Renesas M38065EBDFP Single-chip 8-bit cmos microcomputer Datasheet

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
DESCRIPTION
• Clock generating circuit ....................... Internal feedback resistor
(connect to external ceramic resonator or quartz-crystal)
The 3806 group is 8-bit microcomputer based on the 740 family
core technology.
The 3806 group is designed for controlling systems that require
analog signal processing and include two serial I/O functions, A-D
converters, and D-A converters.
The various microcomputers in the 3806 group include variations
of internal memory size and packaging. For details, refer to the
section on part numbering.
For details on availability of microcomputers in the 3806 group, refer to the section on group expansion.
• Memory expansion possible
Specification
Standard
(unit)
• Basic machine-language instructions ....................................... 71
• Memory size
0.5
0.4
Oscillation frequency
(MHz)
8
8
10
4.0 to 5.5
2.7 to 5.5
32
40
–40 to 85
–20 to 85
32
Operating temperature –20 to 85
range
(°C)
APPLICATIONS
Office automation, VCRs, tuners, musical instruments, cameras,
air conditioners, etc.
41
42
45
44
43
47
46
48
50
49
53
52
51
54
55
57
56
58
59
60
61
62
65
40
66
39
67
38
68
37
69
36
70
35
71
34
33
72
M38063M6-XXXFP
73
74
32
31
75
30
76
29
77
28
78
27
79
80
26
24
21
22
23
19
20
17
18
15
16
13
14
11
12
10
9
8
7
6
5
3
4
1
25
2
P87
P86
P85
P84
P83
P82
P81
P80
VCC
VREF
AVSS
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63 /AN3
63
64
P30
P31
P32/ONW
P33/RESETOUT
P34/φ
P35/SYNC
P36/WR
P37/RD
P00/AD0
P01/AD1
P02/AD2
P03/AD3
P04/AD4
P05/AD5
P06/AD6
P07/AD7
P10/AD8
P11/AD9
P12/AD10
P13/AD11
P14/AD12
P15/AD13
P16/AD14
P17/AD15
PIN CONFIGURATION (TOP VIEW)
P62/AN2
P61/AN1
P60/AN0
P77
P76
P75
P74
P73/SRDY2
P72/SCLK2
P71/SOUT2
P70/SIN2
P57/DA2
P56/DA1
P55/CNTR1
P54/CNTR0
P53/INT4
P52/INT3
P51/INT2
P50
P47/SRDY1
P46/SCLK1
P45/TXD
P44/RXD
P43/INT1
•
•
•
•
•
•
•
0.5
Power dissipation
(mW)
ROM ................................................................ 12 K to 48 K bytes
RAM ................................................................. 384 to 1024 bytes
Programmable input/output ports ............................................. 72
Interrupts .................................................. 16 sources, 16 vectors
Timers ............................................................................. 8 bit ✕ 4
Serial I/O1 .................... 8-bit ✕ 1 (UART or Clock-synchronized)
Serial I/O2 .................................... 8-bit ✕ 1 (Clock-synchronized)
A-D converter .................................................. 8-bit ✕ 8 channels
D-A converter .................................................. 8-bit ✕ 2 channels
High-speed
version
Minimum instruction
execution time
(µs)
Power source voltage 3.0 to 5.5
(V)
FEATURES
Extended operating
temperature version
Package type : 80P6N-A
80-pin plastic-molded QFP
P20/DB0
P21/DB1
P22/DB2
P23/DB3
P24/DB4
P25/DB5
P26/DB6
P27/DB7
VSS
XOUT
XIN
P40
P41
RESET
CNVSS
P42/INT0
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
41
43
42
45
44
46
47
48
50
49
52
51
53
55
54
57
56
58
60
61
40
62
39
63
38
64
37
65
36
66
35
67
34
68
33
32
69
70
31
M38063M6-XXXGP
M38063M6AXXXHP
71
72
30
29
28
73
20
18
19
17
16
15
14
13
12
11
P60/AN0
P77
P76
P75
P74
P73/SRDY2
P72/SCLK2
P71/SOUT2
P70/SIN2
P57/DA2
P56/DA1
P55/CNTR 1
P54/CNTR 0
P53/INT4
P52/INT3
P51/INT2
P50
P47/SRDY1
P46/SCLK1
P45/TXD
10
21
9
22
80
8
79
CNVSS
P42/INT0
P43/INT1
P44/RXD
7
23
6
RESET
24
78
5
25
77
4
76
3
26
1
27
75
Package type : 80P6S-A/80P6D-A
80-pin plastic-molded QFP
2
P16/AD14
P17/AD15
P20/DB0
P21/DB1
P22/DB2
P23/DB3
P24/DB4
P25/DB5
P26/DB6
P27/DB7
Vss
XOUT
XIN
P40
P41
74
2
P31
P30
P87
P86
P85
P84
P83
P82
P81
P80
VCC
VREF
AVSS
P67/AN7
P66/AN6
P65/AN5
P64/AN4
P63/AN3
P62/AN2
P61/AN1
59
P32/ONW
P33/RESETOUT
P34/φ
P35/SYNC
P36/WR
P37/RD
P00/AD0
P01/AD1
P02/AD2
P03/AD3
P04/AD4
P05/AD5
P06/AD6
P07/AD7
P10/AD8
P11/AD9
P12/AD10
P13/AD11
P14/AD12
P15/AD13
PIN CONFIGURATION (TOP VIEW)
31
71
70
I/O port P8
65 6667 6869
P8(8)
72
I/O port P7
AV SS
VREF
I/O port P6
76 77 78 79 80 1 2 3
4 5 6 7 8 9 10 11
D-A
converter 2
(8)
ROM
P6(8)
74 75
(8)
A-D
converter
RAM
P7(8)
Serial I/O2
(8)
Clock output
XOUT
Clock generating circuit
30
Clock input
XIN
I/O port P5
1314 1516 1718 19
P5(8)
D-A
converter 1
(8)
12
PC H
73
32
INT2
to
INT4
INT0
to
INT1
I/O port P4
25 28 29
P4(8)
20 21 22 2324
Serial I/O1
(8)
PS
PC L
S
Y
X
A
Data bus
CPU
VCC
VSS
FUNCTIONAL BLOCK DIAGRAM (Package : 80P6N)
57
I/O port P3
59
58 60 61 62 63 64
I/O port P2
33 3435 3637 3839
P2(8)
CNTR1
Prescaler Y (8)
Prescaler X (8)
Prescaler 12 (8)
26
CNVSS
CNTR0
P3(8)
27
RESET
Reset input
I/O port P1
40 41 42 43 44 45 46 47 48
P1(8)
P0(8)
I/O port P0
49 50 51 52 53 54 55 56
Timer Y (8)
Timer X (8)
Timer 2 (8)
Timer 1 (8)
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
3
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
PIN DESCRIPTION
Pin
Name
Function
Function except a port function
VCC
Power source
• Apply voltage of 3.0 V to 5.5 V to VCC, and 0 V to VSS.
(Extended operating temperature version : 4.0 V to 5.5 V)
(High-speed version : 2.7 V to 5.5 V)
CNVSS
CNVSS
• This pin controls the operation mode of the chip.
• Normally connected to VSS.
• If this pin is connected to VCC, the internal ROM is inhibited and external memory is accessed.
VREF
Analog reference
voltage
• Reference voltage input pin for A-D and D-A converters
AVSS
Analog power
source
• GND input pin for A-D and D-A converters
• Connect to VSS.
RESET
Reset input
• Reset input pin for active “L”
XIN
Clock input
XOUT
Clock output
• Input and output signals for the internal clock generating circuit.
• Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the
oscillation frequency.
• If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.
• The clock is used as the oscillating source of system clock.
P00 – P07
I/O port P0
P10 – P17
I/O port P1
P20 – P27
I/O port P2
P30 – P37
I/O port P3
P40, P41
I/O port P4
VSS
______
P42/INT0,
P43/INT1
•
•
•
•
•
•
8 bit CMOS I/O port
I/O direction register allows each pin to be individually programmed as either input or output.
At reset this port is set to input mode.
In modes other than single-chip, these pins are used as address, data, and control bus I/O pins.
CMOS compatible input level
CMOS 3-state output structure
• 8-bit CMOS I/O port with the same function as port P0
• CMOS compatible input level
• CMOS 3-state output structure
• External interrupt input pin
P44/RXD,
P45/TXD,
P46/S
CLK1,
_____
P47/SRDY1
P50
• Serial I/O1 I/O pins
I/O port P5
P51/INT2 –
P53/INT4
• 8-bit CMOS I/O port with the same function as port P0
• CMOS compatible input level
• CMOS 3-state output structure
• External interrupt input pin
P54/CNTR0,
P55/CNTR1
• Timer X and Timer Y I/O pins
P56/DA1,
P57/DA2
• D-A conversion output pins
P60/AN0 –
P67/AN7
4
I/O port P6
• 8-bit CMOS I/O port with the same function as
port P0
• CMOS compatible input level
• CMOS 3-state output structure
• A-D conversion input pins
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
PIN DESCRIPTION (Continued)
Pin
Name
Function
Function except a port function
P70/SIN2,
P71/SOUT2,
P72/S
CLK2,
_____
P73/SRDY2
I/O port P7
• 8-bit I/O port with the same function as port P0
• CMOS compatible input level
• N-channel open-drain output structure
• Serial I/O2 I/O pins
I/O port P8
• 8-bit CMOS I/O port with the same function as port P0
• CMOS compatible input level
• CMOS 3-state output structure
P74 – P77
P80 – P87
PART NUMBERING
Product M3806 3 M 6 - XXX FP
Package type
FP : 80P6N-A package
GP : 80P6S-A package
FS : 80D0 package
ROM number
Omitted in some types.
Normally, using hyphen
When electrical characteristic, or division of quality
identification code using alphanumeric character
– : standard
D : Extended operating temperature version
A : High-speed version
ROM/PROM size
1 : 4096 bytes
2 : 8192 bytes
3 : 12288 bytes
4 : 16384 bytes
5 : 20480 bytes
6 : 24576 bytes
7 : 28672 bytes
8 : 32768 bytes
9 : 36864 bytes
A : 40960 bytes
B : 45056 bytes
C : 49152 bytes
D : 53248 bytes
E : 57344 bytes
F : 61440 bytes
The first 128 bytes and the last 2 bytes of ROM
are reserved areas ; they cannot be used.
Memory type
M : Mask ROM version
E : EPROM or One Time PROM version
RAM size
0 : 192 bytes
1 : 256 bytes
2 : 384 bytes
3 : 512 bytes
4 : 640 bytes
5 : 768 bytes
6 : 896 bytes
7 : 1024 bytes
5
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
GROUP EXPANSION
Mitsubishi plans to expand the 3806 group as follows:
(1) Support for mask ROM, One Time PROM, and EPROM
versions
ROM/PROM capacity ................................ 12 K to 48 K bytes
RAM capacity .............................................. 384 to 1024 bytes
(2) Packages
80P6N-A ............................. 0.8 mm-pitch plastic molded QFP
80P6S-A ........................... 0.65 mm-pitch plastic molded QFP
80D0 ................ 0.8 mm-pitch ceramic LCC (EPROM version)
Memory Expansion Plan
Mass product
ROM size (bytes)
48K
M38067MC/EC
Mass product
32K
M38067M8
28K
Mass product
24K
M38063M6/E6
20K
Mass product
16K
M38062M4
Mass product
12K
M38062M3
8K
4K
192 256
384
512
640
768
896
1024
RAM size (bytes)
Products under development : the development schedule and specification may be revised without notice.
