 INT2 interrupt enable bit
4 INT3 interrupt enable bit
5 INT4 interrupt enable bit
6 AD conversion interrupt
enable bit
7 Fix this bit to “0.”
R W
0
0
0
0
0
0
Fig. 2.3.13 Structure of Interrupt control register 2
3802 GROUP USER’S MANUAL
2-29
APPLICATION
2.3 Serial I/O
2.3.3 Serial I/O connection examples
(1) Control of peripheral IC equipped with CS pin
There are connection examples using a clock synchronous serial I/O mode.
Figure 2.3.14 shows connection examples of a peripheral IC equipped with the CS pin.
(1) Only transmission
(using the RXD pin as an I/O port)
Port
CS
SCLK
CLK
TXD
DATA
3802 group
Peripheral IC
(OSD controller etc.)
(3) Transmission and reception
(Pins RXD and TXD are connected)
(Pins IN and OUT in peripheral IC
are connected)
3802
(2) Transmission and reception
CS
SCLK
CLK
TXD
RXD
IN
3802 group
OUT
Peripheral IC
(E2 PROM etc.)
(4) Connecting ICs
Port
CS
Port
CS
SCLK
CLK
SCLK
CLK
TXD
RXD
IN
TXD
IN
OUT
R XD
Port
OUT
group ✻1
IC ✻2
Peripheral
2
(E PROM etc.)
Peripheral IC 1
3802 group
✻1:
Select an N-channel open-drain output control of TXD pin.
2: Use such OUT pin of peripheral IC as an N-channel opendrain output in high impedance during receiving data.
Notes1: “Port” is an output port controlled by software.
2: Use SOUT and SIN instead of TXD and RXD in the
serial I/O2.
Fig. 2.3.14 Serial I/O connection examples (1)
2-30
Port
3802 GROUP USER’S MANUAL
CS
CLK
IN
OUT
Peripheral IC 2
APPLICATION
2.3 Serial I/O
(2) Connection with microcomputer
Figure 2.3.15 shows connection examples of the other microcomputers.
(1) Selecting an internal clock
(2) Selecting an external clock
SCLK
CLK
SCLK
CLK
TXD
IN
TXD
IN
RXD
OUT
RXD
OUT
3802 group
Microcomputer
(3) Using the SRDY siganl output function
(Selecting an external clock)
3802 group
Microcomputer
(4) Using UART ✻
SRDY
RDY
SCLK
CLK
TXD
RXD
TXD
IN
RXD
TXD
RXD
OUT
3802 group
Microcomputer
3802 group
Microcomputer
✻: UART can not be used in the serial I/O2.
Note: Use SOUT and SIN instead of TXD and RXD in the serial I/O2.
Fig. 2.3.15 Serial I/O connection examples (2)
3802 GROUP USER’S MANUAL
2-31
APPLICATION
2.3 Serial I/O
2.3.4 Setting of serial I/O transfer data format
A clock synchronous or clock asynchronous (UART) is selected as a data format of the serial I/O1.
The serial I/O2 operates in a clock synchronous.
Figure 2.3.16 shows a setting of serial I/O transfer data format.
1ST-8DATA-1SP
ST
LSB
MSB
SP
1ST-7DATA-1SP
ST
LSB
MSB
SP
1ST-8DATA-1PAR-1SP
ST
LSB
MSB
PAR
PAR
SP
MSB
2SP
SP
1ST-7DATA-1PAR-1SP
ST
UART
LSB
MSB
1ST-8DATA-2SP
ST
LSB
1ST-7DATA-2SP
ST
Serial
I/O1
LSB
MSB
2SP
1ST-8DATA-1PAR-2SP
ST
LSB
MSB
PAR
PAR
2SP
1ST-7DATA-1PAR-2SP
ST
Clock synchronous
Serial I/O
Serial
I/O2
Clock synchronous
Serial I/O
LSB
LSB first
LSB first
MSB first
Fig. 2.3.16 Setting of Serial I/O transfer data format
2-32
MSB
3802 GROUP USER’S MANUAL
ST :Start bit
SP :Stop bit
PAR :Parity bit
2SP
APPLICATION
2.3 Serial I/O
2.3.5 Serial I/O application examples
(1) Communication using a clock synchronous serial I/O (transmit/receive)
_____
Outline : 2-byte data is transmitted and received through the clock synchronous serial I/O. The SRDY
signal is used for communication control.
Figure 2.3.17 shows a connection diagram, and Figure 2.3.18 shows a timing chart.
Transmitting side
Receiving side
P41/INT0
SRDY1
SCLK1
SCLK
TXD
RXD
3802 group
3802 group
Fig. 2.3.17 Connection diagram [Communication using a clock synchronous serial I/O]
Specifications : •
•
•
•
The Serial I/O1 is used (clock synchronous serial I/O is selected)
Synchronous
clock frequency : 125 kHz (f(X IN) = 4 MHz is divided by 32)
_____
The S RDY1 (receivable signal) is _____
used.
The receiving side outputs the S RDY1 signal at intervals of 2 ms (generated by
timer), and 2-byte data is transferred from the transmitting side to the receiving
side.
••••
SRDY1
SCLK1
TXD
••••
D0 D1 D2 D3 D4 D5 D6 D7
D0 D1 D2 D3 D4 D5 D6 D7
D0 D1
••••
2 ms
Fig. 2.3.18 Timing chart [Communication using a clock synchronous serial I/O]
3802 GROUP USER’S MANUAL
2-33
APPLICATION
2.3 Serial I/O
Transmitting side
Serial I/O1 status register (Address : 1916)
b7
b0
SIO1STS
Transmit buffer empty flag
• Check to be transferred data from the Transmit buffer register to
Transmit shift register.
• Writable the next transmission data to the Transmit buffer register
at being set to “1.”
Transmit shift register shift completion flag
Check a completion of transmitting 1-byte data with this flag
“1” : Transmit shift completed
Serial I/O1 control register (Address : 1A16)
b7
SIO1CON
b0
1 1 0 1
0 0
BRG counter source selection bit : f(XIN)
Serial I/O1 synchronous clock selection bit : BRG/4
Transmit enable bit : Transmit enabled
Receive enable bit : Receive disabled
Serial I/O1 mode selection bit : Clock synchronous serial I/O
Serial I/O1 enable bit : Serial I/O1 enabled
Baud rate generator (Address : 1C16)
b7
BRG
b0
Set “division ratio – 1”
7
Interrupt edge selection register (Address : 3A16)
b7
INTEDGE
b0
0
INT0 active edge selection bit : Select INT0 falling edge
Fig. 2.3.19 Setting of related registers at a transmitting side [Communication using a clock
synchronous serial I/O]
2-34
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Receiving side
Serial I/O1 status register (Address : 1916)
b7
b0
SIO1STS
Receive buffer full flag
Check a completion of receiving 1-byte data with this flag.
“1” : At completing to receive
“0” : At reading out a receive buffer
Serial I/O1 control register (Address : 1A16)
b7
SIO1CON 1 1 1 1
b0
1 1
Serial I/O1 synchronous clock selection bit : External clock
SRDY1 output enable bit : Use the SRDY1 output
Transmit enable bit : Transmit enabled
Set this bit to “1,” using SRDY1 output.
Receive enable bit : Receive enabled
Sirial I/O1 mode selection bit : Clock synchronous serial I/O
Serial I/O1 enable bit : Serial I/O1 enabled
Fig. 2.3.20 Setting of related registers at a receiving side [Communication using a clock
synchronous serial I/O]
3802 GROUP USER’S MANUAL
2-35
APPLICATION
2.3 Serial I/O
Control procedure : Figure 2.3.21 shows a control procedure at a transmitting side, and Figure
2.3.22 shows a control procedure at a receiving side.
●
RESET
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
Initialization
.....
SIO1CON (Address : 1A16)
1101XX002
(Address : 1C16)
8—1
BRG
0
INTEDGE (Address : 3A16), bit0
0
IREQ1 (Address:3C16), bit0?
• Detect INT0 falling edge
1
IREQ1 (Address : 3C16), bit0
TB/RB (Address : 1816)
0
The first byte of a
transmission data
SIO1STS (Address : 1916), bit0?
0
1
TB/RB (Address : 1816)
The second byte of a
transmission data
SIO1STS (Address : 1916), bit0?
• Check to be transfered data from the Transmit
buffer register to the Transmit shift register.
(Transmit buffer empty flag)
• Write a transmission data
The transmit buffer empty flag is set to “0”
by this writing.
0
• Check to be transfered data from the Transmit
buffer register to the Transmit shift register.
(Transmit buffer empty flag)
1
SIO1STS (Address : 1916), bit2?
• Write a transmission data
The Transmit buffer empty flag is set to “0”
by this writing.
0
• Check a shift completion of the Transmit shift register
(Transmit shift register shift completion flag)
1
Fig. 2.3.21 Control procedure at a transmitting side [Communication using a clock synchronous
serial I/O]
2-36
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
●X
RESET
: This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
Initialization
.....
SIO1CON (Address : 1A16)
1111 X11X2
N
Pass 2 ms?
• An interval of 2 ms is generated by a timer.
Y
TB/RB (Address : 1816)
Dummy data
SIO1STS (Address : 1916), bit1?
• SRDY1 output
SRDY1 signal is output by writing data to
the TB/RB.
Using the SRDY1 , the transmit enabled bit
(bit4) of the SIO1CON is set to “1.”
0
• Check a completion of receiving
(Receive buffer full flag)
1
• Receive the first byte data.
A Receive buffer full flag is set to “0” by reading data.
Read out reception data from
TB/RB (Address : 1816)
0
SIO1STS (Address : 1916), bit1?
• Check a completion of receiving
(Receive buffer full flag)
1
Read out reception data from
TB/RB (Address : 1816)
• Receive the second byte data.
A Receive buffer full flag is set to “0” by reading data.
Fig. 2.3.22 Control procedure at a receiving side [Communication using a clock synchronous
serial I/O]
3802 GROUP USER’S MANUAL
2-37
APPLICATION
2.3 Serial I/O
(2) Output of serial data (control of a peripheral IC)
Outline : 4-byte data is transmitted and received through the clock synchronous serial I/O. The CS
signal is output to a peripheral IC through the port P5 3.
P53
SCLK1
TXD
3802 group
CS
P53
CS
CLK
DATA
CS
CLK
SCLK2
CLK
DATA
SOUT2
DATA
Peripheral IC
(1) Example for using Serial I/O1
3802 group
CS
CLK
DATA
Peripheral IC
(2) Example for using Serial I/O2
Fig. 2.3.23 Connection diagram [Output of serial data]
Specifications : •
•
•
•
•
The Serial I/O is used. (clock synchronous serial I/O is selected)
Synchronous clock frequency : 125 kHz (f(X IN) = 4 MHz is divided by 32)
Transfer direction : LSB first
The Serial I/O interrupt is not used. ___
The Port P53 is connected to the CS pin (“L” active) of the peripheral IC for a
transmission control (the output level of the port P5 3 is controlled by software).
Figre 2.3.24 shows an output timing chart of serial data.
CS
CLK
DATA
DO0
DO1
DO2
DO3
Note: The SOUT2 pin is in high impedance after completing to transfer data, using the serial I/O2
Fig. 2.3.24 Timing chart [Output of serial data]
2-38
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Figure 2.3.25 shows a setting of serial I/O1 related registers, and Figure 2.3.26 shows a setting of
serial I/O1 transmission data.
Serial I/O1 control register (Address : 1A16)
b7
SIO1CON
b0
1 1 0 1 1 0 0 0
BRG count source selection bit : f(XIN)
Serial I/O1 synchronous clock selection bit : BRG/4
SRDY1 output enable bit : Not use the SRDY1 signal output function
Transmit interrupt source selection bit : Transmit shift operating
completion
Transmit enable bit : Transmit enabled
Receive enable bit : Receive disabled
Serial I/O1 mode selection bit : Clock synchronous serial I/O
Serial I/O1 enable bit : Serial I/O1 enabled
UART control register (Address : 1B16)
b7
b0
0
UARTCON
P45/TXD P-channel output disable bit : CMOS output
Baud rate generator (Address : 1C16)
b7
b0
7
BRG
Set “division ratio – 1”
Interrupt control register 1 (Address : 3E16)
b7
b0
ICON1
0
Serial I/O1 transmit interrupt enable bit : Interrupt disabled
Interrupt request register 1 (Address : 3C16)
b7
b0
IREQ1
0
Serial I/O1 transmit interrupt request bit
Using this bit, check the completion of
transmitting 1-byte base data.
“1” : Transmit shift completion
Fig. 2.3.25 Setting of serial I/O1 related registers [Output of serial data]
Transmit/Receive buffer register (Address : 1816)
b7
TB/RB
b0
Set a transmission data.
Check that transmission of the previous data is
completed before writing data (bit 3 of the
Interrupt request register 1 is set to “1”).
Fig. 2.3.26 Setting of serial I/O1 transmission data [Output of serial data]
3802 GROUP USER’S MANUAL
2-39
APPLICATION
2.3 Serial I/O
Control procedure : When the registers are set as shown in Fig. 2.3.25, the Serial I/O1 can transmit
1-byte data simply by writing data to the Transmit buffer register.
Thus, after setting the CS signal to “L,” write the transmission data to the
Receive buffer register on a 1-byte base, and return the CS signal to “H” when
the desired number of bytes have been transmitted.
Figure 2.3.27 shows a control procedure of serial I/O1.
RESET
●X
: This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
Initialization
....
SIO1CON (Address : 1A16) 110110002
0
UARTCON (Address : 1B16), bit4
(Address : 1C16)
8–1
BRG
(Address : 3E16), bit3
0
ICON1
(Address : 0A16), bit3
1
P5
(Address : 0B16) XXXX1XXX2
P5D
●
Set the Serial I/O1.
Serial I/O1 transmit interrupt : Disabled
●
Set the CS signal output port.
(“H” level output)
●
Set the CS signal output level to “L.”
....
●
P5 (Address : 0A16), bit3
0
IREQ1 (Address : 3C16), bit3
TB/RB (Address : 1816)
0
●
a transmission
data
IREQ1 (Address : 3C16), bit3?
●
0
●
Set the Serial I/O1 transmit interrupt
request bit to “0.”
Write a transmission data.
(start to transmit 1-byte data)
Check the completion of transmitting 1byte data.
1
N
Complete to transmit data?
●
●
Y
P5 (Address : 0A16), bit3
1
●
Use any of RAM area as a counter for
counting the number of transmitted bytes.
Check that transmission of the target
number of bytes has been completed.
Return the CS signal output level to “H”
when transmission of the target number of
bytes is completed.
Fig. 2.3.27 Control procedure of serial I/O1 [Output of serial data]
2-40
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Figure 2.3.28 shows a setting of serial I/O2 related registers, and Figure 2.3.29 shows a setting of
serial I/O2 transmission data.
Serial I/O2 control register (Address : 1D16)
b7
SIO2CON
b0
0 1 0 0 1 0 1 0
Internal synchronous clock selection bits : f(XIN)/32
Serial I/O2 port selection bit : Use the Serial I/O2
SRDY2 output enable bit : Not use the SRDY2 signal output function
Transfer direction selection bit : LSB first
Serial I/O2 synchronous clock selection bit : Internal clock
P51/SOUT2 P-channel output disable bit : CMOS output
Interrupt control register 2 (Address : 3F16)
b7
b0
ICON2
0
Serial I/O2 interrupt enable bit : Interrupt disabled
Interrupt request register 2 (Address : 3D16)
b7
b0
IREQ2
0
Serial I/O2 interrupt request bit
Using this bit, check the completion of
transmitting 1-byte base data.
“1” : Transmit completion
Fig. 2.3.28 Setting of serial I/O2 related registers [Output of serial data]
Serial I/O2 register (Address : 1F16)
b7
SIO2
b0
Set a transmission data.
Check that transmission of the previous data is
completed before writing data (bit 2 of the Interrupt
request register 2 is set to “1”).
Fig. 2.3.29 Setting of serial I/O2 transmission data [Output of serial data]
3802 GROUP USER’S MANUAL
2-41
APPLICATION
2.3 Serial I/O
Control procedure : When the registers are set as shown in Fig. 2.3.28, the Serial I/O2 can transmit
1-byte data simply by writing data to the Serial I/O2 register.
Thus, after setting the CS signal to “L,” write the transmission data to the Serial
I/O1 register on a 1-byte base, and return the CS signal to “H” when the desired
number of bytes have been transmitted.
Figure 2.3.30 shows a control procedure of serial I/O2.
RESET
●
X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
Initialization
....
●
010010102
SIO2CON(Address : 1D16)
0
ICON2 (Address : 3F16), bit2
1
(Address : 0A16), bit3
P5
XXXX1XXX2
(Address : 0B16)
P5D
●
●
Set the Serial I/O2 control register.
Serial I/O2 interrupt : Disabled
Set the CS signal output port.
(“H” level output)
....
P5 (Address : 0A16), bit3
0
IREQ2 (Address : 3D16), bit2
0
a transmission
data
SIO2 (Address : 1F16)
IREQ2 (Address : 3D16), bit2?
●
Set the CS signal output level to “L.”
●
Set the Serial I/O2 interrupt request bit to “0.”
●
0
●
Write a transmission data.
(start to transmit 1-byte data)
Check the completion of transmitting 1byte data.
1
N
Complete to transmit data?
●
●
Y
P5 (Address : 0A16), bit3
1
●
Use any of RAM area as a counter for
counting the number of transmitted bytes.
Check that transmission of the target
number of bytes has been completed.
Return the CS signal output level to “H” when
transmission of the target number of bytes is
completed.
Fig. 2.3.30 Control procedure of serial I/O2 [Output of serial data]
2-42
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
(3) Cyclic transmission or reception of block data (data of a specified number of bytes)
between microcomputers
[without using an automatic transfer]
Outline : When a clock synchronous serial I/O is used for communication, synchronization of the clock
and the data between the transmitting and receiving sides may be lost because of noise
included in the synchronizing clock. Thus, it is necessary to be corrected constantly. This
“heading adjustment” is carried out by using the interval between blocks in this example.
SCLK
SCLK
RXD
TXD
TXD
RXD
Slave unit
Master unit
Note: Use SOUT and SIN instead of TXD and RXD in the serial I/O2.
Fig. 2.3.31 Connection diagram [Cyclic transmission or reception of block data between
microcomputers]
Specifications : •
•
•
•
•
•
•
•
The serial I/O1 is used (clock synchronous serial I/O is selected).
Synchronous clock frequency : 131 kHz (f(X IN) = 4.19 MHz is divided by 32)
Byte cycle: 488 µ s
Number of bytes for transmission or reception : 8 byte/block
Block transfer cycle : 16 ms
Block transfer period : 3.5 ms
Interval between blocks : 12.5 ms
Heading adjustive time : 8 ms
Limitations of the specifications
1. Reading of the reception data and setting of the next transmission data must be completed
within the time obtained from “byte cycle – time for transferring 1-byte data” (in this example,
the time taken from generating of the Serial I/O1 receive interrupt request to generating of the
next synchronizing clock is 431 µ s).
2. “Heading adjustive time < interval between blocks” must be satisfied.
3802 GROUP USER’S MANUAL
2-43
APPLICATION
2.3 Serial I/O
The communication is performed according to the timing shown below. In the slave unit, when a
synchronizing clock is not input within a certain time (heading adjustive time), the next clock input is
processed as the beginning (heading) of a block.
When a clock is input again after one block (8 byte) is received, the clock is ignored.
Figure 2.3.33 shows a setting of related registers.
D0
D1
D2
D7
D0
Byte cycle
Block transfer period
Interval between blocks
Block transfer cycle
Heading adjustive time
Processing for heading adjustment
Fig. 2.3.32 Timing chart [Cyclic transmission or reception of block data between microcomputers]
Master unit
Slave unit
Serial I/O1 control register (Address : 1A16)
b7
b0
Serial I/O1 control register (Address : 1A16)
b7
b0
SIO1CON 1 1 1 1 1 0 0 0
SIO1CON 1 1 1 1
0 1
BRG count source : f(XIN)
Synchronous
clock : BRG/4
Not use the SRDY1 output
Transmit interrupt source :
Transmit shift operating completion
Not be effected by
external clock
Synchronous clock : External clock
Not use the SRDY1 output
Transmit enabled
Receive enabled
Transmit enabled
Receive enabled
Not use the serial I/O1 transmit interrupt
Clock synchronous serial I/O
Clock synchronous serial I/O
Serial I/O1 enabled
Serial I/O1 enabled
Both of units
UART control register (Address : 1B16)
b7
b0
UARTCON
0
P45/TXD pin : CMOS output
Baud rate generator (Address : 1C16)
b7
b0
BRG
7
Set “division ratio – 1”
Fig. 2.3.33 Setting of related registers [Cyclic transmission or reception of block data between
microcomputers]
2-44
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Control procedure :
➀ Control in the master unit
After a setting of the related registers is completed as shown in Figure 2.3.33, in the master unit
transmission or reception of 1-byte data is started simply by writing transmission data to the
Transmit buffer register.
