MAXIM MAX2531EVKIT

19-2521; Rev 0; 7/02
Quadruple-Mode LNA/Mixer Evaluation Kits
The MAX2530/MAX2531/MAX2538 EV kits are assembled with an associated IC and incorporate input- and
output-matching components optimized for the 869MHz
to 894MHz cellular frequency band, 1930MHz to
1990MHz PCS frequency band, 1575.42MHz GPS frequency band, and 183.6MHz IF output frequency. All
matching components can be changed to work at other
frequencies.
Use the Evaluation Kit Selector Guide to determine which
EV kit to order based on the application. For example,
to evaluate the MAX2354, use the MAX2530EVKIT.
Features
♦ 50Ω SMA Ports for Easy Testing
♦ 2.7V to 3.3V Single-Supply Operation
♦ Matched to Cellular, PCS, and GPS Bands
♦ Fully Assembled and Tested
Ordering Information
PART
TEMP RANGE
IC PACKAGE
MAX2530EVKIT
-40°C to +85°C
28 QFN-EP*
MAX2531EVKIT
-40°C to +85°C
28 QFN-EP*
MAX2538EVKIT
-40°C to +85°C
28 QFN-EP*
*EP = Exposed pad.
Component List
DESIGNATION
QTY
DESCRIPTION
BAND, BUF_EN,
G1, G2, IF_SEL,
MODE, PLL_EN,
SHDN
8
C1, C2, C5, C9,
C10, C14
6
2.7pF ±0.1pF capacitors
Murata GRP1555C1H2R7B
C3
1
8.2pF ±0.1pF capacitor
Murata GRP1555C1H8R2B
C4
1
10µF, 16V capacitor
Panasonic ECS-T1CX106R
C6
1
1.8pF ±0.1pF capacitor
Murata GRP1555C1H1R8B
C7, C8, C13, C24
4
1000pF ±10% capacitors
Murata GRP155R71H102K
DESIGNATION
QTY
C17
1
2.4pF ±0.1pF capacitor
Murata GRP1555C1H2R4B
C25–C29
5
6800pF ±10% capacitors
Murata GRP155R71E682K
15
SMA connectors, edge mount
3-pin headers
CLNA_IN,
CLNA_OUT,
CMIX_IN, GLNA_IN,
GLNA_OUT,
GMIX_IN, GPS_IF,
IF1, IFO, LO_IN,
LO_OUT, PLL_OUT,
PLNA_IN,
PLNA_OUT,
PMIX_IN
GND, VCC
DESCRIPTION
2
2-pin headers
JU1, JU2
2
2-pin headers
C11
1
1000nF ±10% capacitor
Murata GRM188F51A105Z
L1, L3, L6, L7, L8,
L13
6
120nH ±5% inductors (0603)
Coilcraft 0603CS-R12XJB
C12, C16
2
100pF ±5% capacitors
Murata GRP1555C1H101J
L2, L14
2
3.3nH ±5% inductors (0402)
Coilcraft 0402CS-3N3XJB
C15
1
1.2pF ±0.1pF capacitor
Murata GRP1555C1H1R2B
L4
1
1.0nH ±5% inductor (0402)
Coilcraft 0402CS-1N0XJB
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
Evaluate: MAX2351/4/8/9/MAX2530/1/7/8
General Description
The MAX2530/MAX2531/MAX2538 evaluation kits (EV
kits) simplify evaluation of the MAX2351/MAX2354/
MAX2358/MAX2359/MAX2530/MAX2531/MAX2537/
MAX2538 high-performance, silicon germanium (SiGe)
BiCMOS, quad-mode LNA/mixer ICs. They enable testing of the devices’ RF performance and require no
additional support circuitry. The signal inputs and outputs use SMA connectors to simplify the connection of
RF test equipment.
Evaluate: MAX2351/4/8/9/MAX2530/1/7/8
Quadruple-Mode LNA/Mixer Evaluation Kits
Component List (continued)
DESCRIPTION
• A power supply capable of 50mA at 2.7V to 3.3V
• (Optional) An ammeter for measuring the supply
current
• 50Ω SMA cables
• (Optional) A network analyzer (HP 8753D, for example) to measure small-signal return loss and gain
DESIGNATION
QTY
L5
1
7.5nH ±5% inductor (0402)
Coilcraft 0402CS-7N5XJB
R1, R3
2
3.3kΩ ±1% resistors (0402)
R2
1
8.2kΩ ±1% resistor (0402)
R4
1
10kΩ ±5% resistor (0402)
R15
1
20kΩ ±1% resistor (0402)
T1, T2, T3
3
4:1 balun transformers
Toko 617DB-1018
This section provides a step-by-step guide to operating
the EV kits and testing the devices’ functions. Do not
turn on DC power or RF signal generators until all connections are made.
U1
1
MAX2530ETI for MAX2530EVKIT
MAX2531ETI for MAX2531EVKIT
MAX2538ETI for MAX2538EVKIT
Testing the LNA
1) Set the jumpers for the desired mode according to
Table 1 and Table 2.
Evaluation Kit Selector Guide
TO EVALUATE
USE
MAX2351
MAX2531EVKIT
MAX2354
MAX2530EVKIT
MAX2358
MAX2538EVKIT
MAX2359
MAX2538EVKIT
MAX2530
MAX2530EVKIT
MAX2531
MAX2531EVKIT
MAX2537
MAX2538EVKIT
MAX2538
MAX2538EVKIT
Connections and Setup
2) Connect a DC supply (preset to 2.75V) to the VCC
and GND terminals (through an ammeter, if desired)
on the EV kit.
3) Set the RF generator and spectrum analyzer to operate at the frequency of 881MHz for cellular,
1960MHz for PCS, or 1575.42MHz for GPS at a
power level of -30dBm.
4) Connect the output of the RF generator to the
respective LNA SMA connector, and connect the
coaxial cable from the LNA output SMA connector to
the spectrum analyzer.
5) Turn on the DC supply and activate the RF generator’s
output.
Quick Start
6) The signal that appears on the spectrum analyzer
should have a magnitude of approximately -15dBm
in high-gain mode.
The MAX2530/MAX2531/MAX2538 EV kits are fully
assembled and factory tested. Follow the instructions in
the Connections and Setup section for proper device
evaluation. Figure 1 shows the schematic. Figures 2
through 7 are component placement guides and PC
board layouts.
7) (Optional) Another method for determining the gain
is using a network analyzer. This has the advantage
of displaying gain vs. a swept frequency band, in
addition to displaying input and output return loss.
Refer to the user manual of the network analyzer for
setup details.
Test Equipment Required
This section lists the test equipment recommended to
verify operation of the MAX2530/MAX2531/MAX2538
EV kits. It is intended as a guide only, and some substitutions are possible.
• Two RF signal generators capable of delivering
0dBm of output power up to 2.5GHz (HP 8648C or
equivalent)
• An RF spectrum analyzer capable of covering the
operating frequency range of the devices as well as
a few harmonics (HP 8561E, for example)
2
Testing the Mixer
1) Set the jumpers for the desired mode according to
Table 1 and Table 2.
2) Connect a DC supply (preset to 2.75V) to the VCC
and GND terminals (through an ammeter, if desired)
on the EV kit.
3) Set one RF generator for an output frequency
of 881MHz for cellular, 1960MHz for PCS, or
1575.42MHz for GPS at a power level of -30dBm.
Connect the output of this generator to the respective mixer input SMA connector.
_______________________________________________________________________________________
Quadruple-Mode LNA/Mixer Evaluation Kits
5) Connect the coaxial cable from the desired IF port
SMA connector to the spectrum analyzer. See Table
2 for IF port and jumper settings.
6) Set the spectrum analyzer center frequency to
183.6MHz.
7) Turn on the DC supply and activate the RF generators’ outputs.
8) The signal that appears on the spectrum analyzer
should have an amplitude of approximately -17dBm
in high-gain mode.
Layout
A good PC board layout is an essential part of an RF circuit design. The EV kit PC board can serve as a guide
for laying out a board using the MAX2351/MAX2354/
MAX2358/MAX2359/MAX2530/MAX2531/MAX2537/
MAX2538. Put a decoupling capacitor close to the
device’s VCC pin to minimize supply coupling. Proper
grounding of the GND pin is essential. Connect the
GND pin to the ground plane either directly or through
vias as close to the pin as possible. Keep traces carrying RF signals as short as possible to minimize radiation
and insertion loss. Keep the differential mixer output
traces together and of equal length to ensure signal balance. Solder the entire bottom-side exposed pad evenly
to the board ground plane for proper device operation.
Run the LNA input trace on the top layer of the PC
board to avoid via-induced coupling. Minimize parallel
RF traces to improve coupling loss and isolation. Use
abundant ground vias between RF traces to minimize
undesired coupling.
Table 1. Modes of Operation
BAND
Cellular
PCS
GPS
OPERATING MODE
IF_SEL
G2
G1
MODE
BAND
High gain/high linearity
0 = IF0
1 = IF1
LO
LO
HI
LO
High gain/low linearity
0 = IF0
1 = IF1
LO
LO
LO
LO
Midgain
0 = IF0
1 = IF1
LO
HI
X
LO
Low gain
0 = IF0
1 = IF1
HI
HI
X
LO
Ultra-low gain
0 = IF0
1 = IF1
HI
LO
X
LO
High gain/high linearity
0 = IF0
1 = IF1
LO
LO
HI
HI
Low gain
0 = IF0
1 = IF1
HI
HI
X
HI
Ultra-low gain
0 = IF0
1 = IF1
HI
LO
X
HI
GPS
X
LO
LO
LO
HI
X = Don’t care.
_______________________________________________________________________________________
3
Evaluate: MAX2351/4/8/9/MAX2530/1/7/8
4) Set a second RF generator output frequency
according to Table 3, and connect it to the LO input
port (LO_IN).
Evaluate: MAX2351/4/8/9/MAX2530/1/7/8
Quadruple-Mode LNA/Mixer Evaluation Kits
Table 2. Jumper Settings
NAME
BUF_EN
G1, G2, MODE, BAND
IF_SEL
FUNCTION
LO Buffer Enable. On enables the LO buffer output, off disables LO buffer.
Set device operating modes according to Table 1.
Selects IF Port. 0 selects IF0 port, 1 selects IF1 port.
JU1
VCC for PCS LNA. Can be used for monitoring the LNA current.
JU2
VCC for IF Ports. Can be used for monitoring the mixer current.
PLL_EN
SHDN
PLL Enable. On enables the PLL drive output, off disables the PLL drive output.
Shutdown. On for normal operation, off to shut down the device.
Table 3. LO input (LO_IN) Frequency for Mixer Testing
PART
CELL (MHz)
PCS (MHz)
GPS (MHz)
LO GENERATION
MAX2530
1064.6
2143.6
2087.73
—
MAX2531
1064.6
1071.8
1043.865
LO multiplier
MAX2538
2129.2
2143.6
2087.73
LO divider
Component Suppliers
PHONE
FAX
AVX
SUPPLIER
843-448-9411
803-626-3123
www.avxcorp.com
WEBSITE
Coilcraft
847-639-6400
803-639-1469
www.coilcraft.com
Murata
770-436-1300
770-436-3030
www.murata.com
Taiyo Yuden
800-348-2496
847-925-0899
www.t-yuden.com
Toko
847-297-0070
847-699-7864
www.toko.com
4
_______________________________________________________________________________________
_______________________________________________________________________________________
C25
6800pF
G1
VCC
C27
GLNA_IN 6800pF
SHDN
VCC
C26
CLNA_IN 6800pF
PLNA_IN
CLNA_OUT
C17
2.4pF
L5
7.5nH
C6
1.8pF
L14
3.3nH
C15
1.2pF
L4
1.0nH
JU1
2
7
6
5
4
3
2
1
8
9
G2
G2
GMIX_IN
VCC
25
C28
6800pF
10
CMIX_IN
MODE
11
MODE
VCC
MAX2530
MAX2531
MAX2538
U1
C2
2.7pF
23
1
C24
1000pF
R15
20kΩ
12
BIAS
CMIX_IN
24
C29
6800pF
PMIX_IN
VCC
GMIX_IN
26
IF_SEL
IF_SEL
VCC
BAND
BAND
27
G1
GLNA_OUT
GLNA_IN
SHDN
CLNA_IN
GND
PLNA_IN
CLNA_OUT
PLNA_OUT
28
1
GLNA_OUT
C16
100pF
L2
3.3nH
C3
8.2pF
PMIX_IN
4
22
LO_IN
PLL_EN
VCC
15
16
17
18
19
20
LO_IN
BUFFEN
LO_OUT
VCC
IFO+
IFO-
GIF+
21
C1
2.7pF
GIF-
IF1+
3
6
13
14
PLL_OUT
PLL
R4
10kΩ
IF1-
R3
3.3kΩ
L8
120nH
2
4:1
BALUN
T3
VCC
L1
120nH
LO_OUT
BUF_EN
VCC
C12
100pF
R1
3.3kΩ
R2
8.2kΩ
C11
1000nF
VCC
C8
1000pF
C13
1000pF
L13
120nH
L3
120nH
L7
120nH
L6
120nH
C7
JU2 1000pF
VCC
C4
10µF
C14
2.7pF
C5
2.7pF
C10
2.7pF
C9
2.7pF
GND
VCC
3
2
1
3
2
1
4:1
BALUN
T1
4:1
BALUN
T2
4
6
4
IFO
GPS_IF
6
Evaluate: MAX2351/4/8/9/MAX2530/1/7/8
VCC
PLNA_OUT
IF1
Quadruple-Mode LNA/Mixer Evaluation Kits
Figure 1. MAX2530/MAX2531/MAX2538 EV Kits Schematic
5
Evaluate: MAX2351/4/8/9/MAX2530/1/7/8
Quadruple-Mode LNA/Mixer Evaluation Kits
1.0"
Figure 2. MAX2530/MAX2531/MAX2538 EV Kits Component
Placement Guide—Component Side
1.0"
Figure 4. MAX2530/MAX2531/MAX2538 EV Kits PC Board
Layout—Solder Side
6
1.0"
Figure 3. MAX2530/MAX2531/MAX2538 EV Kits PC Board
Layout—Component Side
1.0"
Figure 5. MAX2530/MAX2531/MAX2538 EV Kits PC Board
Layout—Ground Plane Layer 2
_______________________________________________________________________________________
Quadruple-Mode LNA/Mixer Evaluation Kits
1.0"
Figure 6. MAX2530/MAX2531/MAX2538 EV Kits PC Board
Layout—Ground Plane Layer 3
Figure 7. MAX2530/MAX2531/MAX2538 EV Kits Component
Placement Guide—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 7
© 2002 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
Evaluate: MAX2351/4/8/9/MAX2530/1/7/8
1.0"