19-2521; Rev 0; 7/02 Quadruple-Mode LNA/Mixer Evaluation Kits The MAX2530/MAX2531/MAX2538 EV kits are assembled with an associated IC and incorporate input- and output-matching components optimized for the 869MHz to 894MHz cellular frequency band, 1930MHz to 1990MHz PCS frequency band, 1575.42MHz GPS frequency band, and 183.6MHz IF output frequency. All matching components can be changed to work at other frequencies. Use the Evaluation Kit Selector Guide to determine which EV kit to order based on the application. For example, to evaluate the MAX2354, use the MAX2530EVKIT. Features ♦ 50Ω SMA Ports for Easy Testing ♦ 2.7V to 3.3V Single-Supply Operation ♦ Matched to Cellular, PCS, and GPS Bands ♦ Fully Assembled and Tested Ordering Information PART TEMP RANGE IC PACKAGE MAX2530EVKIT -40°C to +85°C 28 QFN-EP* MAX2531EVKIT -40°C to +85°C 28 QFN-EP* MAX2538EVKIT -40°C to +85°C 28 QFN-EP* *EP = Exposed pad. Component List DESIGNATION QTY DESCRIPTION BAND, BUF_EN, G1, G2, IF_SEL, MODE, PLL_EN, SHDN 8 C1, C2, C5, C9, C10, C14 6 2.7pF ±0.1pF capacitors Murata GRP1555C1H2R7B C3 1 8.2pF ±0.1pF capacitor Murata GRP1555C1H8R2B C4 1 10µF, 16V capacitor Panasonic ECS-T1CX106R C6 1 1.8pF ±0.1pF capacitor Murata GRP1555C1H1R8B C7, C8, C13, C24 4 1000pF ±10% capacitors Murata GRP155R71H102K DESIGNATION QTY C17 1 2.4pF ±0.1pF capacitor Murata GRP1555C1H2R4B C25–C29 5 6800pF ±10% capacitors Murata GRP155R71E682K 15 SMA connectors, edge mount 3-pin headers CLNA_IN, CLNA_OUT, CMIX_IN, GLNA_IN, GLNA_OUT, GMIX_IN, GPS_IF, IF1, IFO, LO_IN, LO_OUT, PLL_OUT, PLNA_IN, PLNA_OUT, PMIX_IN GND, VCC DESCRIPTION 2 2-pin headers JU1, JU2 2 2-pin headers C11 1 1000nF ±10% capacitor Murata GRM188F51A105Z L1, L3, L6, L7, L8, L13 6 120nH ±5% inductors (0603) Coilcraft 0603CS-R12XJB C12, C16 2 100pF ±5% capacitors Murata GRP1555C1H101J L2, L14 2 3.3nH ±5% inductors (0402) Coilcraft 0402CS-3N3XJB C15 1 1.2pF ±0.1pF capacitor Murata GRP1555C1H1R2B L4 1 1.0nH ±5% inductor (0402) Coilcraft 0402CS-1N0XJB ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 Evaluate: MAX2351/4/8/9/MAX2530/1/7/8 General Description The MAX2530/MAX2531/MAX2538 evaluation kits (EV kits) simplify evaluation of the MAX2351/MAX2354/ MAX2358/MAX2359/MAX2530/MAX2531/MAX2537/ MAX2538 high-performance, silicon germanium (SiGe) BiCMOS, quad-mode LNA/mixer ICs. They enable testing of the devices’ RF performance and require no additional support circuitry. The signal inputs and outputs use SMA connectors to simplify the connection of RF test equipment. Evaluate: MAX2351/4/8/9/MAX2530/1/7/8 Quadruple-Mode LNA/Mixer Evaluation Kits Component List (continued) DESCRIPTION • A power supply capable of 50mA at 2.7V to 3.3V • (Optional) An ammeter for measuring the supply current • 50Ω SMA cables • (Optional) A network analyzer (HP 8753D, for example) to measure small-signal return loss and gain DESIGNATION QTY L5 1 7.5nH ±5% inductor (0402) Coilcraft 0402CS-7N5XJB R1, R3 2 3.3kΩ ±1% resistors (0402) R2 1 8.2kΩ ±1% resistor (0402) R4 1 10kΩ ±5% resistor (0402) R15 1 20kΩ ±1% resistor (0402) T1, T2, T3 3 4:1 balun transformers Toko 617DB-1018 This section provides a step-by-step guide to operating the EV kits and testing the devices’ functions. Do not turn on DC power or RF signal generators until all connections are made. U1 1 MAX2530ETI for MAX2530EVKIT MAX2531ETI for MAX2531EVKIT MAX2538ETI for MAX2538EVKIT Testing the LNA 1) Set the jumpers for the desired mode according to Table 1 and Table 2. Evaluation Kit Selector Guide TO EVALUATE USE MAX2351 MAX2531EVKIT MAX2354 MAX2530EVKIT MAX2358 MAX2538EVKIT MAX2359 MAX2538EVKIT MAX2530 MAX2530EVKIT MAX2531 MAX2531EVKIT MAX2537 MAX2538EVKIT MAX2538 MAX2538EVKIT Connections and Setup 2) Connect a DC supply (preset to 2.75V) to the VCC and GND terminals (through an ammeter, if desired) on the EV kit. 3) Set the RF generator and spectrum analyzer to operate at the frequency of 881MHz for cellular, 1960MHz for PCS, or 1575.42MHz for GPS at a power level of -30dBm. 4) Connect the output of the RF generator to the respective LNA SMA connector, and connect the coaxial cable from the LNA output SMA connector to the spectrum analyzer. 