To perform the communication in the timing shown in Figure 2.3.32, therefore, take the timing into
account and write transmission data. Read out the reception data when the Serial I/O1 transmit
interrupt request bit is set to “1,” or before the next transmission data is written to the Transmit
buffer register.
A processing example in the master unit using timer interrupts is shown below.
Interrupt processing routine
executed every 488 µ s
CLT (Note 1)
CLD (Note 2)
Push register to stack
Within a block transfer period?
●
Note 1: When using the Index X mode flag (T).
Note 2: When using the Decimal mode flag (D).
Push the register used in the interrupt
processing routine into the stack.
N
●
Y
Generate a certain block interval by
using a timer or other functions.
●
Count a block interval counter
Read a reception data
Complete to transfer a block?
Y
Start a block transfer?
N
Y
N
Write the first transmission data
(first byte) in a block
Write a transmission data
Pop registers
Check the block interval counter and
determine to start of a block transfer.
●
Pop registers which is pushed to stack.
RTI
Fig. 2.3.34 Control in the master unit
3802 GROUP USER’S MANUAL
2-45
APPLICATION
2.3 Serial I/O
➁ Control in the slave unit
After a setting of the related registers is completed as shown in Figure 2.3.33, the slave unit becomes the
state which is received a synchronizing clock at all times, and the Serial I/O1 receive interrupt request bit
is set to “1” every time an 8-bit synchronous clock is received.
By the serial I/O1 receive interrupt processing routine, the data to be transmitted next is written to the
Transmit buffer register after received data is read out.
However, if no serial I/O1 receive interrupt occurs for more than a certain time (head adjustive time), the
following processing will be performed.
1. The first 1 byte data of the transmission data in the block is written into the Transmit buffer register.
2. The data to be received next is processed as the first 1 byte of the received data in the block.
Figure 2.3.35 shows the control in the slave unit using a serial I/O1 receive interrupt and any timer interrupt
(for head adjustive).
Serial I/O1 receive interrupt
processing routine
Timer interrupt processing
routine
CLT (Note 1)
CLD (Note 2)
Push register to stack
●
●
N
Within a block transfer period?
Push the register used in
the interrupt processing
routine into the stack.
Check the received byte
counter to judge if a block
has been transfered.
Y
CLT (Note 1)
CLD (Note 2)
Push register to stack
●
Heading adjustive counter – 1
N
Heading adjustive
counter = 0?
Read a reception data
Push the register used in
the interrupt processing
routine into the stack.
Y
Write the first transmission data
(first byte) in a block
A received byte counter +1
A received byte counter ≥ 8?
A received byte counter
Y
0
N
Pop registers
Write any data (FF16)
Write a transmission data
●
Pop registers which is
pushed to stack.
RTI
Heading adjustive
counter
Initialized
value (Note 3)
Pop registers
●
Pop registers which is
pushed to stack.
RTI
Notes 1: When using the Index X mode flag (T).
2: When using the Decimal mode flag (D).
3: In this example, set the value which is equal to the
heading adjustive time divided by the timer interrupt
cycle as the initialized value of the heading adjustive
counter.
For example: When the heading adjustive time is 8 ms
and the timer interrupt cycle is 1 ms, set
8 as the initialized value.
Fig. 2.3.35 Control in the slave unit
2-46
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
(4) Communication (transmit/receive) using an asynchronous serial I/O (UART)
Point : 2-byte data is transmitted and received through an asynchronous serial I/O.
The port P4 0 is used for communication control.
Figure 2.3.36 shows a connection diagram, and Figure 2.3.37 shows a timing chart.
Receiving side
Transmitting side
P40
P40
TXD
RXD
3802 group
3802 group
Fig. 2.3.36 Connection diagram [Communication using UART]
Specifications : • The Serial I/O1 is used (UART is selected).
• Transfer bit rate : 9600 bps (f(XIN) = 4.9152 MHz is divided by 512)
• Communication control using port P4 0
(The output level of the port P4 0 is controlled by softoware.)
• 2-byte data is transferred from the transmitting side to the receiving side at intervals of 10 ms (generated by timer).
P40
TXD
ST D0
D1 D2 D3 D4 D5 D6
D7 SP(2) ST D0 D1 D2 D3
D4 D5 D6 D7 SP(2)
ST D0
10 ms
Fig. 2.3.37 Timing chart [Communication using UART]
3802 GROUP USER’S MANUAL
2-47
APPLICATION
2.3 Serial I/O
Table 2.3.1 shows setting examples of Baud rate generator (BRG) values and transfer bit rate values,
Figure 2.3.38 shows a setting of related registers at a transmitting side, and Figure 2.3.39 shows a
setting of related registers at a receiving side.
Table 2.3.1 Setting examples of Baud rate generator values and transfer bit rate values
Transfer bit BRG count
at f(X IN) = 4.9152 MH Z
at f(X IN) = 7.3728 MH Z
at f(XIN) = 8 MHZ
rate (bps) source
(Note 1)
(Note 2) BRG setting value Actual time (bps) BRG setting value Actual time (bps) BRG setting value Actual time (bps)
600
f(XIN)/4
127(7F 16)
600.00
191(BF 16)
600.00
207(CF 16)
600.96
1200
f(XIN)/4
63(3F16)
1200.00
95(5F 16)
1200.00
103(67 16)
1201.92
2400
f(XIN)/4
31(1F16)
2400.00
47(2F 16)
2400.00
51(33 16)
2403.85
4800
f(XIN)/4
15(0F16)
4800.00
23(17 16)
4800.00
25(19 16)
4807.69
9600
f(XIN)/4
7(07 16)
9600.00
11(0B16)
9600.00
12(0C16)
9615.38
19200
f(XIN)/4
3(03 16)
19200.00
5(0516)
19200.00
5(0516)
20833.33
38400
f(XIN)/4
1(01 16)
38400.00
2(0216)
38400.00
2(0216)
41666.67
76800
f(X IN)
3(03 16)
76800.00
5(0516)
76800.00
5(0516)
83333.33
31250
f(X IN)
15(0F 16)
31250.00
62500
f(X IN)
7(0716)
62500.00
Notes 1: Equation of transfer bit rate
Transfer bit rate (bps) =
f(XIN)
(BRG setting value + 1) ✕ 16 ✕ m
m: when bit 0 of the Serial I/O1 control register (Address : 1A 16) is set to “0,” a value of
m is 1.
when bit 0 of the Serial I/O1 control register (Address : 1A 16) is set to “1,” a value of
m is 4.
2: A BRG count source is selected by bit 0 of the Serial I/O1 control register (Address : 1A 16 ).
2-48
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Transmitting side
Serial I/O1 status register (Address : 1916)
b7
b0
SIO1STS
Transmit buffer empty flag
• Check to be transferred data from the Transmit buffer
register to the Transmit shift register.
• Writable the next transmission data to the Transmit buffer
register at being set to “1.”
Transmit shift register shift completion flag
Check a completion of transmitting 1-byte data with this flag.
“1” : Transmit shift completed
Serial I/O1 control register (Address : 1A16)
b7
b0
SIO1CON 1 0 0 1
0 0 1
BRG count source selection bit : f(XIN)/4
Serial I/O1 synchronous clock selection bit : BRG/16
SRDY1 output enable bit : Not use SRDY1 out
Transmit enable bit : Transmit enabled
Receive enable bit : Receive disabled
Serial I/O1 mode selection bit : Asynchronous serial I/O(UART)
Serial I/O1 enable bit : Serial I/O1 enabled
UART control register (Address : 1B16)
b7
UARTCON
b0
0 1
0 0
Character length selection bit : 8 bits
Parity enable bit : Parity checking disabled
Stop bit length selection bit : 2 stop bits
P45/TXD P-channel output disable bit : CMOS output
Baud rate generator (Address : 1C16)
b7
BRG
b0
7
Set
f(XIN)
Transfer bit rate
16
m✻
–1
✻ when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “0,”
a value of m is 1.
when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “1,”
a value of m is 4.
Fig. 2.3.38 Setting of related registers at a transmitting side [Communication using UART]
3802 GROUP USER’S MANUAL
2-49
APPLICATION
2.3 Serial I/O
Receiving side
Serial I/O1 status register (Address : 1916)
b7
b0
SIO1STS
Receive buffer full flag
Check a completion of receiving 1-byte data with this flag.
“1” : at completing to receive
“0” : at reading out a content of the Receive buffer register
Overrun error flag
“1” : when data are ready to be transferred to the Receive shift register
in the state of storing data into the Receive buffer register.
Parity error flag
“1” : when parity error occurs at enabled parity.
Framing error flag
“1” : when data can not be received at the timing of setting a stop bit.
Summing error flag
“1” : when even one of the following errors occurs.
• Overrun error
• Parity error
• Framing error
Serial I/O1 control register (Address : 1A16)
b7
SIO1CON
b0
1 0 1 0
0 0 1
BRG count source selection bit : f(XIN)/4
Serial I/O1 synchronous clock selection bit : BRG/16
SRDY1 output enable bit : Not use SRDY1 out
Transmit enable bit : Transmit disabled
Receive enable bit : Receive enabled
Serial I/O1 mode selection bit : Asynchronous serial I/O(UART)
Serial I/O1 enable bit : Serial I/O1 enabled
UART control register (Address : 1B16)
b7
b0
UARTCON
1
0 0
Character length selection bit : 8 bits
Parity enable bit : Parity checking disabled
Stop bit length selection bit : 2 stop bits
Baud rate generator (Address : 1C16)
b7
BRG
b0
7
Set
f(XIN)
Transfer bit rate
16
m✻
–1
✻ when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “0,”
a value of m is 1.
when bit 0 of the Serial I/O1 control register (Address : 1A16) is set to “1,”
a value of m is 4.
Fig. 2.3.39 Setting of related registers at a receiving side [Communication using UART]
2-50
3802 GROUP USER’S MANUAL
APPLICATION
2.3 Serial I/O
Control procedure : Figure 2.3.40 shows a control procedure at a transmitting side, and Figure 2.3.41
shows a control procedure at a receiving side.
●X
RESET
: This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
Initialization
.....
1001X0012
SIO1CON (Address : 1A16)
000010002
UARTCON (Address : 1B16)
(Address : 1C16)
8 –1
BRG
0
(Address : 0816), bit0
P4
(Address
:
09
16
)
2
XXXXXXX1
P4D
• Set port P40 for a communication control.
N
Pass 10 ms?
• An interval of 10 ms is generated by a timer.
Y
P4 (Address : 0816), bit0
• Start of communication.
1
• Write a transmission data
The Transmit buffer empty flag is set to “0”
by this writing.
The first byte of a
transmission data
TB/RB (Address : 1816)
0
SIO1STS (Address : 1916), bit0?
• Check to be transferred data from the Transmit
buffer register to the Transmit shift register.
(Transmit buffer empty flag)
1
The second byte of
a transmission data
TB/RB (Address : 1816)
SIO1STS (Address : 1916), bit0?
• Write a transmission data
The Transmit buffer empty flag is set to “0”
by this writing.
0
• Check to be transferred data from the Transmit
buffer register to the Transmit shift register.
(Transmit buffer empty flag)
0
• Check a shift completion of the Transmit shift register.
(Transmit shift register shift completion flag)
1
SIO1STS (Address : 1916), bit2?
1
P4 (Address : 0816), bit0
0
• End of communication
Fig. 2.3.40 Control procedure at a transmitting side [Communication using UART]
3802 GROUP USER’S MANUAL
2-51
APPLICATION
2.3 Serial I/O
●
RESET
X :This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
Initialization
.....
SIO1CON
UARTCON
BRG
P4D
(Address : 1A16)
(Address : 1B16)
(Address : 1C16)
(Address : 0916)
1010X0012
000010002
8–1
XXXXXXX02
SIO1STS (Address : 1916), bit1?
0
• Check a completion of receiving.
(Receive buffer full flag)
1
• Receive the first 1 byte data
A Receive buffer full flag is set
to “0” by reading data.
Read out a reception data
from RB (Address : 1816)
SIO1STS (Address : 1916), bit6?
1
• Check an error flag.
0
• Check a completion of receiving.
(Receive buffer full flag)
0
SIO1STS (Address : 1916), bit1?
1
• Receive the second byte data
A Receive buffer full flag is set
to “0” by reading data.
Read out a reception data
from RB (Address : 1816)
SIO1STS (Address : 1916), bit6?
1
• Check an error flag.
Processing for error
0
1
P4 (Address : 0816), bit0?
0
SIO1CON (Address : 1A16)
SIO1CON (Address : 1A16)
0000X0012
1010X0012
• Countermeasure for a bit slippage
Fig. 2.3.41 Control procedure at a receiving side [Communication using UART]
2-52
3802 GROUP USER’S MANUAL
APPLICATION
2.4 PWM
2.4 PWM
2.4.1 Memory map of PWM
002B16
PWM control register (PWMCON)
002C16
PWM prescaler (PREPWM)
002D16
PWM register (PWM)
Fig. 2.4.1 Memory map of PWM related registers
3802 GROUP USER’S MANUAL
2-53
APPLICATION
2.4 PWM
2.4.2 Related registers
PWM control register
b7 b6 b5 b4 b3 b2 b1 b0
PWM control register (PWMCON) [Address:2B16]
Name
B
0 PWM function enable bit
1 Count source selection bit
Function
0 : PWM disabled
1 : PWM enabled
0 : f(XIN)
1 : f(XIN)/2
At reset
R W
0
0
2 Nothing is arranged for these bits. These are write disabled bits.
0
✕
3
0
✕
4
0
✕
5
0
✕
6
0
✕
7
0
✕
When these bits are read out, the contents are "0".
Fig. 2.4.2 Structure of PWM control register
PWM prescaler
b7 b6 b5 b4 b3 b2 b1 b0
PWM prescaler (PREPWM) [Address : 2C16]
Function
At reset
cycle is set.
● The values set in this register is written to both the PWM
prescaler pre-latch and the PWM prescaler latch at the same
time.
● When data is written during outputting PWM, the pulses
corresponding to the changed contents are output starting with
the next cycle.
● When this register is read out, the content of the PWM prescaler
latch is read out.
?
B
0
1
2
3
● PWM
?
?
4
?
5
?
6
?
7
?
Fig. 2.4.3 Structure of PWM prescaler
2-54
?
3802 GROUP USER’S MANUAL
R W
APPLICATION
2.4 PWM
PWM register
b7 b6 b5 b4 b3 b2 b1 b0
PWM register (PWM) [Address : 2D16]
b
0
●
●
1
●
2
●
3
Function
At reset
“H” level output period of PWM is set.
The values set in this register is written both the PWM register
pre-latch and the PWM register latch at the same time.
When data is written during outputting PWM, the pulses
corresponding to the changed contents are output starting with
the next cycle.
When this register is read out, the content of the PWM register
latch is read out.
?
R W
?
?
?
4
?
5
?
6
?
7
?
Fig. 2.4.4 Structure of PWM register
3802 GROUP USER’S MANUAL
2-55
APPLICATION
2.4 PWM
2.4.3 PWM output circuit application example
(1) Control of motor
Outline : The rotation speed of the motor is controlled by using PWM (pulse width modulation) output.
Figure 2.4.5 shows a connection diagram, Figures 2.4.6 shows PWM output timing, and Figure 2.4.7 shows
a setting of the related registers.
P56/PWM
M
D-A converter
Motor driver
3802 group
Fig. 2.4.5 Connection diagram
Specifications : • Motor is controlled by using the 8-bit-resolution PWM output function.
• Clock f(XIN) = 5.0 MHz
• “T,” PWM cycle : 102 µ s
• “t,” “H” level width of output pulse : 40 µ s (Fixed speed)✽
✽ A motor speed can be changed by changing the “H” level width of output pluse.
t = 40 µ s
PWM output
T = 102 µ s
Fig. 2.4.6 PWM output timing
2-56
3802 GROUP USER’S MANUAL
APPLICATION
2.4 PWM
PWM control register (Address : 2B16)
b7
b0
0 1
PWMCON
PWM function enable bit : PWM enabled (Note)
Count source selection bit : f(XIN)
Note : The PWM output function is given priority
even when the corresponding bit to P56 pin
of Port P5 direction register is set to “0”
(input mode).
PWM prescaler (Address : 2C16)
b7
b0
n
PREPWM
Set “T”, PWM cycle
n=1
[Equation]
255 ✕ (n + 1)
T=
f(XIN)
Set “t”, “H” level width of PWM
m = 100
[Equation]
T✕m
t=
255
PWM register (Address : 2D16)
b7
b0
m
PWM
Fig. 2.4.7 Setting of related registers
[About PWM output]
1. Set the PWM function enable bit to “1” : The P5 6/PWM pin is used as the PWM pin.
“H” level pulse is output first.
2. Set the PWM function enable bit to “0” : The P5 6/PWM pin is used as the port P56.
Thus, when fixing the output level, make sure the following.
• First, write an output value to bit 6 of the Port P5 register.
• Then write “X1XXXXXX2” to the Port P5 direction register.
(X : This bit is not used in this application. Set it to “0” or “1.” It’s value can be disregarded.)
3. After data is set to the PWM prescaler and the PWM register, the PWM waveforms corresponding to new data
will be output from the next repetitive cycle.
PWM output
Change PWM
output data
From the next repetitive cycle,
output modified data
Fig. 2.4.8 PWM output
3802 GROUP USER’S MANUAL
2-57
APPLICATION
2.4 PWM
Control procedure : By setting the related registers as shown to Figure 2.4.7, PWM waveforms are output to the
externalunit. This PWM output is integrated through the low pass filter and converted into DC
signals for control of the motor.
Figure 2.4.9 shows control procedure.
~
~
• X : This bit is not used in this application.
Set it to “0” or “1.” It’s value can be disregarded.
P5 (Address : 0A16), bit6
P5D (Address : 0B16)
0
X1XXXXXX2
PREPWM (Address : 2C16)
PWM
(Address : 2D16)
PWMCON (Address : 2B16)
1
100
000000012
• Output “L” level from P56/PWM pin.
• Set the PWM cycle
• Set the “H” level width of PWM
• Select the PWM count source, and enable the PWM output.
~
~
Fig. 2.4.9 Control procedure
2-58
3802 GROUP USER’S MANUAL
APPLICATION
2.5 A-D converter
2.5 A-D converter
2.5.1 Memory map of A-D conversion
003416
AD/DA control register (ADCON)
003516
A-D conver sion register (AD)
003D16
Interrupt request register 2 (IREQ2)
003F16
Interrupt control register 2 (ICON2)
Fig. 2.5.1 Memory map of A-D conversion related registers
3802 GROUP USER’S MANUAL
2-59
APPLICATION
2.5 A-D converter
2.5.2 Related registers
AD/DA control register
b7 b6 b5 b4 b3 b2 b1 b0
AD/DA control register (ADCON) [Address : 3416]
B
Function
Name
b2 b1 b0
0 Analog input pin selection bits 0 0 0 : P60/AN0
0 0 1 : P61/AN1
0 1 0 : P62/AN2
1
0 1 1 : P63/AN3
1 0 0 : P64/AN4
1 0 1 : P65/AN5
2
1 1 0 : P66/AN6
1 1 1 : P67/AN7
0
: Conversion in progress
AD
conversion
completion
bit
3
1 : Conversion completed
4 Nothing is allocated for these bits. These are write disabled bits.
5 When these bits are read out, the values are “0.”
0 : DA1 output disable
6 DA1 output enable bit
1 : DA1 output enable
7 DA2 output enable bit
0 : DA2 output disabled
1 : DA2 output enabled
At reset
R W
0
0
0
1
0
0
0
✕
✕
0
Fig. 2.5.2 Structure of AD/DA control register
A-D conversion register
b7 b6 b5 b4 b3 b2 b1 b0
A-D conversion register (AD) [Address : 3516]
B
Function
0 The read-only register which A-D conversion results are stored.
1
2
3
4
5
6
7
Fig. 2.5.3 Structure of A-D conversion register
2-60
3802 GROUP USER’S MANUAL
At reset
?
?
?
?
?
?
?
?
R W
✕
✕
✕
✕
✕
✕
✕
✕
APPLICATION
2.5 A-D converter
Interrupt request register 2
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt request reigster 2 (IREQ2) [Address : 3D16]
B
Name
0 CNTR0 interrupt request bit
1 CNTR1 interrupt request
bit
2 Serial I/O2 interrupt request
bit
3 INT2 interrupt request bit
4 INT3 interrupt request bit
Function
At reset
R W
0 : No interrupt request
1 : Interrupt request
0
✻
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0
✻
0
✻
0
✻
0
✻
0
✕
5 INT4 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
6 AD conversion interrupt
request bit
1 : Interrupt request
Nothing
is
allocated
for
this
bit.
This
is a write disabled bit.
7
When this bit is read out, the value is “0.”
✻ “0” is set by software, but not “1.”