Currently supported products are listed below
Product name
M38062M3-XXXFP
M38062M3-XXXGP
M38062M4-XXXFP
M38062M4-XXXGP
M38063M6-XXXFP
M38063E6-XXXFP
M38063E6FP
M38063M6-XXXGP
M38063E6-XXXGP
M38063E6GP
M38063E6FS
M38067M8-XXXFP
M38067M8-XXXGP
M38067MC-XXXFP
M38067EC-XXXFP
M38067ECFP
M38067MC-XXXGP
M38067EC-XXXGP
M38067ECGP
6
As of May 1996
(P) ROM size (bytes)
ROM size for User in ( )
RAM size (bytes)
12288
(12158)
384
16384
(16254)
384
Package
80P6N-A
80P6S-A
80P6N-A
80P6S-A
80P6N-A
24576
(24446)
512
80P6S-A
32768
(32638)
1024
80D0
80P6N-A
80P6S-A
80P6N-A
49152
(49022)
1024
80P6S-A
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version
Mask ROM version
One Time PROM version
One Time PROM version
EPROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version
Mask ROM version
One Time PROM version
One Time PROM version
(blank)
(blank)
(blank)
(blank)
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
GROUP EXPANSION
(2) Packages
80P6N-A ............................. 0.8 mm-pitch plastic molded QFP
(EXTENDED OPERATING TEMPERATURE VERSION)
Mitsubishi plans to expand the 3806 group (extended operating
temperature version) as follows:
(1) Support for mask ROM version
ROM/PROM capacity ................................ 12 K to 48 K bytes
RAM capacity .............................................. 384 to 1024 bytes
Memory Expansion Plan
New product
M38067ECD
Mass product
ROM size (bytes)
48K
M38067MCD
Mass product
32K
M38067M8D
28K
Mass product
24K
M38063M6D
20K
Mass product
16K
M38062M4D
Mass product
12K
M38062M3D
8K
4K
192 256
384
512
640
768
896
1024
RAM size (bytes)
Currently supported products are listed below.
As of May 1996
Product name
(P) ROM size (bytes)
ROM size for User in ( )
RAM size (bytes)
M38062M3DXXXFP
M38062M4DXXXFP
M38063M6DXXXFP
M38067M8DXXXFP
M38067MCDXXXFP
M38067ECDXXXFP
M38067ECDFP
12288(12158)
16384(16254)
24576(24446)
32768(32638)
384
384
512
1024
49152(49022)
1024
Package
80P6N-A
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
7
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
GROUP EXPANSION
(HIGH-SPEED VERSION)
Mitsubishi plans to expand the 3806 group (high-speed version)
as follows:
(1) Support for mask ROM, One Time PROM, and EPROM
versions
ROM/PROM capacity ................................ 24 K to 48 K bytes
RAM capacity .............................................. 512 to 1024 bytes
(2) Packages
80P6N-A ............................. 0.8 mm-pitch plastic molded QFP
80P6S-A ........................... 0.65 mm-pitch plastic molded QFP
80P6D-A ............................. 0.5 mm-pitch plastic molded QFP
80D0 ................ 0.8 mm-pitch ceramic LCC (EPROM version)
Memory Expansion Plan
New product
ROM size (bytes)
48K
M38067MCA/ECA
New product
M38067M8A
32K
28K
New product
24K
M38063M6A
20K
16K
12K
8K
4K
192 256
384
512
640
768
896
1024
RAM size (bytes)
Products under development: the development schedule and specification may be revised without notice.
Currently supported products are listed below.
Product name
M38063M6AXXXFP
M38063M6AXXXGP
M38063M6AXXXHP
M38067M8AXXXFP
M38067M8AXXXGP
M38067MCAXXXFP
M38067ECAXXXFP
M38067ECAFP
M38067MCAXXXGP
M38067ECAXXXGP
M38067ECAGP
M38067ECAFS
8
As of May 1996
(P) ROM size (bytes)
ROM size for User in ( )
RAM size (bytes)
24576
(24446)
512
32768
(32638)
1024
Package
80P6N-A
80P6S-A
80P6D-A
80P6N-A
80P6S-A
80P6N-A
49152
(49022)
1024
80P6S-A
80D0
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Mask ROM version
One Time PROM version
One Time PROM version (blank)
EPROM version
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL DESCRIPTION
Central Processing Unit (CPU)
The 3806 group uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine instructions or the SERIES 740 <Software> User’s Manual for details on the instruction set.
Machine-resident 740 family instructions are as follows:
The FST and SLW instruction cannot be used.
The STP, WIT, MUL, and DIV instruction can be used.
CPU mode register
The CPU mode register is allocated at address 003B16.
The CPU mode register contains the stack page selection bit.
b7
b0
CPU mode register
(CPUM : address 003B16)
Processor mode bits
b1 b0
0 0 : Single-chip mode
0 1 : Memory expansion mode
1 0 : Microprocessor mode
1 1 : Not available
Stack page selection bit
0 : 0 page
1 : 1 page
Not used (return “0” when read)
Fig. 1 Structure of CPU mode register
9
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Memory
Special function register (SFR) area
The Special Function Register area in the zero page contains control registers such as I/O ports and timers.
RAM
RAM is used for data storage and for stack area of subroutine
calls and interrupts.
Zero page
The 256 bytes from addresses 000016 to 00FF16 are called the
zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory
and register addresses in the zero page area. Access to this area
with only 2 bytes is possible in the zero page addressing mode.
Special page
ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for
device testing and the rest is user area for storing programs.
Interrupt vector area
The 256 bytes from addresses FF0016 to FFFF16 are called the
special page area. The special page addressing mode can be
used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page
addressing mode.
The interrupt vector area contains reset and interrupt vectors.
RAM area
RAM capacity
(bytes)
192
256
384
512
640
768
896
1024
Address
XXXX16
000016
SFR area
00FF16
013F16
01BF16
023F16
02BF16
033F16
03BF16
043F16
Zero page
004016
RAM
010016
XXXX16
Reserved area
044016
ROM area
ROM capacity
(bytes)
4096
8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440
Fig. 2 Memory map diagram
10
Not used
Address
YYYY16
Address
ZZZZ16
F00016
E00016
D00016
C00016
B00016
A00016
900016
800016
700016
600016
500016
400016
300016
200016
100016
F08016
E08016
D08016
C08016
B08016
A08016
908016
808016
708016
608016
508016
408016
308016
208016
108016
YYYY16
Reserved ROM area
(128 bytes)
ZZZZ16
ROM
FF0016
FFDC16
Interrupt vector area
FFFE16
FFFF16
Reserved ROM area
Special page
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
000016
Port P0 (P0)
002016
Prescaler 12 (PRE12)
000116
Port P0 direction register (P0D)
002116
Timer 1 (T1)
000216
Port P1 (P1)
002216
Timer 2 (T2)
000316
Port P1 direction register (P1D)
002316
Timer XY mode register (TM)
000416
Port P2 (P2)
002416
Prescaler X (PREX)
000516
Port P2 direction register (P2D)
002516
Timer X (TX)
000616
Port P3 (P3)
002616
Prescaler Y (PREY)
000716
Port P3 direction register (P3D)
002716
Timer Y (TY)
000816
Port P4 (P4)
002816
000916
Port P4 direction register (P4D)
002916
000A16
Port P5 (P5)
002A16
000B16
Port P5 direction register (P5D)
002B16
000C16
Port P6 (P6)
002C16
000D16
Port P6 direction register (P6D)
002D16
000E16
Port P7 (P7)
002E16
000F16
Port P7 direction register (P7D)
002F16
001016
Port P8 (P8)
003016
001116
Port P8 direction register (P8D)
003116
001216
003216
001316
003316
001416
003416
AD/DA control register (ADCON)
001516
003516
A-D conversion register (AD)
001616
003616
D-A1 conversion register (DA1)
001716
003716
D-A2 conversion register (DA2)
001816
Transmit/Receive buffer register (TB/RB)
003816
001916
Serial I/O1 status register (SIO1STS)
003916
001A16
Serial I/O1 control register (SIO1CON)
003A16
Interrupt edge selection register
001B16
UART control register (UARTCON)
003B16
CPU mode register (CPUM)
001C16
Baud rate generator (BRG)
003C16
Interrupt request register 1(IREQ1)
001D16
Serial I/O2 control register (SIO2CON)
003D16
Interrupt request register 2(IREQ2)
001E16
001F16
Serial I/O2 register (SIO2)
(INTEDGE)
003E16
Interrupt control register 1(ICON1)
003F16
Interrupt control register 2(ICON2)
Fig. 3 Memory map of special function register (SFR)
11
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
I/O Ports
Direction registers
The 3806 group has 72 programmable I/O pins arranged in nine
I/O ports (ports P0 to P8). The I/O ports have direction registers
which determine the input/output direction of each individual pin.
Each bit in a direction register corresponds to one pin, each pin
can be set to be input port or output port.
When “0” is written to the bit corresponding to a pin, that pin becomes an input pin. When “1” is written to that bit, that pin becomes an output pin.
Pin
Name
Input/Output
P00 – P07
Port P0
Input/output,
individual bits
P10 – P17
Port P1
Input/output,
individual bits
P20 – P27
Port P2
Input/output,
individual bits
P30 – P37
Port P3
Input/output,
individual bits
P40,P41
P42/INT0,
P43/INT1
P44/RXD,
P45/TXD,
P46/SCLK1,
_____
P47/SRDY1
P50
P51/INT2,
P52/INT3,
P53/INT4
P54/CNTR0,
P55/CNTR1
P56/DA1,
P57/DA2
P60/AN0 –
P67/AN7
Port P4
Port P5
Port P6
Input/output,
individual bits
Input/output,
individual bits
If data is read from a pin which is set to output, the value of the
port output latch is read, not the value of the pin itself. Pins set to
input are floating. If a pin set to input is written to, only the port
output latch is written to and the pin remains floating.
I/O Format
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
Input/output,
individual bits
CMOS 3-state output
CMOS compatible
input level
P70/SIN2,
P71/SOUT2,
P72/SCLK2,
_____
P73/SRDY2
P74 – P77
Port P7
Input/output,
individual bits
N-channel open-drain output
CMOS compatible
input level
P80 – P87
Port P8
Input/output,
individual bits
CMOS 3-state output
CMOS compatible
input level
Non-Port Function
Related SFRs
Address low-order byte
output
CPU mode register
Address high-order
byte output
CPU mode register
Ref.No.
(1)
Data bus I/O
CPU mode register
Control signal I/O
CPU mode register
External interrupt input
Interrupt edge selection
register
Serial I/O1 function I/O
Serial I/O1 control
register
UART control register
External interrupt input
Interrupt edge selection
register
(2)
Timer X and Timer Y
function I/O
Timer XY mode register
(7)
D-A conversion output
AD/DA control register
(8)
A-D conversion input
Serial I/O2 function I/O
(2)
(3)
(4)
(5)
(6)
(1)
(9)
Serial I/O2 control
register
(10)
(11)
(12)
(13)
(14)
(1)
Note 1: For details of the functions of ports P0 to P3 in modes other than single-chip mode, and how to use double-function ports as function I/O ports, refer to the applicable sections.
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.
12
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(1) Ports P0, P1, P2, P3, P40, P41, P50, P8
(2) Ports P42, P43, P51, P52, P53
Direction register
Data bus
Direction register
Port latch
Port latch
Data bus
Interrupt input
(3) Port P44
(4) Port P45
Serial I/O1 enable bit
Receive enable bit
P45/TXD P-channel output disable bit
Serial I/O1 enable bit
Transmit enable bit
Direction register
Direction register
Data bus
Port latch
Port latch
Data bus
Serial I/O1 input
Serial I/O1output
(5) Port P46
(6) Port P47
Serial I/O1
synchronous clock selection bit
Serial I/O1 enable bit
Serial I/O1 mode selection bit
Serial I/O1 enable bit
SRDY1 output enable bit
Serial I/O1 mode selection bit
Serial I/O1 enable bit
Direction register
Data bus
Direction register
Port latch
Serial I/O1
external
clock input
Serial I/O1 clock output
(7) Ports P54, P55
Serial I/O1 ready output
(8) Ports P56, P57
Direction register
Data bus
Port latch
Data bus
Direction register
Port latch
Data bus
Pulse output mode
Timer output
Counter input
Interrupt input
Port latch
D-A conversion output
DA1 output enable bit (P5 6)
DA2 output enable bit (P5 7)
Fig. 4 Port block diagram (single-chip mode) (1)
13
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(9) Port P6
(10) Port P70
Direction register
Direction register
Data bus
Port latch
Port latch
Data bus
Serial I/O2 input
A-D conversion input
Analog input pin selection bit
(11) Port P71
(12) Port P72
Serial I/O2
transmit completion signal
Serial I/O2 port selection bit
Serial I/O2
synchronous clock selection bit
Serial I/O2 port selection bit
Direction register
Direction register
Port latch
Data bus
Data bus
Serial I/O2 clock output
Serial I/O2 output
(13) Port P73
Port latch
(14) Ports P74 – Port P77
Direction register
SRDY2 output enable bit
Data bus
Direction register
Data bus
Port latch
Serial I/O2 ready output
Fig. 5 Port block diagram (single-chip mode) (2)
14
Port latch
Serial I/O2
external
clock input
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
INTERRUPTS
Interrupt operation
Interrupts occur by sixteen sources: seven external, eight internal,
and one software.