5) Turn on the DC supply and activate the RF generator’s output. Quick Start 6) The signal that appears on the spectrum analyzer should have a magnitude of approximately -15dBm in high-gain mode. The MAX2530/MAX2531/MAX2538 EV kits are fully assembled and factory tested. Follow the instructions in the Connections and Setup section for proper device evaluation. Figure 1 shows the schematic. Figures 2 through 7 are component placement guides and PC board layouts. 7) (Optional) Another method for determining the gain is using a network analyzer. This has the advantage of displaying gain vs. a swept frequency band, in addition to displaying input and output return loss. Refer to the user manual of the network analyzer for setup details. Test Equipment Required This section lists the test equipment recommended to verify operation of the MAX2530/MAX2531/MAX2538 EV kits. It is intended as a guide only, and some substitutions are possible. • Two RF signal generators capable of delivering 0dBm of output power up to 2.5GHz (HP 8648C or equivalent) • An RF spectrum analyzer capable of covering the operating frequency range of the devices as well as a few harmonics (HP 8561E, for example) 2 Testing the Mixer 1) Set the jumpers for the desired mode according to Table 1 and Table 2. 2) Connect a DC supply (preset to 2.75V) to the VCC and GND terminals (through an ammeter, if desired) on the EV kit. 3) Set one RF generator for an output frequency of 881MHz for cellular, 1960MHz for PCS, or 1575.42MHz for GPS at a power level of -30dBm. Connect the output of this generator to the respective mixer input SMA connector. _______________________________________________________________________________________ Quadruple-Mode LNA/Mixer Evaluation Kits 5) Connect the coaxial cable from the desired IF port SMA connector to the spectrum analyzer. See Table 2 for IF port and jumper settings. 6) Set the spectrum analyzer center frequency to 183.6MHz. 7) Turn on the DC supply and activate the RF generators’ outputs. 8) The signal that appears on the spectrum analyzer should have an amplitude of approximately -17dBm in high-gain mode. Layout A good PC board layout is an essential part of an RF circuit design. The EV kit PC board can serve as a guide for laying out a board using the MAX2351/MAX2354/ MAX2358/MAX2359/MAX2530/MAX2531/MAX2537/ MAX2538. Put a decoupling capacitor close to the device’s VCC pin to minimize supply coupling. Proper grounding of the GND pin is essential. Connect the GND pin to the ground plane either directly or through vias as close to the pin as possible. Keep traces carrying RF signals as short as possible to minimize radiation and insertion loss. Keep the differential mixer output traces together and of equal length to ensure signal balance. Solder the entire bottom-side exposed pad evenly to the board ground plane for proper device operation. Run the LNA input trace on the top layer of the PC board to avoid via-induced coupling. Minimize parallel RF traces to improve coupling loss and isolation. Use abundant ground vias between RF traces to minimize undesired coupling. Table 1. Modes of Operation BAND Cellular PCS GPS OPERATING MODE IF_SEL G2 G1 MODE BAND High gain/high linearity 0 = IF0 1 = IF1 LO LO HI LO High gain/low linearity 0 = IF0 1 = IF1 LO LO LO LO Midgain 0 = IF0 1 = IF1 LO HI X LO Low gain 0 = IF0 1 = IF1 HI HI X LO Ultra-low gain 0 = IF0 1 = IF1 HI LO X LO High gain/high linearity 0 = IF0 1 = IF1 LO LO HI HI Low gain 0 = IF0 1 = IF1 HI HI X HI Ultra-low gain 0 = IF0 1 = IF1 HI LO X HI GPS X LO LO LO HI X = Don’t care. _______________________________________________________________________________________ 3 Evaluate: MAX2351/4/8/9/MAX2530/1/7/8 4) Set a second RF generator output frequency according to Table 3, and connect it to the LO input port (LO_IN). Evaluate: MAX2351/4/8/9/MAX2530/1/7/8 Quadruple-Mode LNA/Mixer Evaluation Kits Table 2. Jumper Settings NAME BUF_EN G1, G2, MODE, BAND IF_SEL FUNCTION LO Buffer Enable. On enables the LO buffer output, off disables LO buffer. Set device operating modes according to Table 1. Selects IF Port. 0 selects IF0 port, 1 selects IF1 port. JU1 VCC for PCS LNA. Can be used for monitoring the LNA current. JU2 VCC for IF Ports. Can be used for monitoring the mixer current. PLL_EN SHDN PLL Enable. On enables the PLL drive output, off disables the PLL drive output. Shutdown. On for normal operation, off to shut down the device. Table 3. LO input (LO_IN) Frequency for Mixer Testing PART CELL (MHz) PCS (MHz) GPS (MHz) LO GENERATION MAX2530 1064.6 2143.6 2087.73 — MAX2531 1064.6 1071.8 1043.865 LO multiplier MAX2538 2129.2 2143.6 2087.73 LO divider Component Suppliers PHONE FAX AVX SUPPLIER 843-448-9411 803-626-3123 www.avxcorp.com WEBSITE Coilcraft 847-639-6400 803-639-1469 www.coilcraft.com Murata 770-436-1300 770-436-3030 www.murata.com Taiyo Yuden 800-348-2496 847-925-0899 www.t-yuden.com Toko 847-297-0070 847-699-7864 www.toko.com 4 _______________________________________________________________________________________ _______________________________________________________________________________________ C25 6800pF G1 VCC C27 GLNA_IN 6800pF SHDN VCC C26 CLNA_IN 6800pF PLNA_IN CLNA_OUT C17 2.4pF L5 7.5nH C6 1.8pF L14 3.3nH C15 1.2pF L4 1.0nH JU1 2 7 6 5 4 3 2 1 8 9 G2 G2 GMIX_IN VCC 25 C28 6800pF 10 CMIX_IN MODE 11 MODE VCC MAX2530 MAX2531 MAX2538 U1 C2 2.7pF 23 1 C24 1000pF R15 20kΩ 12 BIAS CMIX_IN 24 C29 6800pF PMIX_IN VCC GMIX_IN 26 IF_SEL IF_SEL VCC BAND BAND 27 G1 GLNA_OUT GLNA_IN SHDN CLNA_IN GND PLNA_IN CLNA_OUT PLNA_OUT 28 1 GLNA_OUT C16 100pF L2 3.3nH C3 8.2pF PMIX_IN 4 22 LO_IN PLL_EN VCC 15 16 17 18 19 20 LO_IN BUFFEN LO_OUT VCC IFO+ IFO- GIF+ 21 C1 2.7pF GIF- IF1+ 3 6 13 14 PLL_OUT PLL R4 10kΩ IF1- R3 3.3kΩ L8 120nH 2 4:1 BALUN T3 VCC L1 120nH LO_OUT BUF_EN VCC C12 100pF R1 3.3kΩ R2 8.2kΩ C11 1000nF VCC C8 1000pF C13 1000pF L13 120nH L3 120nH L7 120nH L6 120nH C7 JU2 1000pF VCC C4 10µF C14 2.7pF C5 2.7pF C10 2.7pF C9 2.7pF GND VCC 3 2 1 3 2 1 4:1 BALUN T1 4:1 BALUN T2 4 6 4 IFO GPS_IF 6 Evaluate: MAX2351/4/8/9/MAX2530/1/7/8 VCC PLNA_OUT IF1 Quadruple-Mode LNA/Mixer Evaluation Kits Figure 1. MAX2530/MAX2531/MAX2538 EV Kits Schematic 5 Evaluate: MAX2351/4/8/9/MAX2530/1/7/8 Quadruple-Mode LNA/Mixer Evaluation Kits 1.0" Figure 2. MAX2530/MAX2531/MAX2538 EV Kits Component Placement Guide—Component Side 1.0" Figure 4. MAX2530/MAX2531/MAX2538 EV Kits PC Board Layout—Solder Side 6 1.0" Figure 3. MAX2530/MAX2531/MAX2538 EV Kits PC Board Layout—Component Side 1.0" Figure 5. MAX2530/MAX2531/MAX2538 EV Kits PC Board Layout—Ground Plane Layer 2 _______________________________________________________________________________________ Quadruple-Mode LNA/Mixer Evaluation Kits 1.0" Figure 6. MAX2530/MAX2531/MAX2538 EV Kits PC Board Layout—Ground Plane Layer 3 Figure 7. MAX2530/MAX2531/MAX2538 EV Kits Component Placement Guide—Solder Side Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 7 © 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products. Evaluate: MAX2351/4/8/9/MAX2530/1/7/8 1.0"