Fig. 2.5.4 Structure of Interrupt request register 2
Interrupt control register 2
b7 b6 b5 b4 b3 b2 b1 b0
0
Interrupt control reigster 2 (ICON2) [Address : 3F16]
Name
B
CNTR
0
interrupt
enable bit
0
1 CNTR1 interrupt enable bit
2 Serial I/O2 interrupt enable
bit
3 INT2 interrupt enable bit
4 INT3 interrupt enable bit
Function
At reset
0 : Interrupt disabled
1 : Interrupt enabled
0
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
R W
0
0
0
AA
AAAAAA
AAAAAAA
AA
AA
AA
AAAAAAAA
AAAAAAA
AA
AA
AA
5 INT4 interrupt enable bit
6 AD conversion interrupt
enable bit
7 Fix this bit to “0.”
0
0
0
Fig. 2.5.5 Structure of Interrupt control register 2
3802 GROUP USER’S MANUAL
2-61
APPLICATION
2.5 A-D converter
2.5.3 A-D conversion application example
Conversion of Analog input voltage
Outline : The analog input voltage input from the sensor is converted into digital values.
Figure 2.5.6 shows a connection diagram, and Figure 2.5.7 shows a setting of related registers.
Sensor
P60/AN0
3802 group
Fig. 2.5.6 Connection diagram [Conversion of Analog input voltage]
Specifications : • The analog input voltage input from the sensor is converted into digital values.
• The P6 0/AN 0 pin is used as an analog input pin.
AA
A
AD/DA control register (Address : 3416)
b7
ADCON
b0
0 0 0 0
Analog input pin selection bits : Select the P60/AN0 pin
AD conversion completion bit : Conversion in progress
A-D conversion register (Address : 3516)
b7
AD
b0
(read-only)
Store a result of A-D conversion (Note)
Note: Read out a result of A-D conversion after bit 3 of the
AD/DA control register (ADCON) is set to “1.”
Fig. 2.5.7 Setting of related registers [Conversion of Analog input voltage]
2-62
3802 GROUP USER’S MANUAL
APPLICATION
2.5 A-D converter
Control procedure : By setting the related registers as shown in Figure 2.5.7, the analog input
voltage input from the sensor are converted into digital values.
~
~
ADCON (Address : 3416), bit0 – bit2
ADCON (Address : 3416), bit3
ADCON (Address : 3416), bit3?
• Select the P60/AN0 pin as an analog input pin.
• Start A-D conversion.
0002
0
0
• Check the completion of A-D conversion.
1
Read out AD (Address : 3516)
• Read out the conversion result.
~
~
Fig. 2.5.8 Control procedure [Conversion of Analog input voltage]
3802 GROUP USER’S MANUAL
2-63
APPLICATION
2.6 Processor mode
2.6 Processor mode
2.6.1 Memory map of processor mode
003B16
CPU mode register (CPUM )
Fig. 2.6.1 Memory map of processor mode related register
2.6.2 Related register
CPU mode register
b7 b6 b5 b4 b3 b2 b1 b0
CPU mode register (CPUM) [Adress : 3B16]
B
Name
0 Processor mode bits
1
2 Stack page selection bit
Function
00 : Single-chip mode
01 : Memory expansion mode
10 : Microprocessor mode
11 : Not available
0 : 0 page
1 : 1 page
3 Nothing is allocated for these bits. These are write disabled bits.
4 When these bits are read out, the values are “0.”
5
6
7
✻ An initial value of bit 1 is determined by a level of the CNVSS pin.
Fig. 2.6.2 Structure of CPU mode register
2-64
3802 GROUP USER’S MANUAL
At reset
R W
0
✻
0
0
0
0
0
0
✕
✕
✕
✕
✕
APPLICATION
2.6 Processor mode
2.6.3 Processor mode application examples
____
(1) Application example of memory expansion in the case where the ONW (One-Wait)
function is not used
Outline : The external memory is accessed in the microprocessor mode.
At___
f(X IN) = 8 MHz, an available RAM is given by the following :
• OE access time : ta (OE) ≤ 50 ns
• Setup time for writing data : tsu (D) ≤ 65 ns
For example, the M5M5256BP-10 whose address access is 100 ns is available.
Figure 2.6.3 shows an expansion example of a 32K byte ROM and a 32K byte RAM.
3802 group
CNVSS
AD15
ONW
2
M5M27C256AK-10
P30, P31
AD14
–
15
P4
S
A0–A14
A0–A14
EPROM
DB0
–
DB7
8
CE
74F04
AD0
8
8
D0–D7
SRAM
DQ1–DQ8
Memory map
OE
P5
M5M5256BP-10
OE
W
000016
External RAM area
(M5M5256BP)
000816
SFR area
004016 Internal RAM area
044016 External RAM area
RD
8
P6
WR
(M5M5256BP )
8MHz
VCC = 5.0V ± 10 %
800016
External ROM area
(M5M27C256AK )
FFFF16
Fig. 2.6.3 Expansion example of ROM and RAM
3802 GROUP USER’S MANUAL
2-65
APPLICATION
2.6 Processor mode
Figure 2.6.4, Figure 2.6.5 and Figure 2.6.6 show a standard timing at 8 MHz (No-Wait).
A0–A7
Address (low-order)
(Port P0)
A8–A14
Address (high-order)
(Port P1)
S
(A15)
tWL(RD)
td(AH – RD)
OE
(RD of 3802)
,,,,,,,
,,,,,,,
125 ns - 10 ns (min)
125 ns - 35 ns (min)
ta(OE)
50 ns (max)
Data
DQ1–DQ8
(Port P2)
tsu(DB – RD)
65 ns (min)
WR
“ H ” level
td(AH – RD)
tWL(RD)
ta(OE)
tsu(DB – RD)
: RD delay time after outputting address of 3802
: RD pulse width of 3802
: Output enabled access time of M5M5256BP
: Data bus setup time before RD of 3802
Fig. 2.6.4 Read-cycle (OE access, SRAM)
A0–A7
Address (low-order)
(Port P0)
A8–A14
Address (high-order)
(Port P1)
CE
tPHL
5.8 ns (max)
tWL(RD)
td(AH – RD)
OE
(RD of 3802)
,,,,,,,
,,,,,,,
125 ns - 10ns (min)
125 ns - 35 ns (min)
ta(OE)
50 ns (max)
D0–D7
(Port P2)
Data
tsu(DB – RD)
65 ns (min)
WR
“ H ” level
tPHL
td(AH – RD)
tWL(RD)
ta(OE)
tsu(DB – RD)
:
:
:
:
:
Output delay time of 74F04
RD delay time after outputting address of 3802
RD pulse width of 3802
Output enabled access time of M5M27C256AK
Data bus setup time before RD of 3802
Fig. 2.6.5 Read-cycle (OE access, EPROM)
2-66
3802 GROUP USER’S MANUAL
APPLICATION
2.6 Processor mode
A0–A7
Address (low-order)
(Port P0)
A8–A14
Address (high-order)
(Port P1)
S
(A15)
tWL(WR)
td(AH – WR)
W
(WR of 3802)
125 ns - 35 ns (min)
,,,,,,,
,,,,,,,
125 ns - 10 ns (min)
td(WR – DB)
65 ns (max)
DQ1–DQ8
Data
(Port P2)
tsu(D)
35 ns (min)
OE
(RD of 3802)
“ H ” level
td(AH – WR)
tWL(WR)
td(WR – DB)
tsu(D)
: WR delay time after outputting address of 3802
: WR pulse width of 3802
: Data bus delay time after WR of 3802
: Data setup time of M5M5256BP
Fig. 2.6.6 Write-cycle (W control, SRAM)
3802 GROUP USER’S MANUAL
2-67
APPLICATION
2.6 Processor mode
_____
(2) Application example of memory expansion in the case where the ONW (One-Wait)
function is____
used
Outline : ONW function is used when the external
memory access is slow.
____
If “L” level signal is input to the P32/ ONW pin while the CPU is in the read or write status,
the read
or___
write cycle corresponding to 1 cycle of____is extended. In the extended period,
___
the RD or WR signal is kept at the “L” level. The ONW function operates only when data is
16 to 000716 and addresses 044016 to FFFF 16 .
read from or written into addresses 0000____
Figure 2.6.7 shows an application example of the ONW function.
3802 group
CNVSS
2
AD15
74F04
M5M27C 256A K-10
P30, P31
ONW
CE
M5M5256B P-10
S
AD14
P4
15
–
8
A0–A14
A0–A14
AD0
EPRO M
DB0
P5
–
8
8
DB7
D0–D7
OE
SRAM
DQ1–DQ8
OE
W
Memory map
000016 External RAM area
(M5M5256B P )
000816
8
P6
SFR area
004016 Internal RAM area
044016 External RAM area
RD
WR
(M5M5256B P )
8MH z
VCC = 5.0V±10 %
800016
External ROM area
FFFF16
____
Fig. 2.6.7 Application example of the ONW function
2-68
3802 GROUP USER’S MANUAL
(M5M27C256A K )
APPLICATION
2.7 Reset
2.7 Reset
2.7.1 Connection example of reset IC
91
VCC
1
Power source
M62022L
5
Output
35
RESET
Delay capacity
4
GND
0.1 µ F
40
3
VSS
3802 group
Fig. 2.7.1 Example of Poweron reset circuit
Figure 2.7.2 shows the system example which switch to the RAM backup mode by detecting a drop of the
system power source voltage with the INT interrupt.
System power
source voltage
+5
91
+
VCC
7
VCC1
RESET
2
INT
VCC2
5
35
3
INT
40
1
V1 GND Cd
RESET
6
4
VSS
3802 group
M62009L, M62009P, M62009FP
Fig. 2.7.2 RAM back-up system
3802 GROUP USER’S MANUAL
2-69
CHAPTER 3
APPENDIX
3.1 Electrical characteristics
3.2 Standard characteristics
3.3 Notes on use
3.4 Countermeasures against noise
3.5 List of registers
3.6 Mask ROM ordering method
3.7 Mark specification form
3.8 Package outline
3.9 List of instruction codes
3.10 Machine instructions
3.11 SFR memory map
3.12 Pin configuration
APPENDIX
3.1 Electrical characteristics
3.1Electrical characteristics
3.1.1 ABSOLUTE MAXIMUM RATINGS
Table 3.1.1 Absolute maximum ratings
Symbol
Parameter
VCC
Power source voltage
Input voltage P00–P07, P10 –P17, P20–P27 ,
P30–P37, P40 –P47, P50–P57 ,
VI
P60–P67,
VREF
VI
Input voltage RESET, XIN
VI
Input voltage CNVSS
Output voltage P00–P07, P10 –P17, P20–P27 ,
P30–P37, P40 –P47, P50–P57 ,
VO
P60–P67,
XOUT
Pd
Power dissipation
Topr
Operating temperature
Tstg
Storage temperature
Conditions
All voltages are based on VSS.
Output transistors are cut off.
Ta = 25 °C
Ratings
–0.3 to 7.0
Unit
V
–0.3 to V CC +0.3
V
–0.3 to VCC +0.3
–0.3 to 13
V
V
–0.3 to VCC +0.3
V
1000 (Note)
–20 to 85
–40 to 125
mW
°C
°C
Note: 300 mW in case of the flat package.
3.1.2 Recommended operating conditions
Table 3.1.2 RECOMMENDED OPERATING CONDITIONS (Vcc = 3.0 to 5.5 V, Ta = –20 to 85°C, unless otherwise noted)
Limits
Symbol
Parameter
Min.
Typ.
Max.
Power source voltage (f(XIN) < 2 MHz) (Note 1)
3.0
5.0
5.5
VCC
Power source voltage (f(XIN) = 8 MHz) (Note 1)
4.0
5.0
5.5
VSS
Power source voltage
0
Analog reference voltage (when A-D converter is used)
2.0
VCC
VREF
Analog reference voltage (when D-A converter is used)
3.0
VCC
AVSS
Analog power source voltage
0
VIA
Analog input voltage
AN0 –AN7
AVSS
VCC
“H” input voltage
P00–P07, P10 –P17, P20–P27 , P30–P37, P40–P47 ,
VIH
0.8 V CC
VCC
P50–P57, P60 –P67
VIH
“H” input voltage
RESET, XIN, CNV SS
0.8 VCC
VCC
“L” input voltage
P00–P07, P10 –P17, P20–P27 , P30–P37, P40–P47 ,
VIL
0
0.2 VCC
P50–P57, P60 –P67
VIL
“L” input voltage
RESET, CNV SS
0.2 VCC
0
VIL
“L” input voltage
XIN
0.16 VCC
0
ΣI OH(peak)
“H” total peak output current
P00–P07 , P10 –P17 , P20 –P27, P3 0–P37 (Note 2)
–80
ΣI OH(peak)
“H” total peak output current
P40–P47,P5 0–P57, P60 –P67 (Note 2)
–80
ΣI OL(peak)
“L” total peak output current
P00–P07 , P10 –P17 , P20 –P27, P3 0–P37 (Note 2)
80
ΣI OL(peak)
“L” total peak output current
P40–P47,P5 0–P57, P60 –P67 (Note 2)
80
ΣI OH(avg)
“H” total average output current P00–P07 , P10 –P17 , P20 –P27, P3 0–P37 (Note 2)
–40
ΣI OH(avg)
“H” total average output current P40–P47,P5 0–P57, P60 –P67 (Note 2)
–40
ΣI OL(avg)
“L” total average output current P00–P07 , P10 –P17 , P20 –P27, P3 0–P37 (Note 2)
40
ΣI OL(avg)
“L” total average output current P40–P47,P5 0–P57, P60 –P67 (Note 2)
40
“H” peak output current
P00–P07, P10 –P17, P20–P27 , P30–P37, P40–P47 ,
IOH(peak)
–10
P50–P57, P60 –P67 (Note 3)
“L” peak output current
P00–P07, P10 –P17, P20–P27 , P30–P37, P40–P47 ,
IOL(peak)
10
P50–P57, P60 –P67 (Note 3)
“H” average output current
P00–P07, P10 –P17, P20–P27 , P30–P37, P40–P47 ,
IOH(avg)
–5
P50–P57, P60 –P67 (Note 4)
“L” average output current
P00–P07, P10 –P17, P20–P27 , P30–P37, P40–P47 ,
IOL(avg)
5
P50–P57, P60 –P67 (Note 4)
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)
8
f(XIN)
Internal clock oscillation frequency (VCC = 3.0 to 4.0 V)
6 VCC–16
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is
an average value measured over 100 ms. The total peak current is the peak value of all the currents.
2: The peak output current is the peak current flowing in each port.
3: The average output current I OL(avg), IOH(avg) in an average value measured over 100 ms.
3-2
3802 GROUP USER'S MANUAL
Unit
V
V
V
V
V
V
V
V
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
MHz
APPENDIX
3.1 Electrical characteristics
3.1.3 Electrical characteristics
Table 3.1.3 ELECTRICAL CHARACTERISTICS (VCC = 3.0 to 5.5 V, V SS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
Test conditions
“H” output voltage P00–P0 7, P10–P1 7, P20–P2 7,
P30–P3 7, P40–P4 7, P50–P5 7,
P60–P6 7 (Note 1)
VOH
“L” output voltage P00–P0 7, P10–P1 7, P20–P2 7,
P30–P3 7, P40–P4 7,P50–P57,
P60–P6 7
VOL
VT+ – V T–
VT+ – V T–
VT+ – V T–
Hysteresis
Hysteresis
Hysteresis
“H” input current
I IH
I IH
I IH
“H” input current
“H” input current
“L” input current
I IL
CNTR0, CNTR 1, INT0–INT 4
RX D, SCLK1, SIN2 , SCLK2
RESET
P00–P0 7, P10–P1 7, P20–P2 7,
P30–P3 7, P40–P4 7, P50–P5 7,
P60–P6 7
RESET, CNVSS
X IN
P00–P0 7, P10–P1 7, P20–P2 7,
P30–P3 7, P40–P4 7, P50–P5 7,
P60–P6 7, RESET, CNVSS
RESET, CNVSS
X IN
Min.
IOH = –10 mA
VCC = 4.0 to 5.5 V
IOH = –1.0 mA
VCC = 3.0 to 5.5 V
IOL = 10 mA
VCC = 4.0 to 5.5 V
IOL = 1.0 mA
VCC = 3.0 to 5.5 V
Limits
Typ.
Max.
Unit
VCC–2.0
V
VCC–1.0
2.0
V
1.0
0.4
0.5
0.5
V
V
V
VI = VCC
5.0
µA
VI = V CC
VI = V CC
5.0
µA
µA
–5.0
µA
4
VI = V SS
–5.0
µA
VI = V SS
–4
µA
VI = V SS
5.5
2.0
V
When clock stopped
13
6.4
f(XIN) = 8 MHz, VCC = 5 V
8
4
f(XIN) = 5 MHz, VCC = 5 V
2.0
0.8
f(XIN) = 2 MHz, VCC = 3 V
When WIT instruction is executed with
1.5
mA
f(Xin) = 8MHz,VCC=5V
When WIT instruction is executed with
1
I CC
Power source current
f(Xin) = 5MHz,VCC=5V
When WIT instruction is executed with
0.2
f(Xin) = 2MHz,VCC=3V
When STP instruction
Ta = 25 °C
1
0.1
is executed with clock (Note 2)
µA
stopped, output
Ta = 85 °C
10
transistors isolated.
(Note 2)
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16 ) is “0”.
P51 is measured when the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through V REF pin.
I IL
I IL
VRAM
“L” input current
“L” input current
RAM hold voltage
3.1.4 A-D converter characteristics
Table 3.1.4 A–D CONVERTER CHARACTERISTICS
(V CC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
—
—
t CONV
RLADDER
I VREF
I I(AD)
Test conditions
Parameter
Min.
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
Limits
Typ.
±1
VREF = 5.0 V
50
Max.
8
±2.5
50
35
150
200
0.5
5.0
Unit
Bits
LSB
tC (φ)
kΩ
µA
µA
Note: When D-A conversion registers (addresses 0036 16 and 003716 ) contain “0016”.
3802 GROUP USER'S MANUAL
3-3
APPENDIX
3.1 Electrical characteristics
3.1.5 D-A CONVERTER CHARACTERISTICS
Table 3.1.5 D-A CONVERTER CHARACTERISTICS
(VCC = 3.0 to 5.5 V, V SS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
Limits
Symbol
Parameter
Test conditions
Unit
Min.
Typ.
Max.
—
Resolution
8
Bits
VCC = 4.0 to 5.5 V
1.0
—
Absolute accuracy
%
VCC = 3.0 to 4.0 V
2.5
Setting time
3
µs
t su
RO
Output resistor
1
2.5
4
kΩ
I VREF
Reference power source input current (Note)
3.2
mA
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through the A-D resistance ladder.
3-4
3802 GROUP USER'S MANUAL
APPENDIX
3.1 Electrical characteristics
3.1.6 Timing requirements and Switching characteristics
Table 3.1.6 TIMING REQUIREMENTS (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
t w(RESET)
t c(X IN)
t wH(XIN)
t wL(XIN)
t c(CNTR)
t wH(CNTR)
t wH(INT)
t wL(CNTR)
t wL(INT)
t c(S CLK1)
t c(S CLK2)
t wH(SCLK1)
t wH(SCLK2)
t wL(SCLK1)
t wL(SCLK2)
tsu(R XD–SCLK1)
tsu(SIN2–S CLK2)
th(S CLK1–RX D)
th(S CLK2–SIN2)
Parameter
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
Min.
2
125
50
50
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Limits
Typ.
Max.
Unit
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.
Table 3.1.7 TIMING REQUIREMENTS (2) (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
tw(RESET)
Reset input “L” pulse width
tc(X IN)
External clock input cycle time
twH(XIN)
External clock input “H” pulse width
twL(XIN)
External clock input “L” pulse width
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(S CLK1)
tc(S CLK2)
twH(SCLK1 )
twH(SCLK2 )
twL(SCLK1)
twL(SCLK2)
tsu(RX D–SCLK1)
tsu(SIN2–SCLK2)
th(SCLK1–RX D)
th(SCLK2–S IN2)
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
Min.
2
500/
(3 V CC–8)
200/
(3 V CC–8)
200/
(3 V CC–8)
500
230
230
230
230
2000
2000
950
950
950
950
400
400
200
300
Limits
Typ.
Max.
Unit
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note: When f(XIN) = 2 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0”.
3802 GROUP USER'S MANUAL
3-5
APPENDIX
3.1 Electrical characteristics
Table 3.1.8 SWITCHING CHARACTERISTICS (1) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
t wH(SCLK1)
t wH(SCLK2)
t wL(SCLK1)
t wL(SCLK2)
td(SCLK1 –TXD)
td(SCLK2–S OUT2)
tv(SCLK1–TX D)
tv(SCLK2–SOUT2 )
t r(SCLK1 )
t f(SCLK1)
t r(SCLK2 )
t f(SCLK2)
t r(CMOS)
t f(CMOS)
Parameter
Serial I/O1 clock output “H” pulse width
Serial I/O2 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O2 output delay time (Note 2)
Serial I/O1 output valid time (Note 1)
Serial I/O2 output valid time (Note 2)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output rising time
Serial I/O2 clock output falling time
CMOS output rising time (Note 3)
CMOS output falling time (Note 3)
Test conditions
Min.
