19-5806; Rev 0; 3/11 Dual Serial UART with 128-Word FIFOs Features S24Mbps (max) Baud Rate SIntegrated PLL and Divider S1.71V to 3.6V Supply Range SHigh-Resolution Programmable Baud Rate SSPI Up to 26MHz Clock Rate SFast Mode Plus I2C Up to 1MHz SAutomatic RTS_ and CTS_ Flow Control SAutomatic XON/XOFF Software Flow Control SSpecial Character Detection S9-Bit Multidrop Mode Data Filtering SSIR- and MIR-Compliant IrDASM Encoder/Decoder SFlexible Logic Levels on the Controller and Transceiver Interfaces SLine Noise Indication STransmitter Synchronization STwo Timers Routed to GPIOs S8 Flexible GPIOs with 20mA Drive Capability SRegister Compatible with MAX3107, MAX3108, MAX14830 SSmall TQFN (5mm x 5mm) Package Independent logic-level translation on the transceiver and controller interfaces allows ease of interfacing to microcontrollers, FPGAs, and transceivers that are powered by differing supply voltages. Automatic hardware and software flow control with selectable FIFO interrupt triggering offloads low-level activity from the host controller. Automatic half-duplex transceiver control with programmable setup and hold times allow the MAX3109 to be used in high-speed applications such as PROFIBUSDP. The 128-word FIFOs have advanced FIFO control, reducing host processor data flow management. The MAX3109 is available in a 32-pin TQFN (5mm x 5mm) package and is specified over the -40°C to +85°C extended temperature range. Applications Industrial Control Systems Automotive Infotainment Systems Power Meters Medical Systems Programmable Logic Controllers (PLCs) Point-of-Sales Systems LDOEN SPI/I2C MOSI/A1 MISO/SDA CS/A0 SCLK/SCL LOGIC-LEVEL TRANSLATION VCC PART MAX3109ETJ+ HVAC or Building Control VL Ordering Information 32 TQFN-EP* Functional Diagram V18 VEXT TRANSMITTER SYNC LDO 2 UART0 SPI AND I2C INTERFACE REGISTERS AND CONTROL LOGIC-LEVEL TRANSLATION MAX3109 IRQ UART1 XIN PIN-PACKAGE +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. RST XOUT TEMP RANGE -40NC to +85NC DIVIDER CRYSTAL OSCILLATOR PLL AGND FRACTIONAL BAUD-RATE GENERATOR 2 TX0 RX0 CTS0 RTS0 GPIO0 GPIO1 GPIO2 GPIO3 TX1 RX1 CTS1 RTS1 GPIO4 GPIO5 GPIO6 GPIO7 DGND SPI is a trademark of Motorola, Inc. IrDA is a service mark of Infrared Data Association Corporation. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX3109 General Description The MAX3109 advanced dual universal asynchronous receiver-transmitter (UART) has 128 words of receive and transmit first-in/first-out (FIFO) and a high-speed SPI™ or I2C controller interface. The 2x and 4x rate modes allow a maximum of 24Mbps data rates. A phase-locked loop (PLL) and the fractional baud-rate generators allow a high degree of flexibility in baud-rate programming and reference clock selection. MAX3109 Dual Serial UART with 128-Word FIFOs TABLE OF CONTENTS Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Receive and Transmit FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Transmitter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Receiver Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Line Noise Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PLL and Predivider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Fractional Baud-Rate Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2x and 4x Rate Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Low-Frequency Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 UART Clock to GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Multidrop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Auto Data Filtering in Multidrop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Auto Transceiver Direction Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Transmitter Triggering and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Transmitter Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Intrachip and Interchip Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Delayed Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Trigger Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Synchronization Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Auto Transmitter Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Echo Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Auto Hardware Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 AutoRTS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 AutoCTS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Auto Software (XON/XOFF) Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Receiver Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Transmitter Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 _______________________________________________________________________________________ Dual Serial UART with 128-Word FIFOs FIFO Interrupt Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Low-Power