When an interrupt is received, the contents of the program counter
and processor status register are automatically stored into the
stack. The interrupt disable flag is set to inhibit other interrupts
from interfering.The corresponding interrupt request bit is cleared
and the interrupt jump destination address is read from the vector
table into the program counter.
Interrupt control
Each interrupt is controlled by an interrupt request bit, an interrupt
enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are “1” and the interrupt disable flag is “0”.
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be
set by software.
The BRK instruction cannot be disabled with any flag or bit. The I
(interrupt disable) flag disables all interrupts except the BRK instruction interrupt.
Notes on use
When the active edge of an external interrupt (INT 0 to INT 4 ,
CNTR 0, or CNTR 1 ) is changed, the corresponding interrupt request bit may also be set. Therefore, please take following sequence;
(1) Disable the external interrupt which is selected.
(2) Change the active edge selection.
(3) Clear the interrupt request bit which is selected to “0”.
(4) Enable the external interrupt which is selected.
Table 1. Interrupt vector addresses and priority
Interrupt Source
Priority
Vector Addresses (Note 1)
Low
High
FFFC16
FFFD16
Interrupt Request
Generating Conditions
At reset
At detection of either rising or
falling edge of INT0 input
Reset (Note 2)
1
INT0
2
FFFB16
FFFA16
INT1
3
FFF916
FFF816
Serial I/O1
reception
4
FFF716
FFF616
Serial I/O1
transmission
5
FFF516
FFF416
Timer X
Timer Y
Timer 1
Timer 2
6
7
8
9
FFF316
FFF116
FFEF16
FFED16
FFF216
FFF016
FFEE16
FFEC16
CNTR0
10
FFEB16
FFEA16
CNTR1
11
FFE916
FFE816
Serial I/O2
12
FFE716
FFE616
INT2
13
FFE516
FFE416
INT3
14
FFE316
FFE216
INT4
15
FFE116
FFE016
A-D converter
16
FFDF16
FFDE16
At detection of either rising or
falling edge of INT1 input
At completion of serial I/O1
data reception
At completion of serial I/O1
transfer shift or when
transmission buffer is empty
At timer X underflow
At timer Y underflow
At timer 1 underflow
At timer 2 underflow
At detection of either rising or
falling edge of CNTR0 input
At detection of either rising or
falling edge of CNTR1 input
At completion of serial I/O2
data transfer
At detection of either rising or
falling edge of INT2 input
At detection of either rising or
falling edge of INT3 input
At detection of either rising or
falling edge of INT4 input
At completion of A-D conversion
BRK instruction
17
FFDD16
FFDC16
At BRK instruction execution
Remarks
Non-maskable
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O1 is selected
Valid when serial I/O1 is selected
STP release timer underflow
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O2 is selected
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Non-maskable software interrupt
Note 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.
15
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Interrupt request bit
Interrupt enable bit
Interrupt disable flag (I)
BRK instruction
Reset
Interrupt request
Fig. 6 Interrupt control
b7
b0 Interrupt edge selection register
(INTEDGE : address 003A16)
INT0 active edge selection bit
INT1 active edge selection bit
Not used (returns “0” when read)
INT2 active edge selection bit
INT3 active edge selection bit
INT4 active edge selection bit
Not used (returns “0” when read)
b7
0 : Falling edge active
1 : Rising edge active
b0 Interrupt request register 1
(IREQ1 : address 003C16)
b7
b0 Interrupt request register 2
(IREQ2 : address 003D16)
CNTR0 interrupt request bit
CNTR1 interrupt request bit
Serial I/O2 interrupt request bit
INT2 interrupt request bit
INT3 interrupt request bit
INT4 interrupt request bit
AD converter interrupt request bit
Not used (returns “0” when read)
INT0 interrupt request bit
INT1 interrupt request bit
Serial I/O1 receive interrupt request bit
Serial I/O1 transmit interrupt request bit
Timer X interrupt request bit
Timer Y interrupt request bit
Timer 1 interrupt request bit
Timer 2 interrupt request bit
0 : No interrupt request issued
1 : Interrupt request issued
b7
b0 Interrupt control register 1
(ICON1 : address 003E16)
INT0 interrupt enable bit
INT1 interrupt enable bit
Serial I/O1 receive interrupt enable bit
Serial I/O1 transmit interrupt enable bit
Timer X interrupt enable bit
Timer Y interrupt enable bit
Timer 1 interrupt enable bit
Timer 2 interrupt enable bit
b7
b0 Interrupt control register 2
(ICON2 : address 003F16)
CNTR0 interrupt enable bit
CNTR1 interrupt enable bit
Serial I/O2 interrupt enable bit
INT2 interrupt enable bit
INT3 interrupt enable bit
INT4 interrupt enable bit
AD converter interrupt enable bit
Not used (returns “0” when read)
(Do not write “1” to this bit)
0 : Interrupts disabled
1 : Interrupts enabled
Fig. 7 Structure of interrupt-related registers
16
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Timers
Timer 1 and Timer 2
The 3806 group has four timers: timer X, timer Y, timer 1, and
timer 2.
All timers are count down. When the timer reaches “0016”, an underflow occurs at the next count pulse and the corresponding
timer latch is reloaded into the timer and the count is continued.
When a timer underflows, the interrupt request bit corresponding
to that timer is set to “1”.
The division ratio of each timer or prescaler is given by 1/(n + 1),
where n is the value in the corresponding timer or prescaler latch.
The count source of prescaler 12 is the oscillation frequency divided by 16. The output of prescaler 12 is counted by timer 1 and
timer 2, and a timer underflow sets the interrupt request bit.
b7
b0
Timer XY mode register
(TM : address 002316)
Timer X operating mode bit
b1b0
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR0 active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
Timer X count stop bit
0: Count start
1: Count stop
Timer Y operating mode bit
b5b4
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR1 active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
Timer Y count stop bit
0: Count start
1: Count stop
Timer X and Timer Y
Timer X and Timer Y can each be selected in one of four operating
modes by setting the timer XY mode register.
Timer Mode
The timer counts f(XIN)/16 in timer mode.
Pulse Output Mode
Timer X (or timer Y) counts f(XIN)/16. Whenever the contents of
the timer reach “00 16 ”, the signal output from the CNTR 0 (or
CNTR 1 ) pin is inverted. If the CNTR 0 (or CNTR 1 ) active edge
switch bit is “0”, output begins at “ H”.
If it is “1”, output starts at “L”. When using a timer in this mode, set
the corresponding port P54 ( or port P55) direction register to output mode.
Event Counter Mode
Operation in event counter mode is the same as in timer mode,
except the timer counts signals input through the CNTR 0 or
CNTR1 pin.
Pulse Width Measurement Mode
If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer
counts at the oscillation frequency divided by 16 while the CNTR0
(or CNTR 1) pin is at “H”. If the CNTR0 (or CNTR1 ) active edge
switch bit is “1”, the count continues during the time that the
CNTR0 (or CNTR1) pin is at “L”.
In all of these modes, the count can be stopped by setting the
timer X (timer Y) count stop bit to “1”. Ever y time a timer
underflows, the corresponding interrupt request bit is set.
Fig. 8 Structure of timer XY register
17
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Data bus
Oscillator
Divider
f(XIN )
1/16
Pulse width
measurement
mode
P54/CNTR0 pin
CNTR0 active
edge switch bit
“0”
Timer X latch (8)
Prescaler X (8)
Timer X (8)
Timer mode
Pulse output
mode
Event
counter
mode
Timer X count stop bit
CNTR0 active
edge switch
bit
Q
“1”
“0”
Port P5 4
latch
Toggle flip- flop
Q
Timer X latch write pulse
Pulse output mode
Data bus
Pulse width
measurement
mode
CNTR1 active
edge switch bit
“0”
Prescaler Y latch (8)
Timer Y latch (8)
Prescaler Y (8)
Timer Y (8)
Timer mode
Pulse output
mode
Event
counter
mode
To timer Y interrupt
request bit
Timer Y count stop bit
To CNTR 1 interrupt
request bit
“1”
CNTR1 active
edge switch
bit
Q
“1”
Port P55
direction register
T
R
Pulse output
mode
P55/CNTR1 pin
To timer X interrupt
request bit
To CNTR 0 interrupt
request bit
“1”
Port P54
direction register
Prescaler X latch (8)
Port P5 5
latch
“0”
Toggle flip- flop
Q
T
R
Timer Y latch write pulse
Pulse output mode
Pulse output
mode
Data bus
Prescaler
12 latch (8)
Timer 1 latch (8)
Timer 2 latch (8)
Prescaler 12 (8)
Timer 1 (8)
Timer 2 (8)
To timer 2 interrupt
request bit
To timer 1 interrupt
request bit
Fig. 9 Block diagram of timer X, timer Y, timer 1, and timer 2
18
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Serial I/O1
Clock synchronous serial I/O mode
Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for
baud rate generation.
Clock synchronous serial I/O1 mode can be selected by setting
the mode selection bit of the serial I/O1 control register to “1”.
For clock synchronous serial I/O1, the transmitter and the receiver
must use the same clock. If an internal clock is used, transfer is
started by a write signal to the TB/RB (address 001816).
Data bus
Serial I/O1 control register
Address 0018 16
Receive buffer
Receive buffer full flag (RBF)
Receive interrupt request (RI)
Receive shift register
P44/RXD
Address 001A 16
Shift clock
Clock control circuit
P46/SCLK1
f(X
IN)
XIN
Serial I/O1 synchronous
clock selection bit
Frequency division ratio 1/(n+1)
BRG count source selection bit
Baud rate generator
Address 001C 16
1/4
P47/SRDY1
F/F
1/4
Clock control circuit
Falling-edge detector
Shift clock
P45/TXD
Transmit shift completion flag (TSC)
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Transmit shift register
Transmit buffer
Address 0018 16
Transmit buffer empty flag (TBE)
Serial I/O1 status register
Address 0019 16
Data bus
Fig. 10 Block diagram of clock synchronous serial I/O1
Transfer shift clock
(1/2 to 1/2048 of the internal
clock, or an external clock)
Serial output TxD
D0
D1
D2
D3
D4
D5
D6
D7
Serial input RxD
D0
D1
D2
D3
D4
D5
D6
D7
Receive enable signal SRDY1
Write pulse to receive/transmit
buffer (address 0018 16)
TBE = 0
TBE = 1
TSC = 0
RBF = 1
TSC = 1
Overrun error (OE)
detection
Notes 1 : The transmit interrupt (TI) can be selected to occur either when the transmit buffer has emptied (TBE=1) or after the
transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1
control register.
2 : If data is written to the transmit buffer when TSC=0, the transmit clock is generated continuously and serial data is
output continuously from the TxD pin.
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .
Fig. 11 Operation of clock synchronous serial I/O1 function
19
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Asynchronous serial I/O (UART) mode
two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is
written to the transmit buffer, and receive data is read from the receive buffer.
The transmit buffer can also hold the next data to be transmitted,
and the receive buffer can hold a character while the next character is being received.
Clock asynchronous serial I/O mode (UART) can be selected by
clearing the serial I/O mode selection bit of the serial I/O control
register to “0”.
Eight serial data transfer formats can be selected, and the transfer
formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but the
Data bus
Address 0018 16
Serial I/O1 control register Address 001A16
Receive buffer
OE
Character length selection bit
P44/RXD
STdetector
7 bits
Receive buffer full flag (RBF)
Receive interrupt request (RI)
Receive shift register
1/16
8 bits
PE FE
UART control register
SP detector
Clock control circuit
Address 001B16
Serial I/O1 synchronous clock selection bit
P46/SCLK1
f(XIN)
BRG count source selection bit Frequency division ratio 1/(n+1)
Baud rate generator
Address 001C 16
1/4
ST/SP/PA generator
1/16
Transmit shift register
P45/TXD
Transmit shift completion flag (TSC)
Transmit interrupt source selection bit
Transmit interrupt request (TI)
Character length selection bit
Transmit buffer
Address 001816
Data bus
Fig. 12 Block diagram of UART serial I/O
20
Transmit buffer empty flag (TBE)
Serial I/O1 status register Address 001916
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Transmit or receive clock
Transmit buffer write
signal
TBE=0
TSC=0
TBE=1
Serial output TXD
TBE=0
TSC=1✽
TBE=1
ST
D0
D1
SP
ST
D0
Receive buffer read
signal
SP
D1
✽
1 start bit
7 or 8 data bit
1 or 0 parity bit
1 or 2 stop bit (s)
Generated at 2nd bit in 2-stop-bit mode
RBF=0
RBF=1
Serial input RXD
ST
D0
D1
SP
RBF=1
ST
D0
D1
SP
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception).