Limits
Typ.
Max.
t c(SCLK1)/2–30
t c(SCLK2)/2–160
t c(SCLK1)/2–30
t c(SCLK2)/2–160
140
200
Fig. 3.1.1
–30
0
30
30
30
40
30
30
10
10
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note1: When the P45/T XD P-channel output disable bit of the UART control register (bit 4 of address 001B16 ) is “0”.
2: When the P51 /SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16 ) is “0”.
3: XOUT pin is excluded.
Table 3.1.9 SWITCHING CHARACTERISTICS (2) (VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
t wH(SCLK1)
Parameter
t wH(SCLK2)
t wL(SCLK1)
Serial I/O1 clock output “H” pulse width
Serial I/O2 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
t wL(SCLK2)
td(SCLK1 –TXD)
td(SCLK2–S OUT2)
tv(SCLK1–TX D)
tv(SCLK2–SOUT2 )
t r(SCLK1 )
t f(SCLK1)
t r(SCLK2 )
t f(SCLK2)
t r(CMOS)
t f(CMOS)
Serial I/O2 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O2 output delay time (Note 2)
Serial I/O1 output valid time (Note 1)
Serial I/O2 output valid time (Note 2)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output rising time
Serial I/O2 clock output falling time
CMOS output rising time (Note 3)
CMOS output falling time (Note 3)
Test conditions
Min.
Limits
Typ.
350
400
Fig. 3.1.1
–30
0
20
20
3802 GROUP USER'S MANUAL
Unit
ns
ns
ns
t c(SCLK1)/2–50
t c(SCLK2)/2–240
t c(SCLK1)/2–50
t c(SCLK2)/2–240
Note1: When the P45 /TXD P-channel output disable bit of the UART control register (bit 4 of address 001B 16) is “0”.
2: When the P51/S OUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D 16) is “0”.
3: X OUT pin is excluded.
3-6
Max.
50
50
50
50
50
50
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
APPENDIX
3.1 Electrical characteristics
Table 3.1.10 TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (1)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
t su(ONW–φ)
t h(φ–ONW)
t su(DB–φ)
t h(φ–DB)
t su(ONW–RD)
t su(ONW–WR)
t h(RD–ONW)
t h(WR–ONW)
t su(DB–RD)
t h(RD–DB)
Limits
Parameter
Min.
–20
–20
60
0
Before φ ONW input set up time
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
Before RD ONW input set up time
Before WR ONW input set up time
After RD ONW input hold time
After WR ONW input hold time
Before RD data bus set up time
After RD data bus hold time
Typ.
Max.
Unit
ns
ns
ns
ns
–20
ns
–20
ns
65
0
ns
ns
Table 3.1.11 SWITCHING CHARATERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (1)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
Test conditions
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD 15–AD 8 delay time
After φ AD 15–AD 8 valid time
After φ AD 7–AD0 delay time
After φ AD 7–AD 0 valid time
SYNC delay time
SYNC valid time
RD and WR delay time
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
RD pulse width, WR pulse width
t wL(RD)
RD pulse width, WR pulse width
t wL(WR)
(When one-wait is valid)
t d(AH–RD)
After AD15 –AD 8 RD delay time
t d(AH–WR)
After AD15 –AD8 WR delay time
t d(AL–RD)
After AD7 –AD0 RD delay time
t d(AL–WR)
After AD7 –AD0 WR delay time
t v(RD–AH)
After RD AD 15–AD 8 valid time
t v(WR–AH)
After WR AD 15–AD 8 valid time
t v(RD–AL)
After RD AD 7–AD 0 valid time
t v(WR–AL)
After WR AD 7–AD 0 valid time
t d(WR–DB)
After WR data bus delay time
t v(WR–DB)
After WR data bus valid time
td(RESET–RESETOUT ) RESETOUT output delay time (Note 1)
t v(φ–RESET) RESET OUT output valid time (Note 1)
t c(φ)
t wH(φ)
t wL(φ)
t d(φ–AH)
t v(φ–AH)
t d(φ–AL)
t v(φ–AL)
t d(φ–SYNC)
t v(φ–SYNC)
t d(φ–WR)
t v(φ–WR)
t d(φ–DB)
t v(φ–DB)
Limits
Min.
Typ.
2t c(XIN)
Max.
20
10
25
10
20
10
10
5
20
40
15
t c(XIN)–10
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
3tc(X IN)–10
ns
t c(XIN)–10
t c(XIN)–10
6
6
3
Fig. 3.1.1
Unit
45
20
10
70
t c(XIN)–35
tc(XIN)–15
ns
t c(XIN)–40
tc(XIN)–20
ns
0
5
ns
0
5
ns
15
65
10
0
200
200
ns
ns
ns
ns
Note 1: The RESET OUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
3802 GROUP USER'S MANUAL
3-7
APPENDIX
3.1 Electrical characteristics
Table 3.1.12 TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (2)
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
t su(ONW–φ)
t h(φ–ONW)
t su(DB–φ)
t h(φ–DB)
t su(ONW–RD)
t su(ONW–WR)
th (RD–ONW)
t h(WR–ONW)
t su(DB–RD)
t h(RD–DB)
Parameter
Min.
Before φ ONW input set up time
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
Before RD ONW input set up time
Before WR ONW input set up time
After RD ONW input hold time
After WR ONW input hold time
Before RD data bus set up time
After RD data bus hold time
Limits
Typ.
Max.
Unit
–20
–20
180
0
ns
ns
ns
ns
–20
ns
–20
ns
185
0
ns
ns
Table 3.1.13 SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (2)
(V CC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
Test conditions
Min.
Limits
Typ.
φ clock cycle time
2t c(XIN)
φ clock “H” pulse width
tc(X IN)–20
φ clock “L” pulse width
tc(X IN)–20
After φ AD 15–AD 8 delay time
After φ AD 15–AD 8 valid time
15
10
After φ AD 7–AD0 delay time
After φ AD 7–AD 0 valid time
15
10
SYNC delay time
40
SYNC valid time
20
RD and WR delay time
15
RD and WR valid time
7
3
After φ data bus delay time
After φ data bus valid time
15
Fig. 3.1.1
RD pulse width, WR pulse width
tc(X IN)–20
t wL(RD)
RD pulse width, WR pulse width
t wL(WR)
3t c(XIN) –20
(when one-wait is valid)
t d(AH–RD)
After AD15 –AD 8 RD delay time
t c(XIN) –145
t d(AH–WR)
After AD15 –AD8 WR delay time
t d(AL–RD)
After AD7 –AD0 RD delay time
t c(XIN) –145
t d(AL–WR)
After AD7 –AD0 WR delay time
t v(RD–AH)
After RD AD 15–AD 8 valid time
10
5
t v(WR–AH)
After WR AD 15–AD 8 valid time
t v(RD–AL)
After RD AD 7–AD 0 valid time
10
5
t v(WR–AL)
After WR AD 7–AD 0 valid time
t d(WR–DB)
After WR data bus delay time
t v(WR–DB)
After WR data bus valid time
10
td(RESET–RESETOUT ) RESETOUT output delay time (Note 1)
t v(φ–RESET) RESET OUT output valid time (Note 1)
0
Note1: The RESET OUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and
the RESET input goes “H”.
t c(φ)
t wH(φ)
t wL(φ)
t d(φ–AH)
t v(φ–AH)
t d(φ–AL)
t v(φ–AL)
t d(φ–SYNC)
t v(φ–SYNC)
t d(φ–WR)
t v(φ–WR)
t d(φ–DB)
t v(φ–DB)
3-8
3802 GROUP USER'S MANUAL
Max.
150
150
25
15
200
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
195
300
300
ns
ns
ns
ns
13 cycles after
APPENDIX
3.1 Electrical characteristics
3.1.7 Absolute maximum ratings (Extended operating temperature version)
Table 3.1.14 Absolute maximum ratings (Extended operating temperature version)
Symbol
Parameter
Conditions
VCC
Power source voltage
Input voltage P00–P07, P10–P17 , P20–P27,
P30–P37, P40–P47 , P50–P57,
VI
P60–P67,
VREF
All voltage are based on VSS .
VI
Input voltage RESET, XIN
Output transistors are cut off.
VI
Input voltage CNVSS
Output voltage P00–P07, P10–P17 , P20–P27,
P30–P37, P40–P47 , P50–P57,
VO
P60–P67,
XOUT
Pd
Power dissipation
Ta = 25 °C
Topr
Operating temperature
Tstg
Storage temperature
Ratings
–0.3 to 7.0
Unit
V
–0.3 to VCC +0.3
V
–0.3 to V CC +0.3
–0.3 to 13
V
V
–0.3 to V CC +0.3
V
1000 (Note)
–40 to 85
–65 to 150
mW
°C
°C
Note: 300mW in case of the flat package
3.1.8 Recommended operatinmg conditions (Extended operating temperature version)
Table 3.1.15 Recommended operating conditions (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)
Limits
Symbol
Parameter
Unit
Min.
Typ.
Max.
5.5
VCC
4.0
V
5.0
Power source voltage (f(XIN) ≤ 2 MHz)
VSS
V
0
Power source voltage
VCC
2.0
Analog reference voltage (when A-D converter is used)
V
VREF
4.0
VCC
Analog reference voltage (when D-A converter is used)
AVSS
0
V
Analog power source voltage
VIA
AVSS
VCC
V
Analog input voltage
AN 0–AN 7
VIH
“H” input voltage
VIH
“H” input voltage
VIL
“L” input voltage
VIL
VIL
ΣI OH(peak)
ΣI OH(peak)
ΣI OL(peak)
ΣI OL(peak)
ΣI OH(avg)
ΣI OH(avg)
ΣI OL(avg)
ΣI OL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
P00–P07, P1 0–P17, P20–P27 , P30–P37, P40 –P47,
P50–P57, P6 0–P67
RESET, XIN, CNV SS
P00–P07, P1 0–P17, P20–P27 , P30–P37, P40 –P47,
P50–P57, P6 0–P67
“L” input voltage
RESET, CNV SS
“L” input voltage
XIN
“H” total peak output current
P00 –P07, P1 0–P17 , P20 –P27, P3 0–P37 (Note 1)
“H” total peak output current
P40–P47,P5 0–P57, P6 0–P67 (Note 1)
“L” total peak output current
P00 –P07, P1 0–P17 , P20 –P27, P3 0–P37 (Note 1)
“L” total peak output current
P40–P47,P5 0–P57, P6 0–P67 (Note 1)
“H” total average output current P00 –P07, P1 0–P17 , P20 –P27, P3 0–P37 (Note 1)
“H” total average output current P40–P47,P5 0–P57, P6 0–P67 (Note 1)
“L” total average output current P00 –P07, P1 0–P17 , P20 –P27, P3 0–P37 (Note 1)
“L” total average output current P40–P47,P5 0–P57, P6 0–P67 (Note 1)
“H” peak output current
P00–P07, P1 0–P17, P20–P27 , P30–P37, P40 –P47,
P50–P57, P60 –P67 (Note 2)
“L” peak output current
P00–P07, P1 0–P17, P20–P27 , P30–P37, P40 –P47,
P50–P57, P60 –P67 (Note 2)
“H” average output current
P00–P07, P1 0–P17, P20–P27 , P30–P37, P40 –P47,
P50–P57, P60 –P67 (Note 3)
“L” average output current
P00–P07, P1 0–P17, P20–P27 , P30–P37, P40 –P47,
P50–P57, P60 –P67 (Note 3)
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)
0.8 VCC
VCC
V
0.8 VCC
VCC
V
0
0.2 VCC
V
0
0
0.2 VCC
0.16 V CC
–80
–80
80
80
–40
–40
40
40
V
V
mA
mA
mA
mA
mA
mA
mA
mA
–10
mA
10
mA
–5
mA
5
mA
8
MHz
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.
2: The peak output current is the peak current flowing in each port.
3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.
3802 GROUP USER'S MANUAL
3-9
APPENDIX
3.1 Electrical characteristics
3.1.9 Electrical characteristics (Extended operating temperature version)
Table 3.1.16 Electrical characteristics (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
VOH
VOL
VT+ – VT–
VT+ – VT–
VT+ – VT–
I IH
I IH
I IH
I IL
I IL
VRAM
I CC
Parameter
Test conditions
“H” output voltage P00–P0 7, P10–P1 7, P20–P27,
P30–P3 7, P40–P4 7, P50–P57,
P60–P6 7 (Note 1)
“L” output voltage P00–P0 7, P10–P1 7, P20–P27,
P30–P3 7, P40–P4 7,P50–P5 7,
P60–P6 7
Hysteresis
CNTR0, CNTR 1, INT0–INT4
Hysteresis
RXD, SCLK1, SIN2, SCLK2
Hysteresis
RESET
“H” input current
P00–P0 7, P10–P1 7, P20–P27,
P30–P3 7, P40–P4 7, P50–P57,
P60–P6 7
“H” input current
RESET, CNVSS
“H” input current
XIN
“L” input current
P00–P0 7, P10–P1 7, P20–P27,
P30–P3 7, P40–P4 7, P50–P57,
P60–P6 7, RESET, CNV SS
“L” input current
XIN
RAM hold voltage
Power source current
IOH = –10 mA
Limits
Min.
Typ.
Max.
VCC–2.0
Unit
V
2.0
IOL = 10 mA
0.4
0.5
0.5
V
V
V
V
VI = VCC
5.0
µA
VI = V CC
VI = V CC
5.0
µA
µA
–5.0
µA
4
VI = VSS
VI = VSS
When clock stopped
f(XIN) = 8 MHz
f(XIN) = 5 MHz
When WIT instruction is executed
with f(XIN) = 8 MHz
When WIT instruction is executed
with f(XIN) = 5 MHz
When STP instruction
Ta = 25 °C
is executed with clock (Note 2)
stopped, output
Ta = 85 °C
transistors isolated.
(Note 2)
–4
2.0
6.4
4
5.5
13
8
µA
V
mA
1.5
1
0.1
1
µA
10
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16 ) is “0”.
P51 is measured when the P51/SOUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through V REF pin.
3.1.10 A-D converter characteristics (Extended operating temperature version)
Table 3.1.17 A-D CONVERTER CHARACTERISTICS (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
Parameter
—
—
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
t CONV
RLADDER
I VREF
I I(AD)
Test conditions
Limits
Typ.
±1
VREF = 5.0 V
Note: When D-A conversion registers (addresses 0036 16 and 0037 16) contain “0016 ”.
3-10
Min.
3802 GROUP USER'S MANUAL
50
35
150
0.5
Max.
8
±2.5
50
200
5.0
Unit
Bits
LSB
t C(φ)
kΩ
µA
µA
APPENDIX
3.1 Electrical characteristics
3.1.11 D-A converter characteristics (Extended operating temperature version)
Table 3.1.18 D-A CONVERTER CHARACTERISTICS (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 4.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
—
—
tsu
RO
IVREF
Parameter
Test conditions
Resolution
Absolute accuracy
Setting time
Output resistor
Reference power source input current (Note)
Min.
1
Limits
Typ.
2.5
Max.
8
1.0
3
4
3.2
Unit
Bits
%
µs
kΩ
mA
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through the A-D resistance ladder.
3802 GROUP USER'S MANUAL
3-11
APPENDIX
3.1 Electrical characteristics
3.1.12 Timing requirements and Switching characteristics (Extended operating temperature version)
Table 3.1.19 Timing requirements (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
t w(RESET)
t c(X IN)
t wH(XIN)
t wL(XIN)
t c(CNTR)
t wH(CNTR)
t wH(INT)
t wL(CNTR)
t wL(INT)
t c(S CLK1)
t c(S CLK2)
t wH(SCLK1)
t wH(SCLK2)
t wL(SCLK1)
t wL(SCLK2)
tsu(R X D–SCLK1)
tsu(SIN2 –SCLK2)
th(S CLK1–RX D)
th(S CLK2–SIN2 )
Parameter
Min.
2
125
50
50
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
Limits
Typ.
Max.
Unit
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.
Table 3.1.20 Switching characteristics (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
twH(SCLK1 )
twH(SCLK2 )
twL(SCLK1 )
twL(SCLK2 )
td(SCLK1–TX D)
td(SCLK2–S OUT2)
tv(SCLK1–TXD)
tv(SCLK2–S OUT2)
tr(S CLK1)
tf(SCLK1 )
tr(S CLK2)
tf(SCLK2 )
tr(CMOS)
tf(CMOS)
Parameter
Serial I/O1 clock output “H” pulse width
Serial I/O2 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O2 output delay time (Note 2)
Serial I/O1 output valid time (Note 1)
Serial I/O2 output valid time (Note 2)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output rising time
Serial I/O2 clock output falling time
CMOS output rising time (Note 3)
CMOS output falling time (Note 3)
Test conditions
Min.
Limits
Typ.
tc(SCLK1)/2–30
tc(SCLK2)/2–160
tc(SCLK1)/2–30
tc(SCLK2)/2–160
140
200
Fig. 3.1.1
–30
0
10
10
Note1: When the P45/T XD P-channel output disable bit of the UART control register (bit 4 of address 001B16 ) is “0”.
2: When the P51/S OUT2 P-channel output disable bit of the serial I/O2 control register (bit 7 of address 001D 16) is “0”.
3: XOUT pin excluded.
3-12
Max.
3802 GROUP USER'S MANUAL
30
30
30
40
30
30
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
APPENDIX
3.1 Electrical characteristics
Table 3.1.21 Timing requirements in memory expansion mode and microprocessor mode
(Extended operating temperature version)
(V CC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Limits
Symbol
Parameter
Unit
Min.
Typ.
Max.
tsu(ONW–φ)
Before φ ONW input set up time
–20
ns
th(φ–ONW)
After φ ONW input hold time
–20
ns
tsu(DB–φ)
Before φ data bus set up time
60
ns
th(φ–DB)
After φ data bus hold time
0
ns
tsu(ONW–RD) Before RD ONW input set up time
–20
ns
tsu(ONW–WR) Before WR ONW input set up time
th(RD–ONW) After RD ONW input hold time
–20
ns
th(WR–ONW) After WR ONW input hold time
tsu(DB–RD)
Before RD data bus set up time
65
ns
th(RD–DB)
After RD data bus hold time
0
ns
Table 3.1.22 Switching characteristics in memory expansion mode and microprocessor mode
(Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Limits
Symbol
Parameter
Test conditions
Unit
Typ.
Min.
Max.
tc(φ)
ns
φ clock cycle time
2✕tc(X IN)
ns
twH(φ)
φ clock “H” pulse width
t c(XIN) –10
ns
φ clock “L” pulse width
t c(XIN) –10
twL(φ)
40
ns
After φ AD 15–AD 8 delay time
td(φ–AH)
20
ns
tv(φ–AH)
After φ AD 15–AD 8 valid time
6
10
ns
45
After φ AD 7–AD 0 delay time
25
td(φ–AL)
ns
10
tv(φ–AL)
After φ AD 7–AD 0 valid time
6
ns
20
td(φ–SYNC)
SYNC delay time
ns
10
SYNC valid time
tv(φ–SYNC)
ns
20
10
RD and WR delay time
td(φ–WR)
ns
10
5
RD and WR valid time
tv(φ–WR)
3
ns
70
20
After φ data bus delay time
td(φ–DB)
ns
After φ data bus valid time
tv(φ–DB)
15
Fig. 3.1.1
tc(X IN) –10
ns
RD pulse width, WR pulse width
twL(RD)
RD pulse width, WR pulse width
ns
3t c(XIN )–10
twL(WR)
(when one wait is valid)
td(AH–RD)
td(AH–WR)
After AD 15–AD 8 RD delay time
After AD 15–AD 8 WR delay time
tc(X IN) –35
tc(XIN )–15
ns
td(AL–RD)
td(AL–WR)
tv(RD–AH)
tv(WR–AH)
After AD7 –AD0 RD delay time
After AD7–AD 0 WR delay time
t c(XIN)–40
tc(XIN)–20
ns
5
ns
After RD AD15 –AD 8 valid time
After WR AD 15–AD 8 valid time
0
tv(RD–AL)
tv(WR–AL)
td(WR–DB)
tv(WR–DB)
td(RESET–RESETOUT)
tv(φ–RESET)
After RD AD 7–AD 0 valid time
ns
5
0
After WR AD 7–AD 0 valid time
ns
After WR data bus delay time
65
15
ns
After WR data bus valid time
10
ns
RESETOUT output delay time
200
ns
RESETOUT output valid time (Note 1)
200
0
Note 1: The RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
Measurement output pin
100pF
CMOS output
Fig. 3.1.1 Circuit for measuring output switching
characteristics
3802 GROUP USER'S MANUAL
3-13
APPENDIX
3.1 Electrical characteristics
3.1.13 Timing diagram
Timing Diagram
tC(CNTR)
tWL(CNTR)
tWH(CNTR)
0.8 VCC
CNTR0, CNTR1
0.2 VCC
tWL(INT)
tWH(INT)
0.8 VCC
INT0–INT4
0.2 VCC
tW(RESET)
RESET
0.8 VCC
0.2 VCC
tC(XIN)
tWL(XIN)
tWH(XIN)
0.8 VCC
XIN
tf
SCLK1
SCLK2
0.2 VCC
tC(SCLK1), tC(SCLK2)
tWL(SCLK1), tWL(SCLK2)
tWH(SCLK1), tWH(SCLK2)
tr
0.8 VCC
0.2 VCC
tsu(RXD-SCLK1),
tsu(SIN2-SCLK2)
RXD
SIN2
th(SCLK1-RXD),
th(SCLK2- SIN2)
0.8 VCC
0.2 VCC
td(SCLK1-TXD),td(SCLK2-SOUT2)
TX D
SOUT2
Fig. 3.1.2 Timing diagram (in single-chip mode)
3-14
3802 GROUP USER'S MANUAL
tv(SCLK1-TXD),
tv(SCLK2-SOUT2)
APPENDIX
3.1 Electrical characteristics
Timing Diagram in Memory Expansion Mode and Microprocessor Mode (1)
tC(φ)
tWL(φ)
tWH(φ)
φ
0.5 VCC
tv(φ-AH)
td(φ-AH)
AD15–AD8
0.5 VCC
td(φ-AL)
AD7–AD0
tv(φ-AL)
0.5 VCC
tv(φ-SYNC)
td(φ-SYNC)
SYNC
0.5 VCC
td(φ-WR)
RD,WR
tv(φ-WR)
0.5 VCC
th(φ-ONW)
tSU(ONW-φ)
0.8 VCC
0.2 VCC
ONW
tSU(DB-φ)
th(φ-DB)
0.8 VCC
0.2 VCC
DB0–DB7
(At CPU reading)
td(φ-DB)
DB0–DB7
(At CPU writing)
tv(φ-DB)
0.5 VCC
Timing Diagram in Microprocessor Mode
RESET
0.8 VCC
0.2 VCC
φ
0.5 VCC
td(RESET- RESET OUT)
RESETOUT
tv(φ- RESET OUT)
0.5 VCC
Fig. 3.1.3 Timing diagram (in memory expansion mode and microprocessor mode) (1)
3802 GROUP USER'S MANUAL
3-15
APPENDIX
3.1 Electrical characteristics
Timing Diagram in Memory Expansion Mode and Microprocessor Mode (2)
tWL(RD)
tWL(WR)
RD,WR
0.5 VCC
td(AH-RD)
td(AH-WR)
AD15–AD8
tv(RD-AH)
tv(WR-AH)
0.5 VCC
td(AL-RD)
td(AL-WR)
AD7–AD0
tv(RD-AL)
tv(WR-AL)
0.5 VCC
th(RD-ONW)
th(WR-ONW)
tsu(ONW-RD)
tsu(ONW-WR)
ONW
0.8 VCC
0.2 VCC
(At CPU reading)
tWL(RD)
RD
0.5 VCC
tSU(DB-RD)
DB0–DB7
(At CPU writing)
tWL(WR)
WR
0.5 VCC
tv(WR-DB)
td(WR-DB)
DB0–DB7
0.5 VCC
Fig. 3.1.4 Timing diagram (in memory expansion mode and microprocessor mode) (2)
3-16
th(RD-DB)
0.8 VCC
0.2 VCC
3802 GROUP USER'S MANUAL
APPENDIX
3.2 Standard characteristics
3.2 Standard characteristics
3.2.1 Power source current characteristic examples
Figures 3.2.1 and Figure 3.2.2 show power source current characteristic examples.
[Measuring condition : 25 °C, A-D conversion stopped]
Rectangular waveform
Power source current
8
(mA)
Vcc = 5.5V,
Ta = 25 °c
7
6
Vcc = 4.0V,
Ta = 25 °c
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8 Frequency f(XIN) (MHz)
Fig. 3.2.1 Power source current characteristic example
[Measuring condition : 25 °C, A-D conversion stopped]
Rectangular waveform
Power source current
(mA) 8
7
6
5
4
3
2
Vcc = 5.5V,
Ta = 25 °c
1
Vcc = 4.0V,
Ta = 25 °c
0
0
1
2
3
4
5
6
7
8
Frequency f(XIN) (MHz)
Fig. 3.2.2 Power source current characteristic example (in wait mode)
3802 GROUP USER’S MANUAL
3-17
APPENDIX
3.2 Standard characteristics
3.2.2 Port standard characteristic examples
Figures 3.2.3, Figure 3.2.4, Figure 3.2.5 and Figure 3.2.6 show port standard characteristic examples.
[Port 60 IOH–V OH characteristic (P-channel drive)]
(Pins with same characteristic : P0, P1, P2, P3, P4, P5, P6)
IOH
(mA)
–50
V cc = 5.5V
Ta = 90 °c
–45
–40
–35
Vcc = 5.0V
Ta = 90 °c
–30
–25
–20
–15
Vcc = 3.0V
Ta = 90 °c
–10
–5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
VOH (V)
Fig. 3.2.3 Standard characteristic example of CMOS output port at P-channel drive (1)
[Port 6 0 I OH–VOH characteristic (P-channel drive)]
(Pins with same characteristic : P0, P1, P2, P3, P4, P5, P6)
IOH
(mA)
Vcc = 5.5V
Ta = 25 °c
–50
–45
–40
Vcc = 5.0V
Ta = 25 °c
–35
–30
–25
–20
–15
Vcc = 3.0V
Ta = 25 °c
–10
–5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
VO H (V)
Fig. 3.2.4 Standard characteristic example of CMOS output port at P-channel drive (2)
3-18
3802 GROUP USER’S MANUAL
APPENDIX
3.2 Standard characteristics
[Port 6 0 IOL–V OL characteristic (N-channel drive)]
(Pins with same characteristic : P0, P1, P2, P3, P4, P5, P6)
IOL
(mA)
50
V cc = 5.5V
Ta = 90 °c
45
40
V cc = 5.0V
Ta = 90 °c
35
30
25
V cc = 3.0V
Ta = 90 °c
20
15
10
5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VOL (V)
Fig. 3.2.5 Standard characteristic example of CMOS output port at N-channel drive (1)
[Port 60 I OL–V OL characteristic (N-channel drive)]
(Pins with same characteristic : P0, P1, P2, P3, P4, P5, P6)
IOL
(mA)
60
55
V cc = 5.5V
Ta = 25°c
50
V cc = 5.0V
Ta = 25 °c
45
40
35
30
25
V cc = 3.0V
Ta = 25 °c
20
15
10
5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VOL (V)
Fig. 3.2.6 Standard characteristic example of CMOS output port at N-channel drive (2)
3802 GROUP USER’S MANUAL
3-19
APPENDIX
3.2 Standard characteristics
3.2.3 A-D conversion standard characteristics
Figure 3.2.7 shows the A-D conversion standard characteristics.
The lower-side line on the graph indicates the absolute precision error. It represents the deviation from the
ideal value. For example, the conversion of output code from 127 to 128 occurs ideally at the point of AN0
= 2550 mV, but the measured value is –5 mV. Accordingly, the measured point of conversion is represented as “2550 – 5 = 2545 mV.”
The upper-side line on the graph indicates the width of input voltages equivalent to output codes. For
example, the measured width of the input voltage for output code 170 is 23 mV, so the differential nonlinear
error is represented as “23 – 20 = 3 mV” (0.15 LSB).
M38027E8SS A-D CONVERTER STEP WIDTH MEASUREMENT
Measured when a power source voltage is stable in the single-chip mode
Fig. 3.2.7 A-D conversion standard characteristics
3-20
3802 GROUP USER’S MANUAL
APPENDIX
3.2 Standard characteristics
3.2.4 D-A conversion standard characteristics
Figure 3.2.8 shows the D-A conversion standard characteristics. The lower-side line on the graph indicates
the absolute precision error. In this case, it represents the difference between the ideal analog output value
for an input code and the measured value.
The upper-side line on the graph indicates the change width of output analog value to a one-bit change
of input code.
M38027E8SS D-A CONVERTER STEP WIDTH MEASUREMENT
Measured when a power source voltage is stable in the single-chip mode
Fig. 3.2.8 D-A conversion standard characteristics
3802 GROUP USER’S MANUAL
3-21
APPENDIX
3.3 Notes on use
3.3 Notes on use
3.3.1 Notes on interrupts
(1) Sequence for switching an external interrupt
detection edge
When the external interrupt detection edge must be
switched, make sure the following sequence.
Reason
The interrupt circuit recognizes the switching of the
detection edge as the change of external input
signals. This may cause an unnecessary interrupt.
(2) Bit 7 of the interrupt control register 2
Fix the bit 7 of the interrupt control register 2
(Address:003F16 ) to “0”.
Clear an interrupt enable bit to “0” (interrupt disabled)
Switch the detection edge
Clear an interrupt request bit to “0” (no interrupt request issued)
Set the interrupt enable bit to “1” ( interrupt enabled )
b7
0
b0
Interrupt control register 2
Address 003F16
Figure 3.3.1 shows the structure of the interrupt
control register 2.
Interrupt enable bits
Not used
Fix this bit to “0”
Fig. 3.3.1 Structure of interrupt control register 2
3.3.2 Notes on the serial I/O1
(1) Stop of data transmission
As for the serial I/O1 that can be used as either a clock synchronous or an asynchronous (UART) serial I/O, clear
the transmit enable bit to “0” (transmit disabled), and clear the serial I/O enable bit to “0” (serial I/O1 disabled)in
the following cases :
● when stopping data transmission during transmitting data in the clock synchronous serial I/O mode
● when stopping data transmission during transmitting data in the UART mode
● when stopping only data transmission during transmitting and receiving data in the UART mode
Reason
Since transmission is not stopped and the transmission circuit is not initialized even if the serial I/O1 enable bit
is cleared
to “0” (serial I/O1 disabled), the internal transmission is running (in this case, since pins TxD, RxD, S CLK1,
______
and SRDY1 function as I/O ports, the transmission data is not output). When data is written to the transmit buffer
register in this state, the data is transferred to the transmit shift register and start to be shifted. When the serial
I/O1 enable bit is set to “1” at this time, the data during internally shifting is output to the TxD pin and ti may cause
an operation failure to a microcomputer.
(2) Stop of data reception
As for the serial I/O1 that can be used as either a clock synchronous or an asynchronous (UART) serial I/O, clear
the receive enable bit to “0” (receive disabled), or clear the serial I/O enable bit to “0” (serial I/O disabled) in the
following case :
● when stopping data reception during receiving data in the clock synchronous serial I/O mode
Clear the receive enable bit to “0” (receive disabled) in the following cases :
● when stopping data reception during receiving data in the UART mode
● when stopping only data reception during transmitting and receiving data in the UART mode
3-22
3802 GROUP USER’S MANUAL
APPENDIX
3.3 Notes on use
(3) Stop of data transmission and reception in a clock synchronous serial I/O mode
As for the serial I/O1 that can be used as either a clock synchronous or an asynchronous (UART) serial I/O, clear
both the transmit enable bit and receive enable bit to “0” (transmit and receive disabled) at the same time in the
following case:
● when stopping data transmission and reception during transmitting and receiving data in the clock synchronous
mode (when data is transmitted and received in the clock synchronous serial I/O mode, any one of data
transmission and reception cannot be stopped.)
Reason
In the clock synchronous serial I/O mode, the same clock is used for transmission and reception. If any one of
transmission and reception is disabled, a bit error occurs because transmission and reception cannot be
synchronized.
In this mode, the clock circuit of the transmission circuit also operates for data reception. Accordingly, the
transmission circuit does not stop by clearing only the transmit enable bit to “0” (transmit disabled). Also, the
transmission circuit is not initialized by clearing the serial I/O1 enable bit to “0” (serial I/O1 disabled) (refer to (1)).
_____
(4) The SRDY pin on a receiving side _____
When signals are output from the S RDY pin on the reception_____
side by using an external clock in the clock
synchronous serial I/O mode, set all of the receive enable bit, the SRDY output enable bit, and the transmit enable
bit to “1” (transmit enabled).
(5) Stop of data reception in a clock synchronous
serial I/O mode
Set the serial I/O1 control register again after the
transmission and the reception circuits are reset by
clearing both the transmit enable bit and the receive
enable bit to “0.”
Clear both the transmit
enable bit (TE) and the
receive enable bit (RE) to “0”
Set the bits 0 to 3 and bit 6 of
the serial I/O1 control
register
Set both the transmit enable
bit (TE) and the receive
enable bit (RE) to “1”
Can be set with the
LDM instruction at
the same time
(6) Control of data transmission using the transmit shift completion flag
The transmit shift completion flag changes from “1” to “0” with a delay of 0.5 to 1.5 shift clocks. When checking
the transmit shift completion flag after writing a data to the transmit buffer register for controlling a data
transmission, note this delay.
(7) Control of data transmission using an external clock
When an external clock is used as the synchronous clock for data transmission, set the transmit enable bit to “1”
at “H” level of the SCLK input signal. Also, write data to the transmit buffer register at “H” level of the SCLK input
signal.
3.3.3 Notes on the A-D converter
(1) Input of signals from signal source with high impedance to an analog input pin
Make the signal source impedance for analog input low, or equip an analog input pin with an external capacitor
of 0.01 µF to 1 µF. Further, maek sure to check the operation of application products on the user side.
Reason
The A-D converter builds in the capacitor for analog voltage comparison. Accordingly, when signals from signal
source with high impedance are input to an analog input pin, a charge and discharge noise generates. This may
cause the A-D conversion precision to be worse.
3802 GROUP USER’S MANUAL
3-23
APPENDIX
3.3 Notes on use
(2) AVSS pin
Connect a power source for the A-D converter, AVSS pin to the VSS line of the analog circuit.
(3) A clock frequency during an A-D conversion
The comparator consists of a capacity coupling, and a charge of the capacity will be lost if the clock frequency is
too low. Thus, make sure the following during an A-D conversion.
● f(XIN) is 500 kHz or more .
(When the ONW pin is "L", f(XIN) is 1 MHz or more.)
● Do not execute the STP instruction and WIT instruction.
3.3.4 Notes on the RESET pin
When a rising time of the reset signal is long, connect a ceramic capacitor or others across the RESET pin and
the VSS pin. And use a 1000 pF or more capacitor for high frequency use. When connecting the capacitor, make
sure the following :
●Make the length of the wiring which is connected to a capacitor the shortest possible.
●Make sure to check the operation of application products on the user side.
Reason
If the several nanosecond or several ten nanosecond impulse noise enters the RESET pin, a microcomputer may
malfunction.
3.3.5 Notes on input and output pins
(1) Fix of a port input level in stand-by state
Fix input levels of an input and an I/O port for getting effect of low-power dissipation in stand-by state, especially
for the I/O ports of the N-channel open-drain.
Pull-up (connect the port to VCC) or pull-down (connect the port to VSS) these ports through a resistor.
When determining a resistance value, make sure the following:
●External circuit
●Variation of output levels during the ordinary operation
* stand-by state : the stop mode by executing the STP instruction
the wait mode by executing the WIT instruction
Reason
Even when setting as an output port with its direction register, in the following state :
●N-channel......when the content of the port latch is “1”
the transistor becomes the OFF state, which causes the ports to be the high-impedance state. Make sure that the
level becomes “undefined” depending on external circuits.
Accordingly, the potential which is input to the input buffer in a microcomputer is unstable in the state that input
levels of an input and an I/O port are “undefined.” This may cause power source current.
(2) Modify of the content of I/O port latch
When the content of the port latch of an I/O port is modified with the bit managing instruction*, the value of the
unspecified bit may be changed.
Reason
The bit managing instruction is read-modify-write instruction for reading and writing data by a byte unit.
Accordingly, when this instruction is executed on one bit of the port latch of an I/O port, the following is executed
to all bits of the port latch.
●As for a bit which is set as an input port : The pin state is read in the CPU, and is written to this bit after bit
managing.
●As for a bit which is set as an output port : The bit value is read in the CPU, and is written to this bit after bit
managing.
3-24
3802 GROUP USER’S MANUAL
APPENDIX
3.3 Notes on use
Make sure the following :
●Even when a port which is set as an output port is changed for an input port, its port latch holds the output data.
●Even when a bit of a port latch which is set as an input port is not speccified with a bit managing instruction,
its value may be changed in case where content of the pin differs from a content of the port latch.
* bit managing instructions : SEB and CLB instruction
(3) The AVSS pin when not using the A-D converter
When not using the A-D converter, handle a power source pin for the A-D converter, AVSS pin as follows :
● AVSS : Connect to the VSS pin
Reason
If the AV SS pin is opened, the microcomputer may malfunction by effect of noise or others.
3.3.6 Notes on memory expansion mode and microprocessor mode
(1) Writing data to the port latch of port P3
In the memory expansion or the microprocessor mode, ports P3 0 and P31 can be used as the output port. Use the
LDM or STA instruction for writing data to the port latch (address 000616) of port P3.
When using a read-modify-write instruction (the SEB or the CLB instruction), allocate the read and the write
enabled memory at address 000616.
Reason
In the memory expansion or microprocessor mode, address 0006 16 is allocated in the external area.
Accordingly,
● Data is read from the external memory.
● Data is written to both the port latch of the port P3 and the external memory.
Accordingly, when executing a read-modify-write instruction for address 0006 16, external memory data is read and
modified, and the result is written in both the port latch of the port P3 and the external memory. If the read enabled
memory is not allocated at address 000616, the read data is undefined. The undefined data is modified and written
to the port latch of the port P3. The port latch data of port P3 becomes “undefined.”
(2) Overlap of an internal memory and an external memory
When the internal and the external memory are overlapped in the memory expansion mode, the internal memory
is valid in this overlapped area. When the CPU writes or reads to this area, the following is performed :
● When reading data
Only the data in the internal memory is read into the CPU and the data in the external memory is not read into
the CPU. However, as the read signal and address are still valid, the external memory data of the
corresponding address is output to the external data bus.
● When writing data
Data is written in both the internal and the external memory.
3802 GROUP USER’S MANUAL
3-25
APPENDIX
3.3 Notes on use
3.3.7 Notes on built-in PROM
(1) Programming adapter
To write or read data into/from the internal PROM, use the dedicated programming adapter and general-purpose
PROM programmer as shown in Table 3.3.1.
Table 3.3.1 Programming adapter
Programming adapter
Microcomputer
M38027E8SS
M38027E8SP
(one-time blank)
PCA4738S-64A
M38027E8DSP
(one-time blank)
PCA4738L-64A
M38027E8FS
M38027E8FP
(one-time blank)
PCA4738F-64A
M38027E8DFP
(one-time blank)
(2) Write and read
In PROM mode, operation is the same as that of the M5M27C256AK and the M5M27C101, but programming
conditions of PROM programmer are not set automatically because there are no internal device ID codes.
Accurately set the following conditions for data write/read. Take care not to apply 21 V to Vpp pin (is also used as
the CNVSS pin), or the product may be permanently damaged.
● Programming voltage : 12.5 V
● Setting of programming adapter switch : refer to table 3.3.2
● Setting of PROM programmer address : refer to table 3.3.3
Table 3.3.2 Setting of programming adapter switch
Programming adapter
SW 1
SW 2
SW 3
CMOS
CMOS
OFF
PCA4738S-64A
PCA4738L-64A
PCA4738F-64A
3-26
3802 GROUP USER’S MANUAL
APPENDIX
3.3 Notes on use
Table 3.3.3 Setting of PROM programmer address
Microcomputer
PROM programmer start address
PROM programmer completion address
Address : 408016 (Note 1)
Address : 7FFD16 (Note 1)
Address : 008016 (Note 2)
Address : 7FFD16 (Note 2)
M38022E4SS
M38022E4SP
M38022E4FS
M38022E4FP
M38022E4DSP
M38022E4DFP
M38027E8SS
M38027E8SP
M38027E8FS
M38027E8FP
M38027E8DSP
M38027E8DFP
Note1 : Addresses C08016 to FFFD16 in the internal PROM correspond to addresses 408016 to 7FFD 16 in the
ROM programmer.
2 : Addresses 808016 to FFFD16 in the internal PROM correspond to addresses 0080 16 to 7FFD16 in the
ROM programmer.
(3) Erasing
Contents of the windowed EPROM are erased through an ultraviolet light source of the wavelength 2537Angstrom . At least 15 W-sec/cm 2 are required to erase EPROM contents.
3802 GROUP USER’S MANUAL
3-27
APPENDIX
3.4 Countermeasures against noise
3.4 Countermeasures against noise
Countermeasures against noise are described below. The following countermeasures are effective against noise in
theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.
3.4.1 Shortest wiring length
The wiring on a printed circuit board can be as an antenna which feeds noise into the microcomputer.
The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.
(1) Wiring for the RESET pin
Make the length of wiring which is connected to the RESET pin as short as possible. Especially, connect a capacitor
across the RESET pin and the VSS pin with the shortest possible wiring (within 20mm).
Reason
The reset works to initialize a microcomputer.
The width of a pulse input into the RESET pin is determined by the timing necessary conditions. If noise having
a shorter pulse width than the standard is input to the RESET pin, the reset is released before the internal state
of the microcomputer is completely initialized. This may cause a program runaway.
Noise
Reset
circuit
RESET
VSS
N.G.
Reset
circuit
RESET
VSS
VSS
VSS
3802 group
O.K.
3802 group
Fig. 3.4.1 Wiring for the RESET pin
(2) Wiring for clock input/output pins
●Make the length of wiring which is connected to clock I/O pins as short as possible.
●Make the length of wiring (within 20mm) across the grounding lead of a capacitor which is connected to an
oscillatorand the VSS pin of a microcomputer as short as possible.
●Separate the VSS pattern only for oscillation from other VSS patterns.
Reason
A microcomputer's operation synchronizes with a clock generated by the oscillator (circuit). If noise enters clock
I/O pins, clock waveforms may be deformed. This may cause a malfunction or program runaway.
Also, if a potential difference is caused by the noise between the V SS level of a microcomputer and the VSS level
of an oscillator, the correct clock will not be input in the microcomputer.
3-28
3802 GROUP USER’S MANUAL
APPENDIX
3.4 Countermeasures against noise
An example of VSS patterns on the
underside of a printed circuit board
Noise
Oscillator wiring
pattern example
XIN
XOUT
VSS
N.G.
XIN
XOUT
VSS
XIN
XOUT
VSS
O.K.
Separate the VSS line for oscillation from other VSS lines
Fig. 3.4.2 Wiring for clock I/O pins
(3) Wiring for the VPP pin of the One Time PROM
version and the EPROM version
(In this microcomputer the VPP pin is also used
as the CNVSS pin)
Connect an approximately 5 kΩ resistor to the V P P
pin the shortest possible in series and also to the VSS
pin. When not connecting the resistor, make the
length of wiring between the VPP pin and the VSS pin
the shortest possible.
Approximately
5kΩ
CNVSS/VPP
VSS
Note:Even when a circuit which inclued an
approximately 5 kΩ resistor is used in the Mask ROM
version, the maicrocomputer operates correctly.
Reason
The VPP pin of the One Time PROM and the EPROM
version is the power source input pin for the built-in
PROM. When programming in the built-in PROM,
the impedance of the V PP pin is low to allow the
electric current for wiring flow into the PROM. Because of this, noise can enter easily. If noise enters
the VPP pin, abnormal in struction codes or data are
read from the built-in PROM, which may cause a
program runaway.
3802 group
Make it the shortest possible
Fig. 3.4.3 Wiring for the VPP pin of the One Time PROM
and the EPROM version
3.4.2 Connection of a bypass capacitor across the
Vss line and the Vcc line
Connect an approximately 0.1 µF bypass capacitor
across the V SS line and the VCC line as follows:
●Connect a bypass capacitor across the VSS pin
and the VCC pin at equal length .
●Connect a bypass capacitor across the VSS pin
and the VCC pin with the shortest possible wiring.
●Use lines with a larger diameter than other signal
lines for VSS line and VCC line.
VCC
Chip
VCC
VSS
VSS
Fig. 3.4.4 Bypass capacitor across the VSS line and
the VCC line
3802 GROUP USER’S MANUAL
3-29
APPENDIX
3.4 Countermeasures against noise
3.4.3 Wiring to analog input pins
●Connect an approximately 100 Ω to 1 kΩ resistor to an
analog signal line which is connected to an analog
input pin in series. Besides, connect the resistor to
the microcomputer as close as possible.
●Connect an approximately 1000 pF capacitor across
the V SS pin and the analog input pin. Besides,
connect the capacitor to the VSS pin as close as
possible. Also, connect the capacitor across the
analog input pin and the VSS pin at equal length.
Reason
Signals which is input in an analog input pin (such as
an A-D converter input pin) are usually output signals
from sensor. The sensor which detects a change of
event is installed far from the printed circuit board
with a microcomputer, the wiring to an analog input
pin is longer necessarily. This long wiring functions
as an antenna which feeds noise into the
microcomputer, which causes noise to an analog
input pin.
3.4.4. Consideration for oscillator
Take care to prevent an oscillator that generates
clocks for a microcomputer operation from being
affected by other signals.
Noise
(Note)
N.G.
3-30
O.K.
VSS
Note:The resistor is for dividing resistance
with a thermister.
Fig.3.4.5 Analog signal line and a resistor and a
capacitor
Microcomputer
Mutual inductance
M
XIN
XOUT
VSS
Large
current
GND
Fig.3.4.6 Wiring for a large current signal line
(2) Keeping an oscillator away from signal lines
where potential levels change frequently
Install an oscillator and a connecting pattern of an
osillator away from signal lines where potential levels
change frequently. Also, do not cross such signal
lines over the clock lines or the signal lines which are
sensitive to noise.
Reason
Signal lines where potential levels change frequently
(such as the CNTR pin line) may affect other lines at
signal rising or falling edge. If such lines cross over
a clock line, clock waveforms may be deformed,
which causes a microcomputer failure or a program
runaway.
Analog
input pin
Thermistor
(1) Keeping an oscillator away from large current
signal lines
Install a microcomputer (and especially an oscillator)
as far as possible from signal lines where a current
larger than the tolerance of current value flows.
Reason
In the system using a microcomputer, there are
signal lines for controlling motors, LEDs, and thermal
heads or others. When a large current flows through
those signal lines, strong noise occurs because of
mutual inductance.
Microcomputer
Do not cross
CNTR
XIN
XOUT
VSS
Fig.3.4.7 Wiring to a signal line where potential levels
change frequently
3802 GROUP USER’S MANUAL
APPENDIX
3.4 Countermeasures against noise
3.4.5 Setup for I/O ports
Setup I/O ports using hardware and software as follows:
<Hardware>
●Connect a resistor of 100 Ω or more to an I/O port
inseries.
O.K.
Noise
Data bus
Noise
Direction register
N.G.
<Software>
●As for an input port, read data several times by a
Port latch
program for checking whether input levels are
I/O port
pins
equal or not.
●As for an output port, since the output data may
reverse because of noise, rewrite data to its port
latch at fixed periods.
Fig. 3.4.8 Setup for I/O ports
●Rewirte data to direction registers and pull-up
control registers (only the product having it) at fixed
periods.
When a direction register is set for input port again at fixed periods, a several-nanosecond short pulse may be
output from this port. If this is undesirable, connect a capacitor to this port to remove the noise pulse.
3.4.6 Providing of watchdog timer function by
software
If a microcomputer runs away because of noise or
others, it can be detected by a software watchdog
timer and the microcomputer can be reset to normal
operation. This is equal to or more effective than
program runaway detection by a hardware watchdog
timer. The following shows an example of a watchdog
timer provided by software.
In the following example, to reset a microcomputer to
normal operation, the main routine detects errors of
the interrupt processing routine and the interrupt
processing routine detects errors of the main routine.
This example assumes that interrupt processing is
repeated multiple times in a single main routine
processing.
Main routine
Interrupt processing routine
(SWDT)← N
(SWDT) ← (SWDT)—1
CLI
Interrupt processing
Main processing
(SWDT)
≤0?
≠N
(SWDT)
=N?
≤0
RTI
Return
=N
Interrupt processing
>0
Main routine
<The main routine>
routine errors
errors
●Assigns a single byte of RAM to a software watchdog
timer (SWDT) and writes the initial value N in the
SWDT once at each execution of the main routine.
Fig. 3.4.9 Watchdog timer by software
The initial value N should satisfy the following
condition:
N+1 ≥ (Counts of interrupt processing executed in each main routine)
As the main routine execution cycle may change because of an interrupt processing or others, the initial value N
should have a margin.
●Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of
interrupt processing count after the initial value N has been set.
●Detects that the interrupt processing routine has failed and determines to branch to the program initialization
routine for recovery processing in the following cases:
If the SWDT contents do not change after interrupt processing
3802 GROUP USER’S MANUAL
3-31
APPENDIX
3.4 Countermeasures against noise
<The interrupt processing routine>
●Decrements the SWDT contents by 1 at each interrupt processing.
●Determins that the main routine operates normally when the SWDT contents are reset to the initial value N at
almost fixed cycles (at the fixed interrupt processing count).
●Detects that the main routine has failed and determines to branch to the program initialization routine for recovery
processing in the following case:
When the contents of the SWDT reach 0 or less by continuative decrement without initializing to the initial value
N.
3-32
3802 GROUP USER’S MANUAL
APPENDIX
3.5 List of registers
3.5 List of registers
Port Pi
b7 b6 b5 b4 b3 b2 b1 b0
Port Pi (Pi) (i = 0, 1, 2, 3, 4, 5, 6)
[Address : 0016, 0216, 0416, 0616, 0816, 0A16, 0C16]
B
Function
Name
0 Port Pi0
●
In output mode
Write
Port latch
Read
●
In input mode
Write : Port latch
Read : Value of pins
1 Port Pi1
2 Port Pi2
At reset
R W
?
?
?
3 Port Pi3
?
4 Port Pi4
?
5 Port Pi5
?
6 Port Pi6
?
7 Port Pi7
?
Fig. 3.5.1 Structure of Port Pi (i = 0, 1, 2, 3, 4, 5, 6)
Port Pi direction register
b7 b6 b5 b4 b3 b2 b1 b0
Port Pi direction register (PiD) (i = 0, 1, 2, 3, 4, 5, 6)
[Address : 0116, 0316, 0516, 0716, 0916, 0B16, 0D16]
B
Function
Name
At reset
R W
0 Port Pi direction register
0 : Port Pi0 input mode
1 : Port Pi0 output mode
0
✕
1
0 : Port Pi1 input mode
1 : Port Pi1 output mode
0 : Port Pi2 input mode
1 : Port Pi2 output mode
0 : Port Pi3 input mode
1 : Port Pi3 output mode
0 : Port Pi4 input mode
1 : Port Pi4 output mode
0
✕
0
✕
0
✕
0
✕
0 : Port Pi5 input mode
1 : Port Pi5 output mode
0 : Port Pi6 input mode
1 : Port Pi6 output mode
0 : Port Pi7 input mode
1 : Port Pi7 output mode
0
✕
0
✕
0
✕
2
3
4
5
6
7
Fig. 3.5.2 Structure of Port Pi direction register (i = 0, 1, 2, 3, 4, 5, 6)
3802 GROUP USER’S MANUAL
3-33
APPENDIX
3.5 List of registers
Transmit/Receive buffer register
b7 b6 b5 b4 b3 b2 b1 b0
Transmit/Receive buffer register (TB/RB) [Address : 1816]
Function
B
0 A transmission data is written to or a receive data is read out
1
from this buffer register.
• At writing : a data is written to the Transmit buffer register.
• At reading : a content of the Receive buffer register is read out.
At reset
R W
?
?
2
?
3
?
4
?
5
?
6
?
7
?
Fig. 3.5.3 Structure of Transmit/Receive buffer register
Serial I/O1 status register
b7 b6 b5 b4 b3 b2 b1 b0
Serial I/O1 status register (SIO1STS) [Address : 1916]
Name
B
Transmit
buffer
empty flag
0
(TBE)
1 Receive buffer full flag (RBF)
2 Transmit shift register shift
completion flag (TSC)
3 Overrun error flag (OE)
4 Parity error flag (PE)
5 Framing error flag (FE)
6 Summing error flag (SE)
Function
0 : Buffer full
1 : Buffer empty
0 : Buffer empty
1 : Buffer full
0 : Transmit shift in progress
1 : Transmit shift completed
0
R W
✕
0
✕
0
✕
0 : No error
1 : Overrun error
0 : No error
1 : Parity error
0
✕
0
✕
0 : No error
1 : Framing error
0 : (OE) (PE) (FE) = 0
1 : (OE) (PE) (FE) = 1
0
✕
0
✕
1
✕
7 Nothing is allocated for this bit. It is a write disabled bit.
When this bit is read out, the value is “0.”
Fig. 3.5.4 Structure of Serial I/O1 status register
3-34
3802 GROUP USER’S MANUAL
At reset
APPENDIX
3.5 List of registers
Serial I/O1 control register
b7 b6 b5 b4 b3 b2 b1 b0
Serial I/O1 control register (SIO1CON) [Address : 1A16]
B
Name
Function
At reset
0 BRG count source selection
bit (CSS)
0
1
0
2
3
4
5
6
7
0 : f(XIN)
1 : f(XIN)/4
Serial I/O1 synchronous clock At selecting clock synchronous serial I/O
selection bit (SCS)
0 : BRG output divided by 4
1 : External clock input
At selecting UART
0 : BRG output divided by 16
1 : External clock input divided by 16
SRDY1 output enable bit
0 : I/O port (P47)
(SRDY)
1 : SRDY1 output pin
0 : Transmit buffer empty
Transmit interrupt
1 : Transmit shift operating completion
source selection bit (TIC)
0 : Transmit disabled
Transmit enable bit (TE)
1 : Transmit enabled
Receive enable bit (RE)
0 : Receive disabled
1 : Receive enabled
0 : UART
Serial I/O1 mode
1 : Clock synchronous serial I/O
selection bit (SIOM)
Serial I/O1 enable bit (SIOE) 0 : Serial I/O1 disabled
(P44–P47 : I/O port)
1 : Serial I/O1 enabled
(P44–P47 : Serial I/O function pin)
R W
0
0
0
0
0
0
Fig. 3.5.5 Structure of Serial I/O1 control register
UART control register
b7 b6 b5 b4 b3 b2 b1 b0
UART control register (UARTCON) [Address : 1B16]
B
0
1
2
3
4
5
6
7
Name
Character length
selection bit (CHAS)
Parity enable bit
(PARE)
Parity selection bit
(PARS)
Stop bit length
selection bit (STPS)
P45/TxD P-channel
output disable bit (POFF)
Function
0 : 8 bits
1 : 7 bits
0 : Parity checking disabled
1 : Parity checking enabled
0 : Even parity
1 : Odd parity
0 : 1 stop bit
1 : 2 stop bits
In output mode
0 : CMOS output
1 : N-channel open-drain output
Nothing is allocated for these bits. These are write disabled
bits. When these bits are read out, the values are “1.”
At reset
R W
0
0
0
0
0
1
1
1
Fig. 3.5.6 Structure of UART control register
3802 GROUP USER’S MANUAL
3-35
APPENDIX
3.5 List of registers
Baud rate generator
b7 b6 b5 b4 b3 b2 b1 b0
Baud rate generator (BRG) [Address : 1C16]
Function
B
At reset
0 A count value of Baud rate generator is set.
?
1
?
2
?
3
?
4
?
5
?
6
?
7
?
R W
Fig. 3.5.7 Structure of Baud rate generator
Serial I/O2 control register
b7 b6 b5 b4 b3 b2 b1 b0
Serial I/O2 control register (SIO2CON) [Address : 1D16]
Name
B
0 Internal synchronous clock
selection bits
1
2
Function
b2 b1 b0
0
0
0
0
1
1
0
0
1
1
1
1
0 : f(XIN)/8
1 : f(XIN)/16
0 : f(XIN)/32
1 : f(XIN)/64
0 : f(XIN)/128
1 : f(XIN)/256
0
0
0
3 Serial I/O2 port selection bit
0
4
0
5
6
7
0 : I/O port (P51, P52)
1 : SOUT2, SCLK2 output pin
0 : I/O port (P53)
SRDY2 output enable bit
1 : SRDY2 output pin
Transfer direction selection bit 0 : LSB first
1 : MSB first
Serial I/O2 synchronous clock 0 : External clock
1 : Internal clock
selection bit
In output mode
P51/SOUT2 P-channel
0 : CMOS output
output disable bit
1 : N-channel open-drain output
Fig. 3.5.8 Structure of Serial I/O2 control register
3-36
At reset
3802 GROUP USER’S MANUAL
0
0
0
R W
APPENDIX
3.5 List of registers
Serial I/O2 register
b7 b6 b5 b4 b3 b2 b1 b0
Serial I/O2 register (SIO2) [Address : 1F16]
Function
B
At reset
0 A shift register for serial transmission and reception.
?
At transmitting : Set a transmission data.
● At receiving : Store a reception data.
1
?
2
?
3
?
4
?
5
?
6
?
7
?
R W
●
Fig. 3.5.9 Structure of Serial I/O2 register
Prescaler 12, Prescaler X, Prescaler Y
b7 b6 b5 b4 b3 b2 b1 b0
Prescaler 12 (PRE12), Prescaler X (PREX), Prescaler Y (PREY)
[Address : 2016, 2416, 2616]
B
0
1
2
Function
●
●
●
The count value of each prescaler is set.
The value set in this register is written to both the prescaler and
the prescaler latch at the same time.
When the prescaler is read out, the value (count value) of the
prescaler is read out.
At reset
R W
1
1
1
3
1
4
1
5
1
6
1
7
1
Fig. 3.5.10 Structure of Prescaler 12, Prescaler X, Prescaler Y
3802 GROUP USER’S MANUAL
3-37
APPENDIX
3.5 List of registers
Timer 1
b7 b6 b5 b4 b3 b2 b1 b0
Timer 1 (T1) [Address : 2116]
B
0
●
●
1
●
2
Function
At reset
The count value of the Timer 1 is set.
The value set in this register is written to both the Timer 1 and
the Timer 1 latch at the same time.
When the Timer 1 is read out, the value (count value) of the
Timer 1 is read out.
1
R W
0
0
3
0
4
0
5
0
6
0
7
0
Fig. 3.5.11 Structure of Timer 1
Timer 2, Timer X, Timer Y
b7 b6 b5 b4 b3 b2 b1 b0
Timer 2 (T2), Timer X (TX), Timer Y (TY)
[Address : 2216, 2516, 2716]
B
0
Function
●
●
1
2
●
The count value of each timer is set.
The value set in this register is written to both the Timer and the
Timer latch at the same time.
When the Timer is read out, the value (count value) of the Timer
is read out.
1
1
1
3
1
4
1
5
1
6
1
7
1
Fig. 3.5.12 Structure of Timer 2, Timer X, Timer Y
3-38
At reset
3802 GROUP USER’S MANUAL
R W
APPENDIX
3.5 List of registers
A AA
Timer XY mode register
b7 b6 b5 b4 b3 b2 b1 b0
Timer XY mode register (TM) [Address : 2316]
Name
B
0 Timer X operating mode
1
2 CNTR0 active edge switch
bit
3 Timer X count stop bit
4 Timer Y operating mode
5
6 CNTR1 active edge switch
bit
7 Timer Y count stop bit
Function
b1 b0
0 0 : Timer mode
0 1 : Pulse output mode
1 0 : Event counter mode
1 1 : Pulse width measurement mode
It depends on the operating mode
of the Timer X (refer to Table 3.5.1).
0 : Count start
1 : Count stop
b5 b4
0 0 : Timer mode
0 1 : Pulse output mode
1 0 : Event counter mode
1 1 : Pulse width measurement mode
It depends on the operating mode
of the Timer Y (refer to Table 3.5.1 ).
0 : Count start
1 : Count stop
At reset
R W
0
0
0
0
0
0
0
0
Fig. 3.5.13 Structure of Timer XY mode register
Table. 3.5.1 Function of CNTR 0/CNTR 1 edge switch bit
Operating mode of
Timer X/Timer Y
Timer mode
Function of CNTR 0/CNTR 1 edge switch bit (bits 2 and 6)
“0”
“1”
Pulse output mode
“0”
“1”
Event counter mode
“0”
“1”
Pulse width measurement mode
“0”
“1”
• Generation of CNTR0 /CNTR1 interrupt request : Falling
(No effect on timer count)
• Generation of CNTR 0/CNTR 1 interrupt request : Rising
(No effect on timer count)
• Start of pulse output : From “H” level
• Generation of CNTR0 /CNTR1 interrupt request : Falling
• Start of pulse output : From “L” level
• Generation of CNTR 0/CNTR 1 interrupt request : Rising
• Timer X/Timer Y : Count of rising edge
• Generation of CNTR0 /CNTR1 interrupt request : Falling
• Timer X/Timer Y : Count of falling edge
• Generation of CNTR0/CNTR1 interrupt request : Rising
• Timer X/Timer Y : Measurement of “H” level width
• Generation of CNTR0 /CNTR1 interrupt request : Falling
• Timer X/Timer Y : Measurement of “L” level width
• Generation of CNTR 0/CNTR 1 interrupt request : Rising
3802 GROUP USER’S MANUAL
edge
edge
edge
edge
edge
edge
edge
edge
3-39
APPENDIX
3.5 List of registers
PWM control register
b7 b6 b5 b4 b3 b2 b1 b0
PWM control register (PWMCON) [Address:2B16]
Name
B
0 PWM function enable bit
1 Count source selection bit
Function
0 : PWM disabled
1 : PWM enabled
0 : f(XIN)
1 : f(XIN)/2
At reset
R W
0
0
2 Nothing is arranged for these bits. These are write disabled bits.
0
✕
3
0
✕
4
0
✕
5
0
✕
6
0
✕
7
0
✕
When these bits are read out, the contents are "0".
Fig. 3.5.14 Structure of PWM control register
PWM prescaler
b7 b6 b5 b4 b3 b2 b1 b0
PWM prescaler (PREPWM) [Address : 2C16]
Function
At reset
cycle is set.
● The values set in this register is written to both the PWM
prescaler pre-latch and the PWM prescaler latch at the same
time.
● When data is written during outputting PWM, the pulses
corresponding to the changed contents are output starting with
the next cycle.
● When this register is read out, the content of the PWM prescaler
latch is read out.
?
B
0
1
2
3
● PWM
?
?
4
?
5
?
6
?
7
?
Fig. 3.5.15 Structure of PWM prescaler
3-40
?
3802 GROUP USER’S MANUAL
R W
APPENDIX
3.5 List of registers
PWM register
b7 b6 b5 b4 b3 b2 b1 b0
PWM register (PWM) [Address : 2D16]
b
0
●
●
1
●
2
●
3
Function
At reset
“H” level output period of PWM is set.
The values set in this register is written both the PWM register
pre-latch and the PWM register latch at the same time.
When data is written during outputting PWM, the pulses
corresponding to the changed contents are output starting with
the next cycle.
When this register is read out, the content of the PWM register
latch is read out.
?
R W
?
?
?
4
?
5
?
6
?
7
?
Fig. 3.5.16 Structure of PWM register
3802 GROUP USER’S MANUAL
3-41
APPENDIX
3.5 List of registers
AD/DA control register
b7 b6 b5 b4 b3 b2 b1 b0
AD/DA control register (ADCON) [Address : 3416]
B
Function
Name
b2 b1 b0
0 Analog input pin selection bits 0 0 0 : P60/AN0
1
2
3
4
5
6
0 0 1 : P61/AN1
0 1 0 : P62/AN2
0 1 1 : P63/AN3
1 0 0 : P64/AN4
1 0 1 : P65/AN5
1 1 0 : P66/AN6
1 1 1 : P67/AN7
AD conversion completion bit 0 : Conversion in progress
1 : Conversion completed
Nothing is allocated for these bits. These are write disabled bits.
When these bits are read out, the values are “0.”
0 : DA1 output disable
DA1 output enable bit
1 : DA1 output enable
7 DA2 output enable bit
0 : DA2 output disabled
1 : DA2 output enabled
At reset
R W
0
0
0
1
0
0
0
✕
✕
0
Fig. 3.5.17 Structure of AD/DA control register
A-D conversion register
b7 b6 b5 b4 b3 b2 b1 b0
A-D conversion register (AD) [Address : 3516]
B
Function
0 The read-only register which A-D conversion results are stored.
1
2
3
4
5
6
7
Fig. 3.5.18 Structure of A-D conversion register
3-42
3802 GROUP USER’S MANUAL
At reset
?
?
?
?
?
?
?
?
R W
✕
✕
✕
✕
✕
✕
✕
✕
APPENDIX
3.5 List of registers
D-A1 conversion register, D-A2 conversion register
b7 b6 b5 b4 b3 b2 b1 b0
D-A1 conversion register (DA1), D-A2 conversion register (DA2)
[Address : 3616, 3716]
B
0
Function
At reset
An output value of each D-A converter is set.
R W
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
Fig. 3.5.19 Structure of D-A 1 conversion, D-A 2 conversion register
Interrupt edge selection register
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt edge selection register (INTEDGE) [Address : 3A16]
Name
B
INT
0 interrupt edge
0
selection bit
1 INT1 interrupt edge
2
3
4
5
6
7
Function
0 : Falling edge active
1 : Rising edge active
0 : Falling edge active
1 : Rising edge active
selection bit
Nothing is allocated for this bit. This is a write
disabled bit.When this bit is read out, the value is “0.”
INT2 interrupt edge
0 : Falling edge active
selection bit
1 : Rising edge active
0 : Falling edge active
INT3 interrupt edge
1 : Rising edge active
selection bit
INT4 interrupt edge
0 : Falling edge active
selection bit
1 : Rising edge active
Nothing is allocated for these bits. These are write disabled
bits. When these bits are read out, the values are “0.”
At reset
R W
0
0
0
0
0
0
0
0
Fig. 3.5.20 Structure of Interrupt edge selection register
3802 GROUP USER’S MANUAL
3-43
APPENDIX
3.5 List of registers
CPU mode register
b7 b6 b5 b4 b3 b2 b1 b0
CPU mode register (CPUM) [Adress : 3B16]
B
Name
0 Processor mode bits
1
2 Stack page selection bit
Function
00 : Single-chip mode
01 : Memory expansion mode
10 : Microprocessor mode
11 : Not available
0 : 0 page
1 : 1 page
3 Nothing is allocated for these bits. These are write disabled bits.
4 When these bits are read out, the values are “0.”
5
6
7
✻ An initial value of bit 1 is determined by a level of the CNVSS pin.
Fig. 3.5.21 Structure of CPU mode register
3-44
3802 GROUP USER’S MANUAL
At reset
R W
0
✻
0
0
0
0
0
0
✕
✕
✕
✕
✕
APPENDIX
3.5 List of registers
Interrupt request register 1
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt request reigster 1 (IREQ1) [Address : 3C16]
Function
Name
B
At reset
R W
0 INT0 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0
✻
1 INT1 interrupt request bit
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0 : No interrupt request
1 : Interrupt request
0
✻
2 Serial I/O1 receive interrupt
request bit
3 Serial I/O1 transmit interrupt
request bit
4 Timer X interrupt request bit
5 Timer Y interrupt request bit
6 Timer 1 interrupt request bit
7 Timer 2 interrupt request bit
✻ “0” is set by software, but not “1.”
Fig. 3.5.22 Structure of Interrupt request register 1
Interrupt request register 2
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt request reigster 2 (IREQ2) [Address : 3D16]
Name
B
0 CNTR0 interrupt request bit
1 CNTR1 interrupt request bit
2 Serial I/O2 interrupt request
bit
3 INT2 interrupt request bit
4 INT3 interrupt request bit
5 INT4 interrupt request bit
6 AD conversion interrupt
request bit
Function
At reset
R W
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0
✻
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0 : No interrupt request
1 : Interrupt request
0
✻
0
✻
0
✻
0
✻
0
✕
7 Nothing is allocated for this bit. This is a write disabled bit.
When this bit is read out, the value is “0.”
✻ “0” is set by software, but not “1.”
Fig. 3.5.23 Structure of Interrupt request register 2
3802 GROUP USER’S MANUAL
3-45
APPENDIX
3.5 List of registers
Interrupt control register 1
b7 b6 b5 b4 b3 b2 b1 b0
Interrupt control register 1 (ICON1) [Address : 3E16]
Function
Name
B
0 INT0 interrupt enable bit
1 INT1 interrupt enable bit
2 Serial I/O1 receive interrupt
enable bit
Serial
I/O1 transmit interrupt
3
enable bit
4 Timer X interrupt enable bit
5 Timer Y interrupt enable bit
6 Timer 1 interrupt enable bit
7 Timer 2 interrupt enable bit
At reset
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
R W
0
0
0
0
0
0
Fig. 3.5.24 Structure of Interrupt control register 1
Interrupt control register 2
b7 b6 b5 b4 b3 b2 b1 b0
0
Interrupt control reigster 2 (ICON2) [Address : 3F16]
Name
B
0 CNTR0 interrupt enable bit
Function
0
4 INT3 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0
5 INT4 interrupt enable bit
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
1 : Interrupt enabled
0
6 AD conversion interrupt
enable bit
7 Fix this bit to “0.”
Fig. 3.5.25 Structure of Interrupt control register 2
3-46
At reset
0 : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
CNTR
1
interrupt
enable
bit
1
1 : Interrupt enabled
0
2 Serial I/O2 interrupt enable bit : Interrupt disabled
1 : Interrupt enabled
0 : Interrupt disabled
3 INT2 interrupt enable bit
1 : Interrupt enabled
3802 GROUP USER’S MANUAL
0
0
0
0
0
R W
APPENDIX
3.6 Mask ROM ordering method
3.6 Mask ROM ordering method
3802 GROUP USER’S MANUAL
3-47
APPENDIX
3.6 Mask ROM ordering method
3-48
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3802 GROUP USER’S MANUAL
3-49
APPENDIX
3.6 Mask ROM ordering method
3-50
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3802 GROUP USER’S MANUAL
3-51
APPENDIX
3.6 Mask ROM ordering method
3-52
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3802 GROUP USER’S MANUAL
3-53
APPENDIX
3.6 Mask ROM ordering method
3-54
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3802 GROUP USER’S MANUAL
3-55
APPENDIX
3.6 Mask ROM ordering method
3-56
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3802 GROUP USER’S MANUAL
3-57
APPENDIX
3.6 Mask ROM ordering method
3-58
3802 GROUP USER’S MANUAL
APPENDIX
3.6 Mask ROM ordering method
3802 GROUP USER’S MANUAL
3-59
APPENDIX
3.6 Mask ROM ordering method
3-60
3802 GROUP USER’S MANUAL
APPENDIX
3.7 Mark specification form
3.7 Mark specification form
3802 GROUP USER’S MANUAL
3-61
APPENDIX
3.7 Mark specification form
3-62
3802 GROUP USER’S MANUAL
APPENDIX
3.8 Package outline
3.8 Package outline
3802 GROUP USER’S MANUAL
3-63
APPENDIX
3.8 Package outline
3-64
3802 GROUP USER’S MANUAL
APPENDIX
3.4 List of instruction codes
3.9 List of instruction codes
D 7 – D4
D3 – D 0
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Hexadecimal
notation
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
ORA
ABS
ASL
ABS
SEB
0, ZP
0000
0
BRK
JSR
ORA
IND, X ZP, IND
BBS
0, A
—
ORA
ZP
ASL
ZP
BBS
0, ZP
PHP
ORA
IMM
ASL
A
SEB
0, A
—
0001
1
BPL
ORA
IND, Y
CLT
BBC
0, A
—
ORA
ZP, X
ASL
ZP, X
BBC
0, ZP
CLC
ORA
ABS, Y
DEC
A
CLB
0, A
—
0010
2
JSR
ABS
AND
IND, X
JSR
SP
BBS
1, A
BIT
ZP
AND
ZP
ROL
ZP
BBS
1, ZP
PLP
AND
IMM
ROL
A
SEB
1, A
BIT
ABS
0011
3
BMI
AND
IND, Y
SET
BBC
1, A
—
AND
ZP, X
ROL
ZP, X
BBC
1, ZP
SEC
AND
ABS, Y
INC
A
CLB
1, A
LDM
ZP
0100
4
RTI
EOR
IND, X
STP
BBS
2, A
COM
ZP
EOR
ZP
LSR
ZP
BBS
2, ZP
PHA
EOR
IMM
LSR
A
SEB
2, A
JMP
ABS
0101
5
BVC
EOR
IND, Y
—
BBC
2, A
—
EOR
ZP, X
LSR
ZP, X
BBC
2, ZP
CLI
EOR
ABS, Y
—
CLB
2, A
—
0110
6
RTS
ADC
MUL
IND, X ZP, X
BBS
3, A
TST
ZP
ADC
ZP
ROR
ZP
BBS
3, ZP
PLA
ADC
IMM
ROR
A
SEB
3, A
JMP
IND
0111
7
BVS
ADC
IND, Y
—
BBC
3, A
—
ADC
ZP, X
ROR
ZP, X
BBC
3, ZP
SEI
ADC
ABS, Y
—
CLB
3, A
—
1000
8
BRA
STA
IND, X
RRF
ZP
BBS
4, A
STY
ZP
STA
ZP
STX
ZP
BBS
4, ZP
DEY
—
TXA
SEB
4, A
STY
ABS
STA
ABS
STX
ABS
SEB
4, ZP
1001
9
BCC
STA
IND, Y
—
BBC
4, A
STY
ZP, X
STA
ZP, X
STX
ZP, Y
BBC
4, ZP
TYA
STA
ABS, Y
TXS
CLB
4, A
—
STA
ABS, X
—
CLB
4, ZP
1010
A
LDY
IMM
LDA
IND, X
LDX
IMM
BBS
5, A
LDY
ZP
LDA
ZP
LDX
ZP
BBS
5, ZP
TAY
LDA
IMM
TAX
SEB
5, A
LDY
ABS
LDA
ABS
LDX
ABS
SEB
5, ZP
1011
B
BCS
LDA
JMP
IND, Y ZP, IND
BBC
5, A
LDY
ZP, X
LDA
ZP, X
LDX
ZP, Y
BBC
5, ZP
CLV
LDA
ABS, Y
TSX
CLB
5, A
1100
C
CPY
IMM
CMP
IND, X
WIT
BBS
6, A
CPY
ZP
CMP
ZP
DEC
ZP
BBS
6, ZP
INY
CMP
IMM
DEX
SEB
6, A
CPY
ABS
1101
D
BNE
CMP
IND, Y
—
BBC
6, A
—
CMP
ZP, X
DEC
ZP, X
BBC
6, ZP
CLD
CMP
ABS, Y
—
CLB
6, A
—
1110
E
CPX
IMM
DIV
SBC
IND, X ZP, X
BBS
7, A
CPX
ZP
SBC
ZP
INC
ZP
BBS
7, ZP
INX
SBC
IMM
NOP
SEB
7, A
CPX
ABS
1111
F
BEQ
SBC
IND, Y
BBC
7, A
—
SBC
ZP, X
INC
ZP, X
BBC
7, ZP
SED
SBC
ABS, Y
—
CLB
7, A
—
—
CLB
ASL
ORA
ABS, X ABS, X 0, ZP
AND
ABS
ROL
ABS
SEB
1, ZP
CLB
ROL
AND
ABS, X ABS, X 1, ZP
EOR
ABS
LSR
ABS
SEB
2, ZP
CLB
LSR
EOR
ABS, X ABS, X 2, ZP
ADC
ABS
ROR
ABS
SEB
3, ZP
CLB
ROR
ADC
ABS, X ABS, X 3, ZP
CLB
LDX
LDA
LDY
ABS, X ABS, X ABS, Y 5, ZP
CMP
ABS
DEC
ABS
SEB
6, ZP
CLB
DEC
CMP
ABS, X ABS, X 6, ZP
SBC
ABS
INC
ABS
SEB
7, ZP
CLB
INC
SBC
ABS, X ABS, X 7, ZP
3-byte instruction
2-byte instruction
1-byte instruction
3802 GROUP USER’S MANUAL
3-65
APPENDIX
3.10 Machine instructions
3.10 Machine instructions
Addressing mode
Symbol
Function
Details
IMP
OP n
ADC
(Note 1)
(Note 5)
When T = 0
A←A+M+C
When T = 1
M(X) ← M(X) + M + C
AND
(Note 1)
When TV= 0
A←A M
When T = 1 V
M(X) ← M(X) M
ASL
C←
7
0
←0
IMM
# OP n
A
# OP n
BIT, A
# OP n
ZP
# OP n
BIT, ZP
# OP n
Adds the carry, accumulator and memory contents. The results are entered into the
accumulator.
Adds the contents of the memory in the address indicated by index register X, the
contents of the memory specified by the addressing mode and the carry. The results are
entered into the memory at the address indicated by index register X.
69 2
2
65 3
2
“AND’s” the accumulator and memory contents.
The results are entered into the accumulator.
“AND’s” the contents of the memory of the address indicated by index register X and the
contents of the memory specified by the addressing mode. The results are entered into
the memory at the address indicated by index
register X.
29 2
2
25 3
2
06 5
2
0A 2
Shifts the contents of accumulator or contents
of memory one bit to the left. The low order bit
of the accumulator or memory is cleared and
the high order bit is shifted into the carry flag.
1
#
BBC
(Note 4)
Ab or Mb = 0?
Branches when the contents of the bit specified in the accumulator or memory is “0”.
13
+ 4
2i
2
17
+ 5
2i
3
BBS
(Note 4)
Ab or Mb = 1?
Branches when the contents of the bit specified in the accumulator or memory is “1”.
03
+ 4
2i
2
07
+ 5
2i
3
BCC
(Note 4)
C = 0?
Branches when the contents of carry flag is
“0”.
BCS
(Note 4)
C = 1?
Branches when the contents of carry flag is
“1”.
BEQ
(Note 4)
Z = 1?
Branches when the contents of zero flag is “1”.
BIT
A
BMI
(Note 4)
N = 1?
Branches when the contents of negative flag is
“1”.
BNE
(Note 4)
Z = 0?
Branches when the contents of zero flag is “0”.
BPL
(Note 4)
N = 0?
Branches when the contents of negative flag is
“0”.
BRA
PC ← PC ± offset
Jumps to address specified by adding offset to
the program counter.
BRK
B←1
M(S) ← PCH
S←S–1
M(S) ← PCL
S←S–1
M(S) ← PS
S←S–1
PCL ← ADL
PCH ← ADH
Executes a software interrupt.
3-66
V
M
24 3
“AND’s” the contents of accumulator and
memory. The results are not entered anywhere.
00 7
3802 GROUP USER'S MANUAL
1
2
APPENDIX
3.10 Machine instructions
Addressing mode
ZP, X
ZP, Y
OP n
# OP n
75 4
ABS
ABS, X
ABS, Y
IND
# OP n
# OP n
# OP n
# OP n
2
6D 4
3 7D 5
3 79 5
35 4
2
2D 4
3 3D 5
3 39 5
16 6
2
0E 6
3 1E 7
3
2C 4
Processor status register
ZP, IND
# OP n
IND, X
IND, Y
REL
SP
# OP n
7
5
4
3
2
1
0
N V
T
B
D
I
Z
C
# OP n
# OP n
# OP n
3
61 6
2 71 6
2
N V
•
•
•
•
Z
C
3
21 6
2 31 6
2
N
•
•
•
•
•
Z
•
N
•
•
•
•
•
Z
C
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
90 2
2
•
•
•
•
•
•
•
•
B0 2
2
•
•
•
•
•
•
•
•
F0 2
2
•
•
•
•
•
•
•
•
M7 M6 •
•
•
•
Z
•
3
3802 GROUP USER’S MANUAL
#
6
30 2
2
•
•
•
•
•
•
•
•
D0 2
2
•
•
•
•
•
•
•
•
10 2
2
•
•
•
•
•
•
•
•
80 4
2
•
•
•
•
•
•
•
•
•
•
•
1
•
1
•
•
3-67
APPENDIX
3.10 Machine instructions
Addressing mode
Symbol
Function
Details
IMP
OP n
IMM
# OP n
BVC
(Note 4)
V = 0?
Branches when the contents of overflow flag is
“0”.
BVS
(Note 4)
V = 1?
Branches when the contents of overflow flag is
“1”.
CLB
Ab or Mb ← 0
Clears the contents of the bit specified in the
accumulator or memory to “0”.
CLC
C←0
Clears the contents of the carry flag to “0”.
18 2
1
CLD
D←0
Clears the contents of decimal mode flag to
“0”.
D8 2
1
CLI
I←0
Clears the contents of interrupt disable flag to
“0”.
58 2
1
CLT
T←0
Clears the contents of index X mode flag to
“0”.
12 2
1
CLV
V←0
Clears the contents of overflow flag to “0”.
B8 2
1
CMP
(Note 3)
When T = 0
A–M
When T = 1
M(X) – M
Compares the contents of accumulator and
memory.
Compares the contents of the memory specified by the addressing mode with the contents
of the address indicated by index register X.
COM
M←M
Forms a one’s complement of the contents of
memory, and stores it into memory.
CPX
X–M
Compares the contents of index register X and
memory.
E0 2
CPY
Y–M
Compares the contents of index register Y and
memory.
C0 2
DEC
A ← A – 1 or
M←M–1
Decrements the contents of the accumulator
or memory by 1.
DEX
X←X–1
Decrements the contents of index register X CA 2
by 1.
1
DEY
Y←Y–1
Decrements the contents of index register Y
by 1.
88 2
1
DIV
A ← (M(zz + X + 1),
M(zz + X)) / A
M(S) ← 1’s complememt
of Remainder
S←S–1
Divides the 16-bit data that is the contents of
M (zz + x + 1) for high byte and the contents of
M (zz + x) for low byte by the accumulator.
Stores the quotient in the accumulator and the
1’s complement of the remainder on the stack.
EOR
(Note 1)
When T = 0
–M
A←AV
“Exclusive-ORs” the contents of accumulator
and memory. The results are stored in the accumulator.
“Exclusive-ORs” the contents of the memory
specified by the addressing mode and the
contents of the memory at the address indicated by index register X. The results are
stored into the memory at the address indicated by index register X.
When T = 1
–M
M(X) ← M(X) V
Connects oscillator output to the XOUT pin.
FST
INC
A ← A + 1 or
M←M+1
Increments the contents of accumulator or
memory by 1.
INX
X←X+1
Increments the contents of index register X by
1.
INY
Y←Y+1
Increments the contents of index register Y by
1.
3-68
A
# OP n
BIT, A
# OP n
1B 2
+
2i
C9 2
E2 2
# OP n
#
1F 5
+
2i
2
1
2
44 5
2
2
E4 3
2
2
C4 3
2
C6 5
2
45 3
2
E6 5
2
1
2
1
3A 2
E8 2
1
C8 2
1
3802 GROUP USER'S MANUAL
# OP n
BIT, ZP
C5 3
2
1A 2
49 2
ZP
1
APPENDIX
3.10 Machine instructions
Addressing mode
ZP, X
OP n
D5 4
D6 6
ZP, Y
# OP n
2
2
ABS
# OP n
CD 4
ABS, X
# OP n
3 DD 5
ABS, Y
# OP n
3 D9 5
IND
# OP n
3
Processor status register
ZP, IND
# OP n
IND, X
# OP n
C1 6
IND, Y
# OP n
2 D1 6
# OP n
2
F6 6
2
2
SP
# OP n
7
#
6
5
4
3
2
1
0
N V
T
B
D
I
Z
C
50 2
2
•
•
•
•
•
•
•
•
70 2
2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
0
•
•
•
•
0
•
•
•
•
•
•
•
•
0
•
•
•
•
0
•
•
•
•
•
•
0
•
•
•
•
•
•
N
•
•
•
•
•
Z
C
N
•
•
•
•
•
Z
•
EC 4
3
N
•
•
•
•
•
Z
C
CC 4
3
N
•
•
•
•
•
Z
C
CE 6
3 DE 7
N
•
•
•
•
•
Z
•
N
•
•
•
•
•
Z
•
N
•
•
•
•
•
Z
•
•
•
•
•
•
•
•
•
N
•
•
•
•
•
Z
•
•
•
•
•
•
•
•
•
N
•
•
•
•
•
Z
•
N
•
•
•
•
•
Z
•
N
•
•
•
•
•
Z
•
3
E2 16 2
55 4
REL
4D 4
EE 6
3 5D 5
3 FE 7
3 59 5
3
41 6
2 51 6
3
3802 GROUP USER’S MANUAL
2
3-69
APPENDIX
3.10 Machine instructions
Addressing mode
Symbol
Function
Details
IMP
OP n
IMM
# OP n
JMP
If addressing mode is ABS
PCL ← ADL
PCH ← ADH
If addressing mode is IND
PCL ← M (AD H, ADL)
PCH ← M (ADH, AD L + 1)
If addressing mode is ZP, IND
PCL ← M(00, AD L)
PCH ← M(00, AD L + 1)
Jumps to the specified address.
JSR
M(S) ← PCH
S←S–1
M(S) ← PCL
S←S–1
After executing the above,
if addressing mode is ABS,
PCL ← ADL
PCH ← ADH
if addressing mode is SP,
PCL ← ADL
PCH ← FF
If addressing mode is ZP, IND,
PCL ← M(00, AD L)
PCH ← M(00, AD L + 1)
After storing contents of program counter in
stack, and jumps to the specified address.
LDA
(Note 2)
When T = 0
A←M
When T = 1
M(X) ← M
Load accumulator with contents of memory.
LDM
M ← nn
Load memory with immediate value.
LDX
X←M
Load index register X with contents of
memory.
A2 2
LDY
Y←M
Load index register Y with contents of
memory.
A0 2
LSR
7
0→
MUL
(Note 5)
M(S) · A ← A ✕ M(zz + X)
S←S–1
Multiplies the accumulator with the contents of
memory specified by the zero page X addressing mode and stores the high byte of the result
on the stack and the low byte in the accumulator.
NOP
PC ← PC + 1
No operation.
ORA
(Note 1)
When T = 0
A←AVM
“Logical OR’s” the contents of memory and accumulator. The result is stored in the
accumulator.
“Logical OR’s” the contents of memory indicated by index register X and contents of
memory specified by the addressing mode.
The result is stored in the memory specified by
index register X.
0
→C
When T = 1
M(X) ← M(X) V M
3-70
A9 2
A
# OP n
BIT, A
# OP n
ZP
# OP n
BIT, ZP
# OP n
A5 3
2
3C 4
3
2
A6 3
2
2
A4 3
2
46 5
2
05 3
2
2
Load memory indicated by index register X
with contents of memory specified by the addressing mode.
Shift the contents of accumulator or memory
to the right by one bit.
The low order bit of accumulator or memory is
stored in carry, 7th bit is cleared.
4A 2
EA 2
3802 GROUP USER'S MANUAL
1
1
09 2
2
#
APPENDIX
3.10 Machine instructions
Addressing mode
ZP, X
OP n
B5 4
ZP, Y
# OP n
2
B6 4
ABS
# OP n
ABS, X
# OP n
4C 3
3
20 6
3
AD 4
3 BD 5
2 AE 4
ABS, Y
# OP n
3 B9 5
3
BE 5
IND
Processor status register
ZP, IND
IND, X
# OP n
# OP n
# OP n
6C 5
3 B2 4
2
02 7
2
3
IND, Y
# OP n
REL
# OP n
SP
# OP n
22 5
A1 6
2 B1 6
2
3
7
#
2
6
5
4
3
2
1
0
N V
T
B
D
I
Z
C
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N
•
•
•
•
•
Z
•
•
•
•
•
•
•
•
•
N
•
•
•
•
•
Z
•
B4 4
2
AC 4
3 BC 5
3
N
•
•
•
•
•
Z
•
56 6
2
4E 6
3 5E 7
3
0
•
•
•
•
•
Z
C
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N
•
•
•
•
•
Z
•
62 15 2
15 4
2
0D 4
3 1D 5
3 19 5
3
01 6
2 11 6
3802 GROUP USER’S MANUAL
2
3-71
APPENDIX
3.10 Machine instructions
Addressing mode
Symbol
Function
Details
IMP
IMM
A
Saves the contents of the accumulator in
memory at the address indicated by the stack
pointer and decrements the contents of stack
pointer by 1.
48 3
1
M(S) ← PS
S←S–1
Saves the contents of the processor status
register in memory at the address indicated by
the stack pointer and decrements the contents
of the stack pointer by 1.
08 3
1
PLA
S←S+1
A ← M(S)
Increments the contents of the stack pointer
by 1 and restores the accumulator from the
memory at the address indicated by the stack
pointer.
68 4
1
PLP
S←S+1
PS ← M(S)
Increments the contents of stack pointer by 1
and restores the processor status register
from the memory at the address indicated by
the stack pointer.
28 4
1
ROL
7
←
Shifts the contents of the memory or accumulator to the left by one bit. The high order bit is
shifted into the carry flag and the carry flag is
shifted into the low order bit.
2A 2
1
26 5
2
Shifts the contents of the memory or accumulator to the right by one bit. The low order bit is
shifted into the carry flag and the carry flag is
shifted into the high order bit.
6A 2
1
66 5
2
82 8
2
E5 3
2
PHP
0
←C ←
ROR
7
C→
RRF
7
→
0
→
0
→
Rotates the contents of memory to the right by
4 bits.
RTI
S←S+1
PS ← M(S)
S←S+1
PCL ← M(S)
S←S+1
PCH ← M(S)
Returns from an interrupt routine to the main
routine.
40 6
1
RTS
S←S+1
PCL ← M(S)
S←S+1
PCH ← M(S)
Returns from a subroutine to the main routine.
60 6
1
SBC
(Note 1)
(Note 5)
When T = 0
A←A–M–C
Subtracts the contents of memory and
complement of carry flag from the contents of
accumulator. The results are stored into the
accumulator.
Subtracts contents of complement of carry flag
and contents of the memory indicated by the
addressing mode from the memory at the address indicated by index register X. The
results are stored into the memory of the address indicated by index register X.
When T = 1
M(X) ← M(X) – M – C
E9 2
SEB
Ab or Mb ← 1
Sets the specified bit in the accumulator or
memory to “1”.
SEC
C←1
Sets the contents of the carry flag to “1”.
38 2
1
SED
D←1
Sets the contents of the decimal mode flag to
“1”.
F8 2
1
SEI
I←1
Sets the contents of the interrupt disable flag
to “1”.
78 2
1
SET
T←1
Sets the contents of the index X mode flag to
“1”.
32 2
1
Disconnects the oscillator output from the
XOUT pin.
C2 2
1
SLW
3-72
# OP n
BIT, ZP
# OP n
PHA
# OP n
ZP
OP n
M(S) ← A
S←S–1
# OP n
BIT, A
2
0B 2
+
2i
3802 GROUP USER'S MANUAL
1
# OP n
0F 5
+
2i
#
2
APPENDIX
3.10 Machine instructions
Addressing mode
ZP, X
OP n
ZP, Y
# OP n
ABS
# OP n
ABS, X
# OP n
ABS, Y
# OP n
IND
# OP n
Processor status register
ZP, IND
# OP n
IND, X
# OP n
IND, Y
# OP n
REL
# OP n
SP
# OP n
7
#
6
5
4
3
2
1
0
N V
T
B
D
I
Z
C
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N
•
•
•
•
•
Z
•
(Value saved in stack)
36 6
2
2E 6
3 3E 7
3
N
•
•
•
•
•
Z
C
76 6
2
6E 6
3 7E 7
3
N
•
•
•
•
•
Z
C
•
•
•
•
•
•
•
•
(Value saved in stack)
•
F5 4
2
ED 4
3 FD 5
3 F9 5
3
E1 6
2 F1 6
3802 GROUP USER’S MANUAL
2
•
•
•
•
•
•
•
N V
•
•
•
•
Z
C
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
1
•
•
•
•
1
•
•
•
•
•
•
•
•
1
•
•
•
•
1
•
•
•
•
•
•
•
•
•
•
•
•
•
3-73
APPENDIX
3.10 Machine instructions
Addressing mode
Symbol
Function
Details
IMP
OP n
STA
M←A
# OP n
Stores the contents of accumulator in memory.
Stops the oscillator.
STP
IMM
42 2
A
# OP n
BIT, A
# OP n
ZP
# OP n
BIT, ZP
# OP n
85 4
2
1
STX
M←X
Stores the contents of index register X in
memory.
86 4
2
STY
M←Y
Stores the contents of index register Y in
memory.
84 4
2
TAX
X←A
Transfers the contents of the accumulator to
index register X.
AA 2
1
TAY
Y←A
Transfers the contents of the accumulator to
index register Y.
A8 2
1
TST
M = 0?
Tests whether the contents of memory are “0”
or not.
64 3
2
TSX
X←S
Transfers the contents of the stack pointer to BA 2
index register X.
1
TXA
A←X
Transfers the contents of index register X to
the accumulator.
8A 2
1
TXS
S←X
Transfers the contents of index register X to
the stack pointer.
9A 2
1
TYA
A←Y
Transfers the contents of index register Y to
the accumulator.
98 2
1
Stops the internal clock.
C2 2
1
WIT
Notes 1
2
3
4
5
3-74
: The number of cycles “n” is increased by 3 when T is 1.
: The number of cycles “n” is increased by 2 when T is 1.
: The number of cycles “n” is increased by 1 when T is 1.
: The number of cycles “n” is increased by 2 when branching has occurred.
: N, V, and Z flags are invalid in decimal operation mode.
3802 GROUP USER'S MANUAL
#
APPENDIX
3.10 Machine instructions
Addressing mode
ZP, X
ZP, Y
OP n
# OP n
95 5
2
96 5
94 5
2
Symbol
ABS
ABS, X
ABS, Y
IND
# OP n
# OP n
# OP n
# OP n
8D 5
3 9D 6
3 99 6
3
Processor status register
ZP, IND
# OP n
IND, X
IND, Y
REL
# OP n
# OP n
# OP n
81 7
2 91 7
2
SP
# OP n
7
#
6
5
4
3
2
1
0
N V
T
B
D
I
Z
C
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2 8E 5
3
•
•
•
•
•
•
•
•
8C 5
3
•
•
•
•
•
•
•
•
N
•
•
•
•
•
Z
•
N
•
•
•
•
•
Z
•
N
•
•
•
•
•
Z
•
N
•
•
•
•
•
Z
•
N
•
•
•
•
•
Z
•
•
•
•
•
•
•
•
•
N
•
•
•
•
•
Z
•
•
•
•
•
•
•
•
•
Contents
Symbol
IMP
IMM
A
Implied addressing mode
Immediate addressing mode
Accumulator or Accumulator addressing mode
BIT, A
Accumulator bit relative addressing mode
ZP
BIT, ZP
Zero page addressing mode
Zero page bit relative addressing mode
ZP, X
ZP, Y
ABS
ABS, X
ABS, Y
IND
Zero page X addressing mode
Zero page Y addressing mode
Absolute addressing mode
Absolute X addressing mode
Absolute Y addressing mode
Indirect absolute addressing mode
ZP, IND
Zero page indirect absolute addressing mode
IND, X
IND, Y
REL
SP
C
Z
I
D
B
T
V
N
Indirect X addressing mode
Indirect Y addressing mode
Relative addressing mode
Special page addressing mode
Carry flag
Zero flag
Interrupt disable flag
Decimal mode flag
Break flag
X-modified arithmetic mode flag
Overflow flag
Negative flag
+
–
V
V
–
V
–
←
X
Y
S
PC
PS
PCH
PCL
ADH
ADL
FF
nn
M
M(X)
M(S)
M(AD H, ADL)
M(00, AD L)
Ab
Mb
OP
n
#
3802 GROUP USER’S MANUAL
Contents
Addition
Subtraction
Logical OR
Logical AND
Logical exclusive OR
Negation
Shows direction of data flow
Index register X
Index register Y
Stack pointer
Program counter
Processor status register
8 high-order bits of program counter
8 low-order bits of program counter
8 high-order bits of address
8 low-order bits of address
FF in Hexadecimal notation
Immediate value
Memory specified by address designation of any addressing mode
Memory of address indicated by contents of index
register X
Memory of address indicated by contents of stack
pointer
Contents of memory at address indicated by ADH and
ADL , in ADH is 8 high-order bits and ADL is 8 low-order bits.
Contents of address indicated by zero page ADL
1 bit of accumulator
1 bit of memory
Opcode
Number of cycles
Number of bytes
3-75
APPENDIX
3.11 SFR memory map
3.11 SFR memory map
000016
Port P0 (P0)
002016
Prescaler 12 (PRE12)
000116
Port P0 direction register (P0D)
002116
Timer 1 (T1)
000216
Port P1 (P1)
002216
Timer 2 (T2)
000316
Port P1 direction register (P1D)
002316
Timer XY mode register (TM)
000416
Port P2 (P2)
002416
Prescaler X (PREX)
000516
Port P2 direction register (P2D)
002516
Timer X (TX)
000616
Port P3 (P3)
002616
Prescaler Y (PREY)
000716
Port P3 direction register (P3D)
002716
Timer Y (TY)
000816
Port P4 (P4)
002816
000916
Port P4 direction register (P4D)
002916
000A16
Port P5 (P5)
002A16
000B16
Port P5 direction register (P5D)
002B16
000C16
Port P6 (P6)
002C16
PWM prescaler (PREPWM)
000D16
Port P6 direction register (P6D)
002D16
PWM register (PWM)
000E16
002E16
000F16
002F16
001016
003016
001116
003116
001216
003216
001316
003316
001416
003416
AD/DA control register (ADCON)
001516
003516
A-D conversion register (AD)
001616
003616
D-A1 conversion register (DA1)
001716
003716
D-A2 conversion register (DA2)
001816
Transmit/Receive buffer register (TB/RB)
003816
001916
Serial I/O1 status register (SIO1STS)
003916
001A16
Serial I/O1 control register (SIO1CON)
003A16
Interrupt edge selection register
001B16
UART control register (UARTCON)
003B16
CPU mode register (CPUM)
001C16
Baud rate generator (BRG)
003C16
Interrupt request register 1(IREQ1)
001D16
Serial I/O2 control register (SIO2CON)
003D16
Interrupt request register 2(IREQ2)
003E16
Interrupt control register 1(ICON1)
003F16
Interrupt control register 2(ICON2)
001E16
001F16
3-76
PWM control register (PWMCON)
Serial I/O2 register (SIO2)
3802 GROUP USER’S MANUAL
(INTEDGE)
APPENDIX
3.12 Pin configuration
3.12 Pin configuration
34
33
36
35
38
37
39
41
40
43
42
45
44
46
48
49
32
50
31
51
52
30
53
28
54
27
26
29
55
56
57
25
M38022M4-XXXFP
24
58
23
59
60
22
21
61
20
62
19
63
18
17
15
16
13
14
10
11
12
9
8
7
6
5
3
4
1
2
64
P20/DB0
P21/DB1
P22/DB2
P23/DB3
P24/DB4
P25/DB5
P26/DB6
P27/DB7
VSS
XOUT
XIN
P40/INT4
P41/INT0
RESET
CNVSS
P42/INT1
P62/AN2
P61/AN1
P60/AN0
P57/INT3
P56/PWM
P55/CNTR1
P54/CNTR0
P53/SRDY2
P52/SCLK2
P51/SOUT2
P50/SIN2
P47/SRDY1
P46/SCLK1
P45/TXD
P44/RXD
P43/INT2
P37/RD
P36/WR
P35/SYNC
P34/φ
P33/RESETOUT
P32/ONW
P31/DA2
P30/DA1
VCC
VREF
AVSS
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63 /AN3
47
P00/AD0
P01/AD1
P02/AD2
P03/AD3
P04/AD4
P05/AD5
P06/AD6
P07/AD7
P10/AD8
P11/AD9
P12/AD10
P13/AD11
P14/AD12
P15/AD13
P16/AD14
P17/AD15
PIN CONFIGURATION (TOP VIEW)
Package type : 64P6N-A
64-pin plastic-molded QFP
3802 GROUP USER’S MANUAL
3-77
APPENDIX
3.12 Pin configuration
PIN CONFIGURATION (TOP VIEW)
1
64
2
63
3
62
4
61
5
60
6
59
7
58
8
57
9
56
10
55
11
54
12
53
13
14
15
16
17
18
19
20
M38022M4-XXXSP
VCC
VREF
AV SS
P67/AN 7
P66/AN 6
P65/AN 5
P64/AN 4
P63/AN 3
P62/AN 2
P61/AN 1
P60/AN 0
P57/INT 3
P56/PWM
P55/CNTR 1
P54/CNTR 0
P53/SRDY2
P52/SCLK2
P51/SOUT2
P50/SIN2
P47/SRDY1
P46/SCLK1
P45/TXD
P44/RXD
P43/INT 2
P42/INT 1
CNV SS
RESET
P41/INT 0
P40/INT 4
XIN
XOUT
VSS
52
51
50
49
48
47
46
45
21
44
22
43
23
42
24
41
25
40
26
39
27
38
28
37
29
36
30
35
31
34
32
33
P30/DA 1
P31/DA 2
P32/ONW
P33/RESET OUT
P34/φ
P35/SYNC
P36/WR
P37/RD
P00/AD 0
P01/AD 1
P02/AD 2
P03/AD 3
P04/AD 4
P05/AD 5
P06/AD 6
P07/AD 7
P10/AD 8
P11/AD 9
P12/AD 10
P13/AD 11
P14/AD 12
P15/AD 13
P16/AD 14
P17/AD 15
P20/DB 0
P21/DB 1
P22/DB 2
P23/DB 3
P24/DB 4
P25/DB 5
P26/DB 6
P27/DB 7
Package type : 64P4B
64-pin shrink plastic-molded DIP
3-78
3802 GROUP USER’S MANUAL
MITSUBISHI SEMICONDUCTORS
USER’S MANUAL
3802Group
Mar. First Edition 1996
Editioned by
Committee of editing of Mitsubishi Semiconductor USER’S MANUAL
Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division
This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.
©1996 MITSUBISHI ELECTRIC CORPORATION
User’s Manual
3802 Group
MITSUBISHI ELECTRIC CORPORATION
HEAD OFFICE: MITSUBISHI DENKI BLDG., MARUNOUCHI, TOKYO 100. TELEX: J24532 CABLE: MELCO TOKYO
H-EE417-A KI-9603 Printed in Japan (ROD)
© 1996 MITSUBISHI ELECTRIC CORPORATION
New publication, effective Mar. 1996.
Specifications subject to change without notice.
REVISION DESCRIPTION LIST
Rev.
No.
1.0
3802 GROUP USER’S MANUAL
Revision Description
First Edition
Rev.
date
980110
(1/1)
Similar pages