Standby Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Forced-Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Auto-Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Multiple UARTs in Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Shutdown Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Power-Up and IRQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Interrupt Enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Interrupt Clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Detailed Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Serial Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 SPI Single-Cycle Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 SPI Burst Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Fast Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 START, STOP, and Repeated START Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Single-Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Burst Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Single-Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Acknowledge Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Startup and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Low-Power Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Interrupts and Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Logic-Level Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Power-Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Connector Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 RS-232 5x3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 _______________________________________________________________________________________ 3 MAX3109 TABLE OF CONTENTS (continued) MAX3109 Dual Serial UART with 128-Word FIFOs LIST OF FIGURES Figure 1. I2C Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 2. SPI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 3. Transmit FIFO Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 4. Receive Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 5. Receive FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 6. Midbit Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 7. Clock Selection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 8. 2x and 4x Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 9. GPIO_ Clock Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 10. Auto Transceiver Direction Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 11. Setup and Hold Times in Auto Transceiver Direction Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 12. Single Transmitter Trigger Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 13. Multiple Transmitter Synchronization Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 14. Half-Duplex with Echo Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 15. Echo Suppression Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 16. Simplified Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 17. PLL Signal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 18. SPI Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 19. SPI Ready Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Figure 20. SPI Fast Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure 21. I2C START, STOP, and Repeated START Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 22. Write Byte Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 23. Burst Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure 24. Read Byte Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 25. Burst Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Figure 26. Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 27. Startup and Initialization Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 28. Logic-Level Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 29. Connector Sharing with a USB Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 30. RS-232 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure 31. RS-485 Half-Duplex Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 _______________________________________________________________________________________ Dual Serial UART with 128-Word FIFOs Table 1. StopBits Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 2. Lengthx Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 3. SwFlow[3:0] Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 4. PLLFactorx Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 5. GloblComnd Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 6. Extended Mode Addressing (SPI Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 7. SPI Command Byte Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 8. I2C Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 LIST OF REGISTERS Receive Hold Register (RHR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Transmit Hold Register (THR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 IRQ Enable Register (IRQEn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Interrupt Status Register (ISR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Line Status Interrupt Enable Register (LSRIntEn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Line Status Register (LSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Special Character Interrupt Enable Register (SpclChrIntEn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Special Character Interrupt Register (SpclCharInt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 STS Interrupt Enable Register (STSIntEn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Status Interrupt Register (STSInt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 MODE1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 MODE2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Line Control Register (LCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Receiver Timeout Register (RxTimeOut) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 HDplxDelay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 IrDA Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Flow Level Register (FlowLvl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 FIFO Interrupt Trigger Level Register (FIFOTrgLvl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Transmit FIFO Level Register (TxFIFOLvl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Receive FIFO Level Register (RxFIFOLvl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Flow Control Register (FlowCtrl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 XON1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 XON2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 XOFF1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 XOFF2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 GPIO Configuration Register (GPIOConfg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 _______________________________________________________________________________________ 5 MAX3109 LIST OF TABLES MAX3109 Dual Serial UART with 128-Word FIFOs LIST OF REGISTERS (continued) GPIO Data Register (GPIOData) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 PLL Configuration Register (PLLConfig) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Baud-Rate Generator Configuration Register (BRGConfig) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Baud-Rate Generator LSB Divisor Register (DIVLSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Baud-Rate Generator MSB Divisor Register (DIVMSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Clock Source Register (CLKSource) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Global IRQ Register (GlobalIRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Global Command Register (GloblComnd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Transmitter Synchronization Register (TxSynch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Synchronization Delay Register 1 (SynchDelay1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Synchronization Delay Register 2 (SynchDelay2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Timer Register 1 (TIMER1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Timer Register 2 (TIMER2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Revision Identification Register (RevID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 _______________________________________________________________________________________ Dual Serial UART with 128-Word FIFOs (Voltages referenced to AGND.) VL, VCC, VEXT, XIN................................................-0.3V to +4.0V XOUT......................................................... -0.3V to (VCC + 0.3V) V18....................... -0.3V to the lesser of (VCC + 0.3V) and 2.0V RST, IRQ, MOSI/A1, CS/A0, SCLK/SCL, MISO/SDA, LDOEN, SPI/I2C..................... -0.3V to (VL + 0.3V) TX_, RX_, CTS_, GPIO_............................ -0.3V to (VEXT + 0.3V) DGND....................................................................-0.3V to +0.3V Continuous Power Dissipation (TA = +70NC) TQFN (derate 34.5mW/NC above +70NC)............... 2758.6mW Operating Temperature Range........................... -40NC to +85NC Maximum Junction Temperature......................................+150NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering, 10s).................................+300NC Soldering Temperature (reflow).......................................