2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt
source selection bit (TIC) of the serial I/O control register.
3: The receive interrupt (RI) is set when the RBF flag becomes "1".
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.
Fig. 13 Operation of UART serial I/O function
Serial I/O1 control register (SIO1CON) 001A16
The serial I/O control register consists of eight control bits for the
serial I/O function.
UART control register (UARTCON) 001B16
The UART control register consists of four control bits (bits 0 to 3)
which are valid when asynchronous serial I/O is selected and set
the data format of an data transfer. One bit in this register (bit 4) is
always valid and sets the output structure of the P45/TXD pin.
Serial I/O1 status register (SIO1STS) 001916
The read-only serial I/O1 status register consists of seven flags
(bits 0 to 6) which indicate the operating status of the serial I/O
function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to “0” when the receive
buffer is read.
If there is an error, it is detected at the same time that data is
transferred from the receive shift register to the receive buffer, and
the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, re-
spectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of
the Serial I/O Control Register) also clears all the status flags, including the error flags.
All bits of the serial I/O1 status register are initialized to “0” at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to “1”, the transmit shift completion flag (bit 2)
and the transmit buffer empty flag (bit 0) become “1”.
Transmit buffer/Receive buffer register (TB/
RB) 001816
The transmit buffer and the receive buffer are located at the same
address. The transmit buffer is write-only and the receive buffer is
read-only. If a character bit length is 7 bits, the MSB of data stored
in the receive buffer is “0”.
Baud rate generator (BRG) 001C16
The baud rate generator determines the baud rate for serial transfer.
The baud rate generator divides the frequency of the count source
by 1/(n + 1), where n is the value written to the baud rate generator.
21
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
b7
b0
Serial I/O1 status register
(SIO1STS : address 0019 16)
Transmit buffer empty flag (TBE)
0: Buffer full
1: Buffer empty
Receive buffer full flag (RBF)
0: Buffer empty
1: Buffer full
Transmit shift completion flag (TSC)
0: Transmit shift in progress
1: Transmit shift completed
Overrun error flag (OE)
0: No error
1: Overrun error
Parity error flag (PE)
0: No error
1: Parity error
Framing error flag (FE)
0: No error
1: Framing error
Summing error flag (SE)
0: (OE) U (PE) U (FE)=0
1: (OE) U (PE) U (FE)=1
Not used (returns "1" when read)
b7
b0
UART control register
(UARTCON : address 001B 16)
Character length selection bit (CHAS)
0: 8 bits
1: 7 bits
Parity enable bit (PARE)
0: Parity checking disabled
1: Parity checking enabled
Parity selection bit (PARS)
0: Even parity
1: Odd parity
Stop bit length selection bit (STPS)
0: 1 stop bit
1: 2 stop bits
P45/TXD P-channel output disable bit (POFF)
0: CMOS output (in output mode)
1: N-channel open drain output (in output mode)
Not used (return "1" when read)
Fig. 14 Structure of serial I/O control registers
22
b7
b0
Serial I/O1 control register
(SIO1CON : address 001A 16)
BRG count source selection bit (CSS)
0: f(X IN)
1: f(X IN)/4
Serial I/O1 synchronous clock selection bit (SCS)
0: BRG output divided by 4 when clock synchronous
serial I/O is selected, BRG output divided by 16
when UART is selected.
1: External clock input when clock synchronous serial
I/O is selected, external clock input divided by 16
when UART is selected.
SRDY1 output enable bit (SRDY)
0: P4 7 pin operates as ordinaly I/O pin
1: P4 7 pin operates as S RDY1 output pin
Transmit interrupt source selection bit (TIC)
0: Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0: Transmit disabled
1: Transmit enabled
Receive enable bit (RE)
0: Receive disabled
1: Receive enabled
Serial I/O1 mode selection bit (SIOM)
0: Clock asynchronous (UART) serial I/O
1: Clock synchronous serial I/O
Serial I/O enable bit (SIOE)
0: Serial I/O disabled
(pins P4 4 to P4 7 operate as ordinary I/O pins)
1: Serial I/O enabled
(pins P4 4 to P4 7 operate as serial I/O pins)
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Serial I/O2
b7
b0
The serial I/O2 function can be used only for clock synchronous
serial I/O.
For clock synchronous serial I/O the transmitter and the receiver
must use the same clock. If the internal clock is used, transfer is
started by a write signal to the serial I/O2 register.
Serial I/O2 control register
(SIO2CON : address 001D16)
Internal synchronous clock selection bits
b2 b1 b0
0 0 0: f(XIN)/8
0 0 1: f(XIN)/16
0 1 0: f(XIN)/32
0 1 1: f(XIN)/64
1 1 0: f(XIN)/128
1 1 1: f(XIN)/256
Serial I/O2 control register (SIO2CON) 001D16
The serial I/O2 control register contains seven bits which control
various serial I/O functions.
Serial I/O2 port selection bit
0: I/O port
1: SOUT2,SCLK2 signal output
SRDY2 output enable bit
0: I/O port
1: SRDY2 signal output
Transfer direction selection bit
0: LSB first
1: MSB first
Serial I/O2 synchronous clock selection bit
0: External clock
1: Internal clock
Not used (returns “0” when read)
Fig. 15 Structure of serial I/O2 control register
1/8
Divider
1/16
XIN
Internal synchronous
clock selection bits
1/32
Data bus
1/64
1/128
1/256
P73 latch
Serial I/O2 synchronous
clock selection bit
P73/SRDY2
SRDY2
"1"
Synchronization circuit
"1"
SRDY2 output enable bit
SCLK2
"0"
"0"
External clock
P72 latch
"0"
P72/SCLK2
"1"
Serial I/O2 port selection bit
Serial I/O counter 2 (3)
Serial I/O2
interrupt request
P71 latch
"0"
P71/SOUT2
"1"
Serial I/O2 port selection bit
P70/SIN2
Serial I/O shift register 2 (8)
Fig. 16 Block diagram of serial I/O2 function
23
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Transfer clock (Note 1)
Serial I/O2 register
write signal
(Note 2)
Serial I/O2 output S OUT2
D0
D1
D2
D3
D4
D5
D6
D7
Serial I/O2 input S IN2
Receive enable signal SRDY2
Serial I/O2 interrupt request bit set
Notes 1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial
I/O2 control register.
2: When the internal clock is selected as the transfer clock, the S OUT2 pin goes to high impedance after transfer completion.
Fig. 17 Timing of serial I/O2 function
24
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
A-D Converter
[Comparator and Control circuit]
The functional blocks of the A-D converter are described below.
The comparator and control circuit compares an analog input voltage with the comparison voltage, then stores the result in the A-D
conversion register. When an A-D conversion is complete, the
control circuit sets the AD conversion completion bit and the AD
interrupt request bit to “1”.
Note that the comparator is constructed linked to a capacitor, so
set f(XIN) to 500 kHz or more during an A-D conversion.
[A-D conversion register]
The A-D conversion register is a read-only register that stores the
result of an A-D conversion. When reading this register during an
A-D conversion, the previous conversion result is read.
[AD/DA control register]
The AD/DA control register controls the A-D conversion process.
Bits 0 to 2 select a specific analog input pin. Bit 3 signals the
completion of an A-D conversion. The value of this bit remains at
“0” during an A-D conversion, and changes to “1” when an A-D
conversion ends. Writing “0” to this bit starts the A-D conversion.
Bits 6 and 7 are used to control the output of the D-A converter.
b7
b0
AD/DA control register
(ADCON : address 0034 16)
Analog input pin selection bits
b2 b1 b0
0
0
0
0
1
1
1
1
[Comparison voltage generator]
The comparison voltage generator divides the voltage between
AVSS and VREF into 256, and outputs the divided voltages.
[Channel selector]
0
0
1
1
0
0
1
1
0: P60/AN0
1: P61/AN1
0: P62/AN2
1: P63/AN3
0: P64/AN4
1: P65/AN5
0: P66/AN6
1: P67/AN7
AD conversion completion bit
0: Conversion in progress
1: Conversion completed
The channel selector selects one of the ports P60/AN0 to P67/AN7,
and inputs the voltage to the comparator.
Not used (return "0" When read)
DA1 output enable bit
0: DA1 output disabled
1: DA1 output enabled
DA2 output enable bit
0: DA2 output disabled
1: DA2 output enabled
Fig.18 Structure of AD/DA control register
Data bus
AD/DA control register
(Address 0034 16)
b7
b0
3
A-D control circuit
Channel selector
P60/AN0
P61/AN 1
P62/AN 2
P63/AN 3
P64/AN 4
P65/AN 5
P66/AN 6
P67/AN 7
Comparator
A-D interrupt request
A-D conversion register (Address 0035 16)
8
Resistor ladder
VREF AV SS
Fig. 19 Block diagram of A-D converter
25
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
D-A Converter
The 3806 group has two internal D-A converters (DA1 and DA2)
with 8-bit resolutions.
The D-A converter is performed by setting the value in the D-A
conversion register. The result of D-A converter is output from the
DA1 or DA2 pin by setting the DA output enable bit to “1”.
When using the D-A converter, the corresponding port direction
register bit (DA 1/P56 or DA2/P57) should be set to “0” (input status).
The output analog voltage V is determined by the value n (base
10) in the D-A conversion register as follows:
Data bus
D-A1 conversion register (8)
V = VREF ✕ n/256 (n = 0 to 255)
Where VREF is the reference voltage.
R-2R resistor ladder
DA1 output enable bit
P56/DA1
D-A2 conversion register (8)
At reset, the D-A conversion registers are cleared to “00 16”, the DA
output enable bits are cleared to “0”, and the P56/DA1 and P5 7/
DA2 pins are set to input (high impedance).
The D-A output is not buffered, so connect an external buffer when
driving a low-impedance load.
Set VCC to 4.0 V or more when using the D-A converter.
R-2R resistor ladder
DA2 output enable bit
P57/DA2
Fig. 20 Block diagram of D-A converter
"0" DA1 output enable bit
R
P56/DA1
"1"
2R
R
2R
"0"
"1"
AV SS
VREF
Fig. 21 Equivalent connection circuit of D-A converter
26
2R
R
2R
R
2R
R
2R
R
2R
2R
2R
LSB
MSB
D-A1 conversion
register
R
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Reset Circuit
______
To reset the microcomputer, the RESET
pin should be held at an
______
“L” level for 2 µs or more. Then the RESET pin is returned to an
“H” level (Note 1), reset is released. Internal operation does not
begin until after 8 to 13 XIN clock cycles are completed. After the
reset is completed, the program starts from the address contained
in address FFFD16 (high-order byte) and address FFFC16 (low-order byte).
Make sure that the reset input voltage is less than 0.8 V for VCC of
4.0 V (Note 2).
Note 1. The power source voltage should be between the following voltage.
• Between 3.0 V and 5.5 V for standard version
• Between 4.0 V and 5.5 V for extended operating temperature version
• Between 2.7 V and 5.5 V for high-speed version
Note 2. Reset input voltage is less than the following voltage.
• 0.6 V for VCC = 3.0 V
• 0.8 V for VCC = 4.0 V
• 0.54 V for VCC = 2.7 V
4.0V
Power source
0V
voltage
0.8V
Reset input
0V
voltage
VCC
1
5
M51953AL
3
RESET
4
0.1 µ F
VSS
3806 group
Address
(1) Port P0 direction register
0016
(2) Port P1 direction register
(000316) • • •
0016
(3) Port P2 direction register
(000516) • • •
0016
(4) Port P3 direction register
(000716) • • •
0016
(5) Port P4 direction register
(000916) • • •
0016
(6) Port P5 direction register
(000B16) • • •
0016
(7) Port P6 direction register
(000D16) • • •
0016
(8) Port P7 direction register
(000F16) • • •
0016
(9) Port P8 direction register
(001116) • • •
0016
(10) Serial I/O1 status register
(001916) • • • 1 0 0 0 0 0 0 0
(11) Serial I/O1 control register
(001A16) • • •
(12) UART control register
(001B16) • • • 1 1 1 0 0 0 0 0
(13) Serial I/O2 control register
(001D16) • • •
0016
(14) Prescaler 12
(002016) • • •
FF16
(15) Timer 1
(002116) • • •
0116
(16) Timer 2
(002216) • • •
FF16
(17) Timer XY mode register
(002316) • • •
0016
(18) Prescaler X
(002416) • • •
FF16
(19) Timer X
(002516) • • •
FF16
(20) Prescaler Y
(002616) • • •
FF16
(21) Timer Y
(002716) • • •
FF16
(22) AD/DA control register
(003416) • • • 0 0 0 0 1 0 0 0
(23) D-A1 conversion register
(003616) • • •
0016
(24) D-A2 conversion register
(003716) • • •
0016
(25) Interrupt edge selection register (003A16) • • •
0016
0016
(26) CPU mode register
(003B16) • • • 0 0 0 0 0 0 ✽ 0
(27) Interrupt request register 1
(003C16) • • •
0016
(28) Interrupt request register 2
(003D16) • • •
0016
(29) Interrupt control register 1
(003E16) • • •
0016
(30) Interrupt control register 2
(003F16) • • •
0016
(31) Processor status register
Fig. 22 Example of reset circuit
Register contents
(000116) • • •
(32) Program counter
(PS) ✕ ✕ ✕ ✕ ✕ 1 ✕ ✕
(PCH) Contents of address FFFD 16
(PCL) Contents of address FFFC 16
Note. ✕ : Undefined
✽ : The initial values of CM 1 are determined by the level at the
CNVSS pin.
The contents of all other registers and RAM are undefined
after a reset, so they must be initialized by software.
Fig. 23 Internal status of microcomputer after reset
27
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
XIN
φ
RESET
RESETOUT
(internal reset)
SYNC
Address
?
?
?
?
?
FFFC
FFFD
ADH, ADL
Reset address from the vector table
?
Data
XIN: 8 to 13 clock cycles
Fig. 24 Timing of reset
28
?
?
?
?
ADL
ADH
Notes 1: f(XIN) and f(φ) are in the relationship: f(X IN)=2 • f(φ).
2: A question mark (?) indicates an undefined status that depends on the previous status.
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Clock Generating Circuit
When the STP status is released, prescaler 12 and timer 1 will
start counting and reset will not be released until timer 1
underflows, so set the timer 1 interrupt enable bit to “0” before the
STP instruction is executed.
An oscillation circuit can be formed by connecting a resonator between XIN and XOUT. To supply a clock signal externally, input it to
the XIN pin and make the XOUT pin open.
Oscillation control
Stop Mode
If the STP instruction is executed, the internal clock φ stops at an
“H”. Timer 1 is set to “0116” and prescaler 12 is set to “FF16”.
Oscillator restarts when an external interrupt is received, but the
internal clock φ remains at an “H” until timer 1 underflow.
This allows time for the clock circuit oscillation to stabilize.
If oscillator
is restarted by a reset, no wait time is generated, so
______
keep the RESET pin at an “L” level until oscillation has stabilized.
XIN
Wait Mode
If the WIT instruction is executed, the internal clock φ stops at an
“H” level, but the oscillator itself does not stop. The internal clock
restarts if a reset occurs or when an interrupt is received.
Since the oscillator does not stop, normal operation can be started
immediately after the clock is restarted.
To ensure that interrupts will be received to release the STP or
WIT state, interrupt enable bits must be set to “1” before the STP
or WIT instruction is executed.
XOUT
CIN
COUT
Fig. 25 Ceramic resonator circuit
X IN
XOUT
Open
Vcc
External oscillation
circuit
Vss
Fig. 26 External clock input circuit
Interrupt request
Interrupt disable
flag (I)
S
Q
S
Q
Q
Reset
S
Reset
R
STP instruction
WIT
instruction
R
STP instruction
R
φ output
Internal clock φ
ONW pin
Single-chip mode
ONW
control
1/2
1/8
Prescaler 12
Timer 1
Rd
FF16
0116
Reset or STP instruction
Rf
XIN
X OUT
Fig. 27 Block diagram of clock generating circuit
29
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Processor Modes
Single-chip mode, memory expansion mode, and microprocessor
mode can be selected by changing the contents of the processor
mode bits CM 0 and CM 1 (bits 0 and 1 of address 003B 16 ). In
memory expansion mode and microprocessor mode, memory can
be expanded externally through ports P0 to P3. In these modes,
ports P0 to P3 lose their I/O port functions and become bus pins.
Table 2.
Functions of ports in memory expansion mode and
microprocessor mode
Port Name
Function
Port P0
Outputs low-order byte of address.
Port P1
Outputs high-order byte of address.
Operates as I/O pins for data D7 to D0
Port P2
(including instruction codes).
P30 and P31 function only as output pins
(except that the port latch cannot be read).
_____
P32 is the ONW input pin.
000016
000816
000016
000816
SFR area
004016
SFR area
004016
Internal RAM
reserved area
044016
Internal RAM
reserved area
044016
✽
YYYY16
Internal ROM
FFFF16
FFFF16
Memory expansion mode
Microprocessor mode
The shaded areas are external memory areas.
✽ : YYYY16 is the start address of internal ROM.
_________
Port P3
P33 is the RESETOUT output pin. (Note)
P34 is the φ output pin.
P35 is the SYNC output pin.
___
P36 is the WR output pin, and P3 7 is the
___
RD output pin.
Note: If CNVSS is connected to V SS, the microcomputer goes to
single-chip
mode after a reset, so this pin cannot be used
_________
as the RESETOUT output pin.
Fig. 28 Memory maps in various processor modes
b7
b0
CPU mode register
(CPUM : address 003B 16)
Processor mode bits
b1 b0
Single-Chip Mode
Select this mode by resetting the microcomputer with CNVSS connected to VSS.
0 0 : Single-chip mode
0 1 : Memory expansion mode
1 0 : Microprocessor mode
1 1 : Not available
Memory Expansion Mode
Select this mode by setting the processor mode bits to “01” in software with CNV SS connected to VSS. This mode enables external
memory expansion while maintaining the validity of the internal
ROM. Internal ROM will take precedence over external memory if
addresses conflict.
Stack page selection bit
0 : 0 page
1 : 1 page
Not used (return “0” when read)
Fig. 29 Structure of CPU mode register
Microprocessor Mode
Select this mode by resetting the microcomputer with CNVSS connected to V CC, or by setting the processor mode bits to “10” in
software with CNVSS connected to VSS. In microprocessor mode,
the internal ROM is no longer valid and external memory must be
used.
30
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Bus control with memory expansion
_____
The 3806 group has a built-in ONW function to facilitate access to
external memory and I/O devices in memory expansion mode or
microprocessor mode.
_____
If an “L” level signal is input to the ONW pin when the CPU is in a
read or write state, the corresponding read or write cycle ___
is extended
by
one
cycle
of
φ.
During
this
extended
period,
the
RD
or
___
WR signal remains at “L”. This extension period is valid only for
writing to and reading from addresses 0000 16 to 0007 16 and
044016 to FFFF16 in microprocessor mode, 044016 to YYYY16 in
memory expansion mode, and only read and write cycles are extended.
Read cycle
Dummy cycle Write cycle
Read cycle Dummy cycle
Write cycle
φ
AD15 to AD0
RD
WR
ONW
✽
✽
✽
✽ : Period during which ONW input signal is received
During this period, the ONW signal must be fixed at either “H” or “L”. At all other times, the input level of the ONW
signal has no affect on operations.
The bus cycles is not extended for an address in the area 000816 to 043F16, regardless of whether the ONW signal
is received.
_____
Fig. 30 ONW function timing
31
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
NOTES ON PROGRAMMING
Processor Status Register
The contents of the processor status register (PS) after a reset are
undefined, except for the interrupt disable flag (I) which is “1”. After a reset, initialize flags which affect program execution.
In particular, it is essential to initialize the index X mode (T) and
the decimal mode (D) flags because of their effect on calculations.
Serial I/O
In clock synchronous serial I/O, if the
receive side is using an ex_____
ternal clock and it is to output the SRDY1 _____
signal, set the transmit
enable bit, the receive enable bit, and the SRDY1 output enable bit
to “1”.
Serial I/O1 continues to output the final bit from the TXD pin after
transmission is completed. The SOUT2 pin from serial I/O2 goes to
high impedance after transmission is completed.
Interrupts
The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before executing a
BBC or BBS instruction.
Decimal Calculations
To calculate in decimal notation, set the decimal mode flag (D) to
“1”, then execute an ADC or SBC instruction. Only the ADC and
SBC instructions yield proper decimal results. After executing an
ADC or SBC instruction, execute at least one instruction before
executing a SEC, CLC, or CLD instruction.
In decimal mode, the values of the negative (N), overflow (V), and
zero (Z) flags are invalid.
The carry flag can be used to indicate whether a carry or borrow
has occurred. Initialize the carry flag before each calculation.
Clear the carry flag before an ADC and set the flag before an
SBC.
Timers
If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n + 1).
Multiplication and Division Instructions
The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
The execution of these instructions does not change the contents
of the processor status register.
Ports
The contents of the port direction registers cannot be read.
The following cannot be used:
• The data transfer instruction (LDA, etc.)
• The operation instruction when the index X mode flag (T) is “1”
• The addressing mode which uses the value of a direction register as an index
• The bit-test instruction (BBC or BBS, etc.) to a direction register
• The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a
direction register
Use instructions such as LDM and STA, etc., to set the port direction registers.
32
A-D Converter
The comparator uses internal capacitors whose charge will be lost
if the clock frequency is too low.
Make sure that
f(XIN ) is at least 500 kHz during an A-D conver____
sion. (If the ONW pin has been set to “L”, the A-D conversion will
take twice as long to match the longer bus cycle, and so f(X IN)
must be at least 1 MHz.)
Do not execute the STP or WIT instruction during an A-D conversion.
D-A Converter
The accuracy of the D-A converter becomes poor rapidly under
the VCC = 4.0 V or less condition.
Instruction Execution Time
The instruction execution time is obtained by multiplying the frequency of the internal clock φ by the number of cycles needed to
execute an instruction.
The number of cycles required to execute an instruction is shown
in the list of machine instructions.
The frequency
of the internal clock φ is half of the XIN frequency.
_____
When the ONW function is used in modes other than single-chip
mode, the frequency of the internal clock φ may be one fourth the
XIN frequency.
Memory Expansion Mode and Microprocessor Mode
Execute the LDM or STA instruction for writing to port P3 (address
000616) in memory expansion mode and microprocessor mode.
Set areas which can be read out and write to port P3 (address
0006 16 ) in a memory, using the read-modify-write instruction
(SEB, CLB).
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
DATA REQUIRED FOR MASK ORDERS
ROM PROGRAMMING METHOD
The following are necessary when ordering a mask ROM production:
1. Mask ROM Order Confirmation Form
2. Mark Specification Form
3. Data to be written to ROM, in EPROM form (three identical
copies)
The built-in PROM of the blank One Time PROM version and builtin EPROM version can be read or programmed with a generalpurpose PROM programmer using a special programming
adapter. Set the address of PROM programmer in the user ROM
area.
Package
Name of Programming Adapter
80P6N-A
PCA4738F-80A
80P6S-A
PCA4738G-80A
80D0
PCA4738L-80A
The PROM of the blank One Time PROM version is not tested or
screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in
Figure 40 is recommended to verify programming.
Programming with PROM
programmer
Screening (Caution)
(150°C for 40 hours)
Verification with
PROM programmer
Functional check in
target device
Caution : The screening temperature is far higher
than the storage temperature. Never
expose to 150 °C exceeding 100 hours.
Fig. 31 Programming and testing of One Time PROM version
33
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Parameter
Power source voltage
Input voltage P00–P07, P10–P17,
P30–P37, P40–P47,
P60–P67, P70–P77,
VREF
______
Input voltage RESET, XIN
Input voltage CNVSS
Output voltage P00–P07, P10–P17,
P30–P37, P40–P47,
P60–P67, P70–P77,
XOUT
Power dissipation
Operating temperature
Storage temperature
VI
VI
VI
VO
Pd
Topr
Tstg
Ratings
–0.3 to 7.0
Unit
V
–0.3 to VCC +0.3
V
–0.3 to VCC +0.3
–0.3 to 13
V
V
–0.3 to VCC +0.3
V
500
–20 to 85
–40 to 125
mW
°C
°C
Conditions
P20–P27,
P50–P57,
P80–P87,
All voltages are based on VSS.
Output transistors are cut off.
P20–P27,
P50–P57,
P80–P87,
Ta = 25 °C
RECOMMENDED OPERATING CONDITIONS (Vcc=3.0 to 5.5v, Ta=-20 to 85°C,unless otherwise noted)
Symbol
VCC
VSS
VREF
AVSS
VIA
VIH
VIH
VIL
VIL
VIL
VIL
ΣIOH(peak)
ΣIOH(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOH(avg)
ΣIOL(avg)
ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
Parameter
Power source voltage (f(XIN) < 2 MHz) (Note 1)
Power source voltage (f(XIN) = 8 MHz) (Note 1)
Power source voltage
Analog reference voltage (when A-D converter is used)
Analog reference voltage (when D-A converter is used)
Analog power source voltage
Analog input voltage
AN0–AN7
“H” input voltage
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87
______
“H” input voltage
RESET, XIN, CNVSS
“L” input voltage
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87
______
“L” input voltage
RESET
“L” input voltage
XIN
“L” input voltage
CNVSS
“H” total peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 2)
“H” total peak output current
P40–P47,P50–P57, P60–P67 (Note 2)
“L” total peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 2)
“L” total peak output current
P40–P47,P50–P57, P60–P67, P70–P77 (Note 2)
“H” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 2)
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 2)
“L” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 2)
“L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 2)
“H” peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 3)
“L” peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 3)
“H” average output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 4)
“L” average output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 4)
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)
Internal clock oscillation frequency (VCC = 3.0 to 4.0 V)
Limits
Min.
3.0
4.0
Typ.
5.0
5.0
0
2.0
3.0
Max.
5.5
5.5
Unit
V
V
VCC
VCC
V
AVSS
VCC
V
V
0.8 VCC
VCC
V
0.8 VCC
VCC
V
0
0.2 VCC
V
0
0
0
0.2 VCC
0.16 VCC
0.2 VCC
–80
–80
80
80
–40
–40
40
40
V
V
V
mA
mA
mA
mA
mA
mA
mA
mA
–10
mA
10
mA
–5
mA
5
mA
0
8
MHz
6 VCC–16
Note 1: The minimum power source voltage is X + 16 [V] (f(XIN) = XMHz) on the condition of 2 MHz < f(XIN) < 8 MHz.
6
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.
3: The peak output current is the peak current flowing in each port.
4: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.
34
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS
Symbol
(VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Parameter
Test conditions
“H” output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P80–P87 (Note 1)
VOH
“L” output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47,P50–P57,
P60–P67, P70–P77, P80–P87
VOL
VT+ – VT–
VT+ – VT–
VT+ – VT–
Hysteresis
Hysteresis
Hysteresis
“H” input current
IIH
IIH
IIH
“H” input current
“H” input current
“L” input current
IIL
IIL
IIL
VRAM
ICC
“L” input current
“L” input current
RAM hold voltage
CNTR0, CNTR1, INT0–INT4
RXD, SCLK1, SIN2, SCLK2
______
RESET
P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87
______
RESET, CNVSS
XIN
P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87
______
RESET, CNVSS
XIN
Power source current
Min.
IOH = –10 mA
VCC = 4.0 to 5.5 V
IOH = –1.0 mA
VCC = 3.0 to 5.5 V
IOL = 10 mA
VCC = 4.0 to 5.5 V
IOL = 1.0 mA
VCC = 3.0 to 5.5 V
Limits
Typ.
Max.
Unit
VCC–2.0
V
VCC–1.0
2.0
V
1.0
0.4
0.5
0.5
VI = VCC
VI = VCC
VI = VCC
V
V
V
5.0
µA
5.0
µA
µA
–5.0
µA
–5.0
µA
µA
V
4
VI = VSS
VI = VSS
VI = VSS
When clock stopped
f(XIN) = 8 MHz, VCC = 5 V
f(XIN) = 5 MHz, VCC = 5 V
f(XIN) = 2 MHz, VCC = 3 V
When WIT instruction is executed with
f(Xin) = 8MHz,Vcc=5V
When WIT instruction is executed with
f(Xin) = 5MHz,Vcc=5V
When WIT instruction is executed
with f(Xin) = 2MHz,Vcc=3V
When STP instruction
Ta = 25 °C
is executed with clock (Note 2)
stopped, output
Ta = 85 °C
transistors isolated.
(Note 2)
–4
2.0
6.4
4
0.8
5.5
13
8
2.0
1.5
mA
1
0.2
0.1
1
µA
10
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through V REF pin.
A-D CONVERTER CHARACTERISTICS
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
—
—
tCONV
RLADDER
IVREF
II(AD)
Parameter
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
Test conditions
VREF = 5.0 V
Min.
50
Limits
Max.
Typ.
8
±1
±2.5
50
35
150
200
0.5
5.0
Unit
Bits
LSB
tC(φ)
kΩ
µA
µA
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.
35
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
D-A CONVERTER CHARACTERISTICS
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
—
—
tsu
RO
IVREF
Parameter
Test conditions
Min.
Limits
Typ.
Resolution
Absolute accuracy
VCC = 4.0 to 5.5 V
VCC = 3.0 to 4.0 V
Setting time
Output resistor
Reference power source input current (Note)
1
2.5
Max.
8
1.0
2.5
3
4
3.2
Unit
Bits
%
µs
kΩ
mA
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through the A-D resistance ladder.
36
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
_____
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
tsu(RXD–SCLK1)
tsu(SIN2–SCLK2)
th(SCLK1–RXD)
th(SCLK2–SIN2)
Parameter
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
Min.
2
125
50
50
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Limits
Typ.
Max.
Unit
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note: When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”.
TIMING REQUIREMENTS 2 (VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
_____
Parameter
tw(RESET)
Reset input “L” pulse width
tc(XIN)
External clock input cycle time
twH(XIN)
External clock input “H” pulse width
twL(XIN)
External clock input “L” pulse width
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
tsu(RXD–SCLK1)
tsu(SIN2–SCLK2)
th(SCLK1–RXD)
th(SCLK2–SIN2)
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
Min.
2
500/
(3 VCC–8)
200/
(3 VCC–8)
200/
(3 VCC–8)
500
230
230
230
230
2000
2000
950
950
950
950
400
400
200
300
Limits
Typ.
Max.
Unit
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note : When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”.
37
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
SWITCHING CHARACTERISTICS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
twH(SCLK1)
twL(SCLK1)
td(SCLK1–TXD)
tv(SCLK1–TXD)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
td(SCLK2–SOUT2)
tv(SCLK2–SOUT2)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Parameter
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output falling time
CMOS output rising time (Note 2)
CMOS output falling time (Note 2)
Test conditions
Fig. 32
Min.
tc(SCLK1)/2–30
tc(SCLK1)/2–30
Limits
Typ.
Max.
140
–30
30
30
tc(SCLK2)/2–160
tc(SCLK2)/2–160
Fig. 33
200
0
40
30
30
10
10
Fig. 32
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: Pins XOUT and P70–P77 are excluded.
SWITCHING CHARACTERISTICS 2 (VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
twH(SCLK1)
twL(SCLK1)
td(SCLK1–TXD)
tv(SCLK1–TXD)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
td(SCLK2–SOUT2)
tv(SCLK2–SOUT2)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Parameter
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output falling time
CMOS output rising time (Note 2)
CMOS output falling time (Note 2)
Test conditions
Fig. 32
Limits
Min.
tc(SCLK1)/2–50
tc(SCLK1)/2–50
Typ.
350
–30
50
50
tc(SCLK2)/2–240
tc(SCLK2)/2–240
400
Fig. 33
0
Fig. 32
20
20
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: Pins XOUT and P70–P77 are excluded.
38
Max.
50
50
50
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
Symbol
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____ __
tsu(ONW–RD)
____ ___
tsu(ONW–WR)
__ ____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
_____
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD
___ ONW
_____ input set up time
Before WR ONW input set up time
___ _____
After RD
___ ONW
_____ input hold time
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Limits
Parameter
Unit
Min.
Typ.
Max.
ns
–20
ns
–20
ns
60
ns
0
–20
ns
–20
ns
65
0
ns
ns
SWITCHING CHARACTERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
___
___
RD and WR delay time
___
___
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
___
___
RD pulse width, WR pulse width
__
___
___
twL(RD)
___
RD pulse width, WR pulse width
twL(WR)
(When one-wait is valid)
___
__
td(AH–RD)
After AD15–AD8 ___
RD delay time
___
td(AH–WR)
After AD15–AD8 WR delay time
___
__
td(AL–RD)
After AD7–AD0 ___
RD delay time
___
td(AL–WR)
After AD7–AD0 WR delay time
___
__
tv(RD–AH)
After ___
RD AD15–AD8 valid time
___
tv(WR–AH)
After WR AD15–AD8 valid time
___
__
tv(RD–AL)
After ___
RD AD7–AD0 valid time
___
tv(WR–AL)
After WR AD7–AD0 valid time
___
___
td(WR–DB)
After WR data bus delay time
___
___
tv(WR–DB)
After WR data bus valid time
_________
___ _____
td(RESET–RESETOUT) RESETOUT output delay time (Note 1)
_________
_____
tv(φ–RESET) RESETOUT output valid time (Note 1)
Test conditions
Min.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
___
td(φ–WR)
___
tv(φ–WR)
td(φ–DB)
tv(φ–DB)
Limits
Typ.
2tc(XIN)
Max.
15
tc(XIN)–10
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
3tc(XIN)–10
ns
tc(XIN)–10
tc(XIN)–10
6
6
3
Fig. 32
Unit
20
10
25
10
20
10
10
5
20
40
45
20
10
70
tc(XIN)–35
tc(XIN)–15
ns
tc(XIN)–40
tc(XIN)–20
ns
0
5
ns
0
5
ns
15
65
10
0
200
200
ns
ns
ns
ns
__________
Note 1: The______
RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
39
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Parameter
Symbol
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____ __
tsu(ONW–RD)
____ ___
tsu(ONW–WR)
__ ____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
Min.
–20
–20
180
0
_____
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD
___ ONW
_____ input set up time
Before WR ONW input set up time
___ _____
After RD
___ ONW
_____ input hold time
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
Limits
Typ.
Unit
Max.
ns
ns
ns
ns
–20
ns
–20
ns
185
0
ns
ns
SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Parameter
Symbol
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
___
td(φ–WR)
___
tv(φ–WR)
td(φ–DB)
tv(φ–DB)
Min.
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
___
___
15
tc(XIN)–20
3tc(XIN)–20
ns
tc(XIN)–145
ns
tc(XIN)–145
ns
10
15
10
15
40
20
15
7
150
3
25
15
200
Fig. 32
___
___
__
td(AH–RD)
___
td(AH–WR)
__
td(AL–RD)
___
td(AL–WR)
__
tv(RD–AH)
___
tv(WR–AH)
__
tv(RD–AL)
___
tv(WR–AL)
___
td(WR–DB)
___
tv(WR–DB)
___ _____
td(RESET–RESETOUT)
_____
tv(φ–RESET)
Unit
150
___
RD pulse width, WR
pulse width
___
RD pulse width, WR pulse width
(when one-wait is valid)
Max.
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
___
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
Typ.
2tc(XIN)
tc(XIN)–20
tc(XIN)–20
RD and WR delay time
___
___
__
twL(RD)
___
twL(WR)
Limits
Test conditions
After AD15–AD8 ___
RD delay time
After AD15–AD8 WR delay time
___
After AD7–AD0 ___
RD delay time
After AD7–AD0 WR delay time
___
After ___
RD AD15–AD8 valid time
After WR AD15–AD8 valid time
___
After ___
RD AD7–AD0 valid time
After WR AD7–AD0 valid time
5
10
ns
5
10
ns
___
195
After WR data bus delay time
___
10
After WR data bus valid time
_________
RESETOUT output delay time (Note 1)
300
_________
0
300
RESET
OUT output valid time (Note 1)
__________
Note1: The______
RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles
the RESET input goes “H”.
40
ns
ns
ns
ns
after
S
p
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ABSOLUTE MAXIMUM RATINGS (Extended operating temperature version)
Symbol
VCC
VI
VI
VI
VO
Pd
Topr
Tstg
Parameter
Power source voltage
Input voltage P00–P07, P10–P17,
P30–P37, P40–P47,
P60–P67, P70–P77,
VREF
______
Input voltage RESET, XIN
Input voltage CNVSS
Output voltage P00–P07, P10–P17,
P30–P37, P40–P47,
P60–P67, P70–P77,
XOUT
Power dissipation
Operating temperature
Storage temperature
Ratings
–0.3 to 7.0
Unit
V
–0.3 to VCC +0.3
V
–0.3 to VCC +0.3
–0.3 to 13
V
V
–0.3 to VCC +0.3
V
500
–40 to 85
–65 to 150
mW
°C
°C
Conditions
P20–P27,
P50–P57,
P80–P87,
All voltage are based on VSS.
Output transistors are cut off.
P20–P27,
P50–P57,
P80–P87,
Ta = 25 °C
RECOMMENDED OPERATING CONDITIONS (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
VCC
VSS
VREF
AVSS
VIA
VIH
VIH
VIL
VIL
VIL
ΣIOH(peak)
ΣIOH(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOH(avg)
ΣIOL(avg)
ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
Parameter
Power source voltage
Power source voltage
Analog reference voltage (when A-D converter is used)
Analog reference voltage (when D-A converter is used)
Analog power source voltage
Analog input voltage
AN0–AN7
“H” input voltage
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87
______
“H” input voltage
RESET, XIN, CNVSS
“L” input voltage
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87
______
“L” input voltage
RESET, CNVSS
“L” input voltage
XIN
“H” total peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1)
“H” total peak output current
P40–P47,P50–P57, P60–P67 (Note 1)
“L” total peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1)
“L” total peak output current
P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)
“H” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1)
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 1)
“L” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1)
“L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)
“H” peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 2)
“L” peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 2)
“H” average output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 3)
“L” average output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 3)
Internal clock oscillation frequency
Min.
4.0
Limits
Typ.
5.0
0
2.0
4.0
Max.
5.5
VCC
VCC
0
Unit
V
V
V
AVSS
VCC
V
V
0.8 VCC
VCC
V
0.8 VCC
VCC
V
0
0.2 VCC
V
0
0
0.2 VCC
0.16 VCC
–80
–80
80
80
–40
–40
40
40
V
V
mA
mA
mA
mA
mA
mA
mA
mA
–10
mA
10
mA
–5
mA
5
mA
8
MHz
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.
2: The peak output current is the peak current flowing in each port.
3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.
41
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
VOH
VOL
VT+ – VT–
VT+ – VT–
VT+ – VT–
IIH
IIH
IIH
IIL
IIL
IIL
VRAM
ICC
Parameter
“H” output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P80–P87 (Note 1)
“L” output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47,P50–P57,
P60–P67, P70–P77, P80–P87
Hysteresis
CNTR0, CNTR1, INT0–INT4
Hysteresis
RXD, SCLK1, SIN2, SCLK2
______
Hysteresis
RESET
“H” input current P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87
______
“H” input current RESET, CNVSS
“H” input current XIN
“L” input current
P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87
______
“L” input current
RESET, CNVSS
“L” input current
XIN
RAM hold voltage
Power source current
Test conditions
IOH = –10 mA
Min.
Limits
Typ.
Max.
VCC–2.0
V
2.0
IOL = 10 mA
0.4
0.5
0.5
VI = VCC
VI = VCC
VI = VCC
VI = VSS
5.0
µA
5.0
µA
µA
–5.0
µA
–5.0
µA
µA
V
–4
2.0
6.4
4
V
V
V
V
4
VI = VSS
VI = VSS
When clock stopped
f(XIN) = 8 MHz
f(XIN) = 5 MHz
When WIT instruction is executed
with f(XIN) = 8 MHz
When WIT instruction is executed
with f(XIN) = 5 MHz
When STP instruction
Ta = 25 °C
is executed with clock (Note 2)
stopped, output
Ta = 85 °C
transistors isolated.
(Note 2)
Unit
5.5
13
8
mA
1.5
1
0.1
1
µA
10
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through V REF pin.
A-D CONVERTER CHARACTERISTICS(Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
Parameter
—
—
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
tCONV
RLADDER
IVREF
II(AD)
Test conditions
Limits
Typ.
±1
VREF = 5.0 V
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.
42
Min.
50
35
150
0.5
Max.
8
±2.5
50
200
5.0
Unit
Bits
LSB
tC(φ)
kΩ
µA
µA
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
D-A CONVERTER CHARACTERISTICS (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
—
—
tsu
RO
IVREF
Parameter
Resolution
Absolute accuracy
Setting time
Output resistor
Reference power source input current (Note)
Test conditions
Min.
1
Limits
Typ.
2.5
Max.
8
1.0
3
4
3.2
Unit
Bits
%
µs
kΩ
mA
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through the A-D resistance ladder.
43
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
_____
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
tsu(RXD–SCLK1)
tsu(SIN2–SCLK2)
th(SCLK1–RXD)
th(SCLK2–SIN2)
Parameter
Min.
2
125
50
50
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
Limits
Typ.
Max.
Unit
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note: When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”.
SWITCHING CHARACTERISTICS (Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
twH(SCLK1)
twL(SCLK1)
td(SCLK1–TXD)
tv(SCLK1–TXD)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
td(SCLK2–SOUT2)
tv(SCLK2–SOUT2)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Parameter
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rise time
Serial I/O1 clock output fall time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output fall time
CMOS output rise time (Note 2)
CMOS output fall time (Note 2)
Test conditions
Fig. 32
Min.
tc(SCLK1)/2–30
tc(SCLK1)/2–30
Limits
Typ.
140
–30
30
30
tc(SCLK2)/2–160
tc(SCLK2)/2–160
Fig. 33
200
0
Fig. 32
10
10
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: Pins XOUT pin and P70–P77 are excluded.
44
Max.
40
30
30
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____ __
tsu(ONW–RD)
____ ___
tsu(ONW–WR)
__ ____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
Parameter
Min.
_____
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD
___ ONW
_____ input set up time
Before WR ONW input set up time
___ _____
After RD
___ ONW
_____ input hold time
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
Limits
Typ.
Max.
Unit
–20
–20
60
0
ns
ns
ns
ns
–20
ns
–20
ns
65
0
ns
ns
SWITCHING CHARACTERISTICS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
Symbol
Parameter
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
___
___
RD and WR delay time
___
___
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
___
___
__
RD pulse width, WR pulse width
___
___
twL(RD)
__
RD pulse width, WR pulse width
twL(WR)
(When one-wait is valid)
___
__
td(AH–RD)
After AD15–AD8 ___
RD delay time
___
td(AH–WR)
After AD15–AD8 WR delay time
___
__
td(AL–RD)
After AD7–AD0 ___
RD delay time
___
td(AL–WR)
After AD7–AD0 WR delay time
___
__
tv(RD–AH)
After ___
RD AD15–AD8 valid time
___
tv(WR–AH)
After WR AD15–AD8 valid time
___
__
tv(RD–AL)
After ___
RD AD7–AD0 valid time
___
tv(WR–AL)
After WR AD7–AD0 valid time
___
___
td(WR–DB)
After WR data bus delay time
___
___
tv(WR–DB)
After WR data bus valid time
_________
___ _____
td(RESET–RESETOUT) RESETOUT output delay time (Note 1)
_________
_____
tv(φ–RESET) RESETOUT output valid time (Note 1)
Test conditions
Min.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
___
td(φ–WR)
___
tv(φ–WR)
td(φ–DB)
tv(φ–DB)
Limits
Typ.
2tc(XIN)
Max.
15
tc(XIN)–10
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
3tc(XIN)–10
ns
tc(XIN)–10
tc(XIN)–10
6
6
3
Fig. 32
Unit
20
10
25
10
20
10
10
5
20
40
45
20
10
70
tc(XIN)–35
tc(XIN)–15
ns
tc(XIN)–40
tc(XIN)–20
ns
0
5
ns
0
5
ns
15
65
10
0
200
200
ns
ns
ns
ns
_________
Note 1: The______
RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
45
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ABSOLUTE MAXIMUM RATINGS (High-speed version)
Symbol
VCC
VI
VI
VI
VO
Pd
Topr
Tstg
Parameter
Power source voltage
Input voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87,
VREF, XIN
______
Input voltage RESET
Mask ROM version
Input voltage CNVSS
PROM version
Output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87,
XOUT
Power dissipation
Operating temperature
Storage temperature
Ratings
–0.3 to 7.0
Unit
V
–0.3 to VCC +0.3
V
–0.3 to 7.0
–0.3 to 7.0
–0.3 to 13
V
–0.3 to VCC +0.3
V
500
–20 to 85
–40 to 125
mW
°C
°C
Conditions
All voltages are based on VSS.
Output transistors are cut off.
Ta = 25 °C
V
RECOMMENDED OPERATING CONDITIONS (High-speed version)
(VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
VCC
VSS
VREF
AVSS
VIA
VIH
VIL
VIL
ΣIOH(peak)
ΣIOH(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOH(avg)
ΣIOL(avg)
ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
Parameter
Min.
2.7
4.0
Power source voltage (f(XIN) < 4.15 MHz)
Power source voltage (f(XIN) = 10 MHz)
Power source voltage
Analog reference voltage (when A-D converter is used)
2.0
Analog reference voltage (when D-A converter is used)
2.7
Analog power source voltage
Analog input voltage
AN0–AN7
AVSS
“H” input voltage
P00–P07, P10–P17, P20–P27, P30–P37, ______
P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87, RESET, XIN, 0.8 VCC
CNVSS
“L” input voltage
P00–P07, P10–P17, P20–P27, P30–P3______
7, P40–P47,
0
P50–P57, P60–P67, P70–P77, P80–P87, RESET, CNVSS
“L” input voltage
XIN
0
“H” total peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1)
“H” total peak output current
P40–P47,P50–P57, P60–P67 (Note 1)
“L” total peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1)
“L” total peak output current
P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)
“H” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1)
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 1)
“L” total average output current P00–P07, P10–P17, P20–P27, P30–P37, P80–P87 (Note 1)
“L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)
“H” peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 2)
“L” peak output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 2)
“H” average output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 3)
“L” average output current
P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 3)
Internal clock oscillation frequency (4.0 V < VCC < 5.5 V)
Internal clock oscillation frequency (2.7 V < VCC < 4.0 V)
Limits
Typ.
5.0
5.0
0
Max.
5.5
5.5
Unit
V
V
VCC
VCC
0
V
VCC
V
V
VCC
V
0.2 VCC
V
0.16 VCC
–80
–80
80
80
–40
–40
40
40
V
mA
mA
mA
mA
mA
mA
mA
mA
–10
mA
10
mA
–5
mA
5
mA
10
4.5VCC–8
MHz
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.
2: The peak output current is the peak current flowing in each port.
3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.
46
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS (High-speed version)
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
VOH
VOL
VT+ – VT–
VT+ – VT–
VT+ – VT–
Parameter
“H” output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P80–P87 (Note 1)
“L” output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47,P50–P57,
P60–P67, P70–P77, P80–P87
Hysteresis
Hysteresis
Hysteresis
“H” input current
IIH
IIH
IIH
“H” input current
“H” input current
“L” input current
IIL
IIL
VRAM
ICC
“L” input current
RAM hold voltage
CNTR0, CNTR1, INT0–INT4
RXD, SCLK1, SIN2, SCLK2
______
RESET
P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87
______
RESET, CNVSS
XIN
P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87,
______
RESET, CNVSS
XIN
Power source current
Test conditions
IOH = –10 mA
VCC = 4.0 to 5.5 V
IOH = –1.0 mA
VCC = 2.7 to 5.5 V
IOL = 10 mA
VCC = 4.0 to 5.5 V
IOL = 1.0 mA
VCC = 2.7 to 5.5 V
Min.
Limits
Typ.
Max.
VCC–2.0
V
VCC–1.0
2.0
V
1.0
0.4
0.5
0.5
VI = VCC
VI = VCC
VI = VCC
V
V
V
5.0
µA
5.0
µA
µA
–5.0
µA
4
VI = VSS
VI = VSS
With clock stopped
f(XIN) = 10 MHz, VCC = 5 V
f(XIN) = 4 MHz, VCC = 2.7 V
When WIT instruction is executed
with f(XIN) = 10 MHz, VCC = 5 V
When WIT instruction is executed
with f(XIN) = 4 MHz, VCC = 2.7 V
When STP instruction
Ta = 25 °C
is executed with clock (Note 2)
stopped, output
Ta = 85 °C
transistors isolated.
(Note 2)
Unit
–4
2.0
8
1.3
5.5
16
2
µA
V
mA
2
0.3
0.1
1
µA
10
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through V REF pin.
A-D CONVERTER CHARACTERISTICS (High-speed version)
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
—
—
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
tCONV
RLADDER
IVREF
II(AD)
Test conditions
Min.
Limits
Typ.
±1
VREF = 5.0 V
50
35
150
0.5
Max.
8
±2.5
50
200
5.0
Unit
Bits
LSB
tC(φ)
kΩ
µA
µA
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.
47
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
D-A CONVERTER CHARACTERISTICS (High-speed version)
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.7 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
—
—
tsu
RO
IVREF
Parameter
Test conditions
Min.
Limits
Typ.
Resolution
Absolute accuracy
VCC = 4.0 to 5.5 V
VCC = 2.7 to 5.5 V
Setting time
Output resistor
Reference power source input current (Note)
1
2.5
Max.
8
1.0
2.5
3
4
3.2
Unit
Bits
%
µs
kΩ
mA
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding currents flowing through the A-D resistance ladder.
48
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS 1 (High-speed version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
_____
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
tsu(RXD–SCLK1)
tsu(SIN2–SCLK2)
th(SCLK1–RXD)
th(SCLK2–SIN2)
Parameter
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
Min.
2
100
40
40
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Limits
Typ.
Max.
Unit
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note: When f(XIN) = 8 MHz and bit 6 of address 001A 16 is “1”. Divide this value by four when f(X IN) = 8 MHz and bit 6 of address 001A 16 is “0”.
TIMING REQUIREMENTS 2 (High-speed version)
VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
_____
Parameter
tw(RESET)
Reset input “L” pulse width
tc(XIN)
External clock input cycle time
twH(XIN)
External clock input “H” pulse width
twL(XIN)
External clock input “L” pulse width
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
tsu(RXD–SCLK1)
tsu(SIN2–SCLK2)
th(SCLK1–RXD)
th(SCLK2–SIN2)
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
Min.
2
1000/
(4.5 VCC–8)
400/
(4.5 VCC–8)
400/
(4.5 VCC–8)
500
230
230
230
230
2000
2000
950
950
950
950
400
400
200
300
Limits
Typ.
Max.
Unit
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note: When f(XIN) = 2 MHz and bit 6 of address 001A 16 is “1”. Divide this value by four when f(X IN) = 2 MHz and bit 6 of address 001A 16 is “0”.
49
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
SWITCHING CHARACTERISTICS 1 (High-speed version)
Symbol
twH(SCLK1)
twL(SCLK1)
td(SCLK1–TXD)
tv(SCLK1–TXD)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
td(SCLK2–SOUT2)
tv(SCLK2–SOUT2)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Parameter
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output falling time
CMOS output rising time (Note 2)
CMOS output falling time (Note 2)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Limits
Test conditions
Unit
Min.
Typ.
Max.
tc(SCLK1)/2–30
ns
tc(SCLK1)/2–30
ns
140
ns
Fig. 32
–30
ns
30
ns
30
ns
tc(SCLK2)/2–160
ns
tc(SCLK2)/2–160
ns
Fig. 33
200
ns
0
ns
30
ns
10
30
ns
Fig. 32
10
30
ns
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: XOUT pin is excluded.
SWITCHING CHARACTERISTICS 2 (High-speed version)
(VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
twH(SCLK1)
twL(SCLK1)
td(SCLK1–TXD)
tv(SCLK1–TXD)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
td(SCLK2–SOUT2)
tv(SCLK2–SOUT2)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Parameter
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output falling time
CMOS output rising time (Note 2)
CMOS output falling time (Note 2)
Test conditions
Fig. 32
Min.
tc(SCLK1)/2–50
tc(SCLK1)/2–50
Limits
Typ.
350
–30
50
50
tc(SCLK2)/2–240
tc(SCLK2)/2–240
Fig. 33
400
0
Fig. 32
20
20
Note 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: XOUT pin is excluded.
50
Max.
50
50
50
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (High-speed version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Parameter
Symbol
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____ __
tsu(ONW–RD)
____ ___
tsu(ONW–WR)
__ ____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
Min.
–20
–20
50
0
_____
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD
___ ONW
_____ input set up time
Before WR ONW input set up time
___ _____
After RD
___ ONW
_____ input hold time
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
Limits
Typ.
Max.
Unit
ns
ns
ns
ns
25
–20
ns
–20
ns
50
0
25
ns
ns
SWITCHING CHARACTERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
(High-speed version)
Symbol
Parameter
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
After φ data bus delay time
After φ data bus valid time
___
___
RD pulse width, WR pulse width
__
___
___
twL(RD)
___
RD pulse width, WR pulse width
twL(WR)
(when one-wait is valid)
___
__
td(AH–RD)
After AD15–AD8 ___
RD delay time
___
td(AH–WR)
After AD15–AD8 WR delay time
___
__
td(AL–RD)
After AD7–AD0 ___
RD delay time
___
td(AL–WR)
After AD7–AD0 WR delay time
___
__
tv(RD–AH)
After ___
RD AD15–AD8 valid time
___
tv(WR–AH)
After WR AD15–AD8 valid time
___
__
tv(RD–AL)
After ___
RD AD7–AD0 valid time
___
tv(WR–AL)
After WR AD7–AD0 valid time
___
___
td(WR–DB)
After WR data bus delay time
___
___
tv(WR–DB)
After WR data bus valid time
_________
___ _____
td(RESET–RESETOUT) RESETOUT output delay time (Note 1)
_________
_____
tv(φ–RESET) RESETOUT output valid time (Note 1)
Test conditions
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
td(φ–DB)
tv(φ–DB)
Min.
Limits
Typ.
2tc(XIN)
Max.
10
tc(XIN)–10
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
3tc(XIN)–10
ns
tc(XIN)–10
tc(XIN)–10
2
2
Fig. 32
Unit
16
5
20
5
16
5
15
35
40
30
tc(XIN)–35
tc(XIN)–16
ns
tc(XIN)–40
tc(XIN)–20
ns
2
5
ns
2
5
ns
15
30
10
0
200
100
ns
ns
ns
ns
_________
Note 1: The______
RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
51
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(VCC = 2.7 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
(High-speed version)
Symbol
Parameter
Min.
–20
–20
120
0
_____
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____ __
tsu(ONW–RD)
____ ___
tsu(ONW–WR)
__ ____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD
___ ONW
_____ input set up time
Before WR ONW input set up time
___ _____
After RD
___ ONW
_____ input hold time
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
Limits
Typ.
Max.
Unit
ns
ns
ns
ns
60
–20
ns
–20
ns
120
0
60
ns
ns
SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(High-Speed Version)
(VCC = 2.7 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol
Parameter
Test conditions
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
AD15–AD8 delay time
AD15–AD8 valid time
AD7–AD0 delay time
AD7–AD0 valid time
SYNC delay time
SYNC valid time
Data bus delay time
Data bus valid time
___
___
RD pulse width, WR pulse width
__
___
___
twL(RD)
___
RD pulse width, WR pulse width
twL(WR)
(when one-wait is valid)
___
__
td(AH–RD)
After AD15–AD8 ___
RD delay time
___
td(AH–WR)
After AD15–AD8 WR delay time
___
__
td(AL–RD)
After AD7–AD0 ___
RD delay time
___
td(AL–WR)
After AD7–AD0 WR delay time
___
__
tv(RD–AH)
After ___
RD AD15–AD8 valid time
___
tv(WR–AH)
After WR AD15–AD8 valid time
___
__
tv(RD–AL)
After ___
RD AD7–AD0 valid time
___
tv(WR–AL)
After WR AD7–AD0 valid time
___
___
td(WR–DB)
After WR data bus delay time
___
___
tv(WR–DB)
After WR data bus valid time
_________
___ _____
td(RESET–RESETOUT) RESETOUT output delay time (Note 1)
_________
_____
tv(φ–RESET) RESETOUT output valid time (Note 1)
Min.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
td(φ–DB)
tv(φ–DB)
Limits
Typ.
2tc(XIN)
Max.
10
tc(XIN)–20
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
3tc(XIN)–20
ns
tc(XIN)–20
tc(XIN)–20
5
5
Fig. 32
Unit
40
10
50
10
40
10
30
100
100
80
tc(XIN)–100
tc(XIN)–40
ns
tc(XIN)–100
tc(XIN)–50
ns
5
10
ns
5
10
ns
30
80
10
300
150
0
_________
ns
ns
ns
ns
Note 1: The______
RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after
the RESET input goes “H”.
1kΩ
Measurement output pin
Measurement output pin
100pF
100pF
N-channel open-drain output
CMOS output
Fig. 32
52
Circuit for measuring output switching
characteristics (1)
Fig. 33
Circuit for measuring output switching
characteristics (2)
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING DIAGLAM
(1) Timing Diagram
tC(CNTR)
tWL(CNTR)
tWH(CNTR)
0.8 VCC
CNTR0, CNTR1
0.2 VCC
tWL(INT)
tWH(INT)
0.8 VCC
INT0–INT4
0.2 VCC
tW(RESET)
RESET
0.8 VCC
0.2 VCC
tC(XIN)
tWL(XIN)
tWH(XIN)
0.8 VCC
XIN
tf
SCLK1
SCLK2
0.2 VCC
tC(SCLK1), tC(SCLK2)
tWL(SCLK1), tWL(SCLK2)
tWH(SCLK1), tWH(SCLK2)
tr
0.8 VCC
0.2 VCC
tsu(RXD-SCLK1),
tsu(SIN2-SCLK2)
RXD
SIN2
th(SCLK1-RXD),
th(SCLK2- SIN2)
0.8 VCC
0.2 VCC
td(SCLK1-TXD),td(SCLK2-SOUT2)
tv(SCLK1-TXD),
tv(SCLK2-SOUT2)
TX D
SOUT2
53
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(2)Timing Diagram in Memory Expansion Mode and Microprocessor Mode (a)
tC(φ)
tWL(φ)
tWH(φ)
φ
0.5 VCC
tv(φ-AH)
td(φ-AH)
AD15–AD8
0.5 VCC
td(φ-AL)
AD7–AD0
tv(φ-AL)
0.5 VCC
tv(φ-SYNC)
td(φ-SYNC)
SYNC
0.5 VCC
td(φ-WR)
RD,WR
tv(φ-WR)
0.5 VCC
th(φ-ONW)
tSU(ONW-φ)
0.8 VCC
0.2 VCC
ONW
tSU(DB-φ)
0.8 VCC
0.2 VCC
DB0–DB7
(At CPU reading)
td(φ-DB)
DB0–DB7
(At CPU writing)
tv(φ-DB)
0.5 VCC
(3)Timing Diagram in Microprocessor Mode
RESET
0.8 VCC
0.2 VCC
φ
0.5 VCC
td(RESET- RESET OUT)
RESETOUT
54
th(φ-DB)
0.5 VCC
tv(φ- RESET OUT)
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(4) Timing Diagram in Memory Expansion Mode and Microprocessor Mode (b)
tWL(RD)
tWL(WR)
RD,WR
0.5 VCC
td(AH-RD)
td(AH-WR)
AD15–AD8
tv(RD-AH)
tv(WR-AH)
0.5 VCC
td(AL-RD)
td(AL-WR)
AD7–AD0
tv(RD-AL)
tv(WR-AL)
0.5 VCC
th(RD-ONW)
th(WR-ONW)
tsu(ONW-RD)
tsu(ONW-WR)
ONW
0.8 VCC
0.2 VCC
(At CPU reading)
tWL(RD)
RD
0.5 VCC
tSU(DB-RD)
0.8 VCC
0.2 VCC
DB0–DB7
(At CPU writing)
tWL(WR)
WR
0.5 VCC
tv(WR-DB)
td(WR-DB)
DB0–DB7
th(RD-DB)
0.5 VCC
55
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Keep safety first in your circuit designs!
•
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
•
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples
contained in these materials.
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for the latest product information before purchasing a product listed herein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
Notes regarding these materials
•
•
•
•
•
•
© 1996 MITSUBISHI ELECTRIC CORP.
H-DF047-C KI-9609
New publication, effective Sep. 1996.
Specifications subject to change without notice.
REVISION DESCRIPTION LIST
Rev.
No.
1.0
3806GROUP DATA SHEET
Revision Description
First Edition
Rev.
date
971128
(1/1)
Similar pages