+260NC Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. PACKAGE THERMAL CHARACTERISTICS (Note 1) TQFN Junction-to-Ambient Thermal Resistance (BJA)............47NC/W Junction-to-Case Thermal Resistance (BJC)................1.7NC/W Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. DC ELECTRICAL CHARACTERISTICS (VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V, TA = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25NC.) (Notes 2, 3) PARAMETER Digital Interface Supply Voltage SYMBOL CONDITIONS MAX UNITS 1.71 3.6 V Internal PLL disabled and bypassed 1.71 3.6 Internal PLL enabled 2.35 3.6 VL MIN TYP Analog Supply Voltage VCC V UART Interface Logic Supply Voltage VEXT 1.71 3.6 V Logic Supply Voltage V18 1.65 1.95 V CURRENT CONSUMPTION VCC Supply Current ICC VCC Shutdown Supply Current ICCSHDN VL Shutdown or Sleep Supply Current IL 1.8MHz crystal oscillator active, PLL disabled, SPI/I2C interface idle, UART interfaces idle, LDOEN = high 500 FA Baud rate = 1Mbps, 20MHz external clock, SPI/I2C interface idle, PLL disabled, all UARTs in loopback mode, LDOEN = low 500 Shutdown mode, LDOEN = low, RST = low, all inputs and outputs are idle 35 FA Shutdown or sleep mode, all inputs and outputs are idle 15 FA VEXT Shutdown Supply Current IEXT Shutdown mode, RST = low, all inputs and outputs are idle 10 FA V18 Input Power-Supply Current in Shutdown Mode I18SHDN Shutdown mode, LDOEN = low, RST = low, all inputs and outputs are idle 100 FA _______________________________________________________________________________________ 7 MAX3109 ABSOLUTE MAXIMUM RATINGS MAX3109 Dual Serial UART with 128-Word FIFOs DC ELECTRICAL CHARACTERISTICS (continued) (VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V, TA = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25NC.) (Notes 2, 3) PARAMETER SYMBOL CONDITIONS V18 Input Power-Supply Current I18 Baud rate = 1Mbps, 20MHz external clock, PLL disabled, UART in loopback mode, LDOEN = low (Note 4) MIN TYP MAX UNITS 4 mA SCLK/SCL, MISO/SDA Sink current = 3mA, VL > 2V 0.4 Sink current = 3mA, VL < 2V 0.2 x VL V 0.4 V MISO/SDA Output Logic-Low Voltage in I2C Mode VOLI2C MISO/SDA Output Low Voltage in SPI Mode VOLSPI Sink current = 2mA MISO/SDA Output High Voltage in SPI Mode VOHSPI Source current = 2mA Input Logic-Low Voltage VIL SPI and I2C mode Input Logic-High Voltage VIH SPI and I2C mode VHYST SPI and I2C mode Input Hysteresis Input Leakage Current IIL VIN = 0 to VL, SPI and I2C mode Input Capacitance CIN SPI and I2C mode Input Logic-Low Voltage VIL SPI and I2C mode Input Logic-High Voltage VIH SPI and I2C mode VHYST SPI and I2C mode VL 0.4 V 0.3 x VL 0.7 x VL V V 0.05 x VL -1 V +1 5 FA pF SPI/I2C, CS/A0, MOSI/A1 INPUTS Input Hysteresis Input Leakage Current IIL Input Capacitance CIN VIN = 0 to VL, SPI and I2C mode SPI and I2C mode IRQ OUTPUT (OPEN DRAIN) Output Logic-Low Voltage VOL Sink current = 2mA Output Leakage Current IOL VIRQ = 0 to VL, IRQ is not asserted 0.3 x VL 0.7 x VL V V 50 -1 mV +1 5 -1 FA pF 0.4 V +1 FA 0.3 x VL V LDOEN AND RST INPUTS Input Logic-Low Voltage VIL Input Logic-High Voltage VIH Input Hysteresis Input Leakage Current 0.7 x VL VHYST IIL V 50 VIN = 0 to VL -1 8 _______________________________________________________________________________________ mV +1 FA Dual Serial UART with 128-Word FIFOs (VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V, TA = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25NC.) (Notes 2, 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 0.4 V UART INTERFACE RTS_, TX_ OUTPUTS Output Logic-Low Voltage Output Logic-High Voltage VOL VOH Input Leakage Current IIL Input Capacitance CIN Sink current = 2mA Source current = 2mA Output is three-stated, VRTS = 0 to VEXT High-Z mode 0.7 x VEXT V -1 +1 5 FA pF CTS_, RX_ INPUTS Input Logic-Low Voltage VIL Input Logic-High Voltage VIH Input Hysteresis 0.3 x VEXT 0.7 x VEXT VHYST IIL CTS_ Input Leakage Current RX_ Pullup Current IPU Input Capacitance CIN V 50 VCTS_ = 0 to VEXT VRX_ = 0V -1 -7.5 V -5.5 mV +1 FA -3.5 FA 5 pF GPIO_ INPUTS/OUTPUTS Output Logic-Low Voltage VOL Sink current = 20mA, push-pull or opendrain output type, VEXT > 2.3V 0.45 Sink current = 20mA, push-pull or opendrain output type, VEXT < 2.3V 0.55 Output Logic-High Voltage VOH Source current = 5mA, push-pull output type Input Logic-Low Voltage VIL GPIO_ is configured as an input Input Logic-High Voltage VIH GPIO_ is configured as an input Pulldown Current IPD VGPIO_ = VEXT, GPIO_ is configured as an input V VEXT 0.4 V 0.4 2/3 x VEXT 3.5 V V 5.5 7.5 FA 0.6 V XIN Input Logic-Low Voltage VIL Input Logic-High Voltage VIH Input Capacitance 1.2 V CXIN 16 pF CXOUT 16 pF XOUT Input Capacitance _______________________________________________________________________________________ 9 MAX3109 DC ELECTRICAL CHARACTERISTICS (continued) MAX3109 Dual Serial UART with 128-Word FIFOs AC ELECTRICAL CHARACTERISTICS (VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V TA = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25NC.) (Notes 2, 3) PARAMETER SYMBOL External Cystal Frequency fXOSC External Clock Frequency fCLK External Clock Duty Cycle Baud-Rate Generator Clock Input Frequency CONDITIONS (Note 5) fREF MIN MAX UNITS 1 TYP 4 MHz 0.5 35 MHz 45 55 % 96 MHz (Note 5) I2C BUS: TIMING CHARACTERISTICS (Figure 1) Standard mode SCL Clock Frequency Bus Free Time Between a STOP and START Condition Hold Time for START Condition and Repeated START Condition Low Period of the SCL Clock High Period of the SCL Clock Data Hold Time Data Setup Time Setup Time for Repeated START Condition Rise Time of Incoming SDA and SCL Signals fSCL tBUF tHD:STA tLOW tHIGH tHD:DAT tSU:DAT tSU:STA tR 100 Fast mode 400 Fast mode plus 1000 Standard mode 4.7 Fast mode 1.3 Fast mode plus 0.5 Standard mode 4.0 Fast mode 0.6 Fast mode plus 0.26 Standard mode 4.7 Fast mode 1.3 Fast mode plus 0.5 Standard mode 4.0 tF Fs Fs 0.6 Fast mode plus 0.26 Standard mode 0 0.9 Fast mode 0 0.9 Fast mode plus 0 Standard mode 250 Fast mode 100 50 Standard mode 4.7 Fast mode 0.2 Fast mode plus 0.26 Fs Fs ns Fs Standard mode (0.3 x VL to 0.7 x VL) (Note 6) 20 + 0.1CB 1000 Fast mode (0.3 x VL to 0.7 x VL) (Note 6) 20 + 0.1CB 300 Fast mode plus Fall Time of SDA and SCL Signals Fs Fast mode Fast mode plus kHz ns 120 Standard mode (0.3 x VL to 0.7 x VL) (Note 6) 20 + 0.1CB 1000 Fast mode (0.3 x VL to 0.7 x VL) (Note 6) 20 + 0.1CB 300 Fast mode plus 10 ������������������������������������������������������������������������������������� 120 ns Dual Serial UART with 128-Word FIFOs (VCC = 1.71V to 3.6V, VL = 1.71V to 3.6V, VEXT = 1.71V to 3.6V TA = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = 2.8V, VL = 1.8V, VEXT = 2.5V, TA = +25NC.) (Notes 2, 3) PARAMETER SYMBOL CONDITIONS Standard mode Setup Time for STOP Condition tSU:STO Capacitive Load for SDA and SCL CB SCL and SDA I/O Capacitance CI/O Pulse Width of Spike Suppressed tSP MIN TYP MAX UNITS 4.7 Fast mode 0.6 Fast mode plus 0.26 Fs Standard mode (Note 5) 400 Fast mode (Note 5) 400 Fast mode plus (Note 5) 550 (Note 5) 10 pF 50 ns pF SPI BUS: TIMING CHARACTERISTICS (Figure 2) SCLK Clock Period tCH+tCL 38.4 ns SCLK Pulse Width High tCH 16 ns SCLK Pulse Width Low tCL 16 ns CS Fall to SCLK Rise Time MOSI Hold Time tCSS 0 ns tDH 3 ns MOSI Setup Time tDS 5 Output Data Propagation Delay tDO 20 ns MISO Rise and Fall Times tFT 10 ns CS Hold Time Note Note Note Note Note 2: 3: 4: 5: 6: tCSH ns 30 ns All units are production tested at TA = +25NC. Specifications over temperature are guaranteed by design. Currents entering the IC are negative and currents exiting the IC are positive. When V18 is powered by an external voltage supply, it must have current capability above or equal to I18. Guaranteed by design; not production tested. CB is the total capacitance of either the clock or data line of the synchronous bus in pF. ______________________________________________________________________________________ 11 MAX3109 AC ELECTRICAL CHARACTERISTICS (continued) MAX3109 Dual Serial UART with 128-Word FIFOs Timing Diagrams START CONDITION (S) REPEATED START CONDITION (Sr) tR STOP CONDITION (P) tF SDA tBUF tHD:DAT tHD:STA tHD:STA tSU:DAT tSU:STO tSU:STA SCL tHIGH tR tF START CONDITION (S) tLOW Figure 1. I2C Timing Diagram CS tCSS tCSH tCL tCH tCSH SCLK tDS tDH MOSI tDO MISO tFT Figure 2. SPI Timing Diagram 12 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs (VCC = 2.5V, VL = 2.5V, VEXT = 2.5V, VLDOEN = VL, UART1 in sleep mode, TA = +25°C unless otherwise noted.) SINK CURRENT (OPEN DRAIN) vs. GPIO_ OUTPUT LOW VOLTAGE 140 60 50 ISOURCE (mA) VEXT = 3.6V 120 100 80 VEXT = 2.5V 60 MAX3109 toc02 160 ISINK (mA) 70 MAX3109 toc01 180 SOURCE CURRENT (PUSH-PULL) vs. GPIO_OUTPUT HIGH VOLTAGE VEXT = 2.5V VEXT = 3.3V 40 30 VEXT = 1.8V 20 40 10 20 VEXT = 1.71V 0 0 1 2 0 3 4 0 VOL (V) 1 2 3 4 VOH (V) TRANSMITTER SYNCHRONIZATION MAX3109 toc03 VSCL 2V/div 0V VTX0 2V/div 115.2kBaud 0V I2C MODE VTX1 2V/div 460.8kBaud 0V 10µs/div ______________________________________________________________________________________ 13 MAX3109 Typical Operating Characteristics Dual Serial UART with 128-Word FIFOs GPIO2 RTS1 RTS0 RX1 RX0 TX0 TX1 TOP VIEW GPIO3 MAX3109 Pin Configuration 24 23 22 21 20 19 18 17 16 CTS1 XIN 26 15 CTS0 XOUT 27 14 GPIO5 13 GPIO1 AGND 29 12 GPIO4 LDOEN 30 11 GPIO0 10 DGND 9 SPI/I2C VEXT 25 GPIO6 28 MAX3109 V18 31 *EP + 4 5 6 7 8 CS/A0 MOSI/A1 IRQ VL MISO/SDA 3 GPIO7 2 SCLK/SCL 1 RST VCC 32 TQFN (5mm × 5mm) *CONNECT EP TO AGND. Pin Description PIN NAME FUNCTION 1 RST 2 MISO/SDA Serial-Data Output. When SPI/I2C is high, MISO/SDA functions as the SPI master input-slave output (MISO). When SPI/I2C is low, MISO/SDA functions as the SDA, I2C serial-data input/output. 3 SCLK/SCL Serial-Clock Input. When SPI/I2C is high, SCLK/SCL functions as the SCLK SPI serial-clock input (up to 26 MHz). When SPI/I2C is low, SCLK/SCL functions as the SCL, I2C serial-clock input (up to 1MHz in fast mode plus). 4 GPIO7 General-Purpose Input/Output 7. GPIO7 is user-programmable as an input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO7 has a weak pulldown resistor to DGND when configured as an input. 5 CS/A0 Active-Low Chip-Select and Address 0 Input. When SPI/I2C is high, CS/A0 functions as the CS, SPI active-low chip-select. When SPI/I2C is low, CS/A0 functions as the A0 I2C device address programming input. Connect CS/A0 to DGND, VL, SCL, or SDA when SPI/I2C is low. 6 MOSI/A1 Serial-Data Input and Address 1 Input. When SPI/I2C is high, MOSI/A1 functions as the SPI master output-slave input (MOSI). When SPI/I2C is low, MOSI/A1 functions as the A1 I2C device address programming input. Connect MOSI/A1 to DGND, VL, SCL, or SDA when SPI/I2C is low. 7 IRQ Active-Low Interrupt Open-Drain Output. IRQ is asserted when an interrupt is pending and during initial power-up. 8 VL Digital Interface Power Supply. VL powers the internal logic-level translators for RST, IRQ, MOSI/A1, CS/A0, SCLK/SCL, MISO/SDA, LDOEN, and SPI/I2C. Bypass VL with a 0.1FF ceramic capacitor to DGND. Active-Low Reset Input. Drive RST low to force all of the UARTs into hardware reset mode. In hardware reset mode, the internal PLL is shut down and there is no clock activity. 14 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs PIN NAME 9 SPI/I2C DGND SPI Selector Input or Active-Low I2C. Drive SPI/I2C low to enable I2C. Drive SPI/I2C high to enable SPI. Digital Ground GPIO0 General-Purpose Input/Output 0. GPIO0 is user-programmable as an input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO0 has a weak pulldown resistor to DGND when configured as an input. GPIO0 is the reference clock output when bit 7 of the TxSynch register is set to high (see the UART Clock to GPIO section for more information). 12 GPIO4 General-Purpose Input/Output 4. GPIO4 is user-programmable as an input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO4 has a weak pulldown resistor to DGND when configured as an input. GPIO4 is the reference clock output when bit 7 of the TxSynch register is set to high (see the UART Clock to GPIO section for more information). 13 GPIO1 General-Purpose Input/Output 1. GPIO1 is user-programmable as an input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO1 has a weak pulldown resistor to DGND when configured as an input. GPIO1 is the TIMER output when bit 7 of the TIMER2 register is set high. 14 GPIO5 General-Purpose Input/Output 5. GPIO5 is user-programmable as an input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO5 has a weak pulldown resistor to DGND when configured as an input. GPIO5 is the TIMER output when bit 7 of the TIMER2 register is set high. 15 CTS0 Active-Low Clear-to-Send Input for UART0. CTS0 is a flow-control status input. 16 CTS1 TX1 Active-Low Clear-to-Send Input for UART1. CTS1 is a flow-control status input. Serial Transmitting Data Output for UART1 10 11 17 FUNCTION 18 TX0 Serial Transmitting Data Output for UART0 19 RX0 Serial Receiving Data Input for UART0. RX0 has an internal weak pullup resistor to VEXT. 20 RX1 Serial Receiving Data Input for UART1. RX1 has an internal weak pullup resistor to VEXT. 21 RTS0 Active-Low Request-to-Send Output for UART0. RTS0 can be set high or low by programming the LCR register. RTS0 is the UART system clock/fractional divider output when bit 7 of the CLKSource register is set high. 22 RTS1 Active-Low Request-to-Send Output for UART1. RTS1 can be set high or low by programming the LCR register. RTS1 is the UART system clock/fractional divider output when bit 7 of the CLKSource register is set high. 23 GPIO2 General-Purpose Input/Output 2. GPIO2 is user-programmable as input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO2 has a weak pulldown resistor to DGND when configured as an input. 24 GPIO3 General-Purpose Input/Output 3. GPIO3 is user-programmable as input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO3 has a weak pulldown resistor to DGND when configured as an input. 25 VEXT Transceiver Interface Power Supply. VEXT powers the internal logic-level translators for RX_, TX_, RTS_, CTS_, and GPIO_. Bypass VEXT with a 0.1FF ceramic capacitor to DGND. 26 XIN Crystal/Clock Input. When using an external crystal, connect one end of the crystal to XIN and the other end to XOUT. When using an external clock source, drive XIN with the single-ended external clock. 27 XOUT Crystal Output. When using an external crystal, connect one end of the crystal to XOUT and the other end to XIN. When using an external clock source, leave XOUT unconnected. 28 GPIO6 General-Purpose Input/Output 6. GPIO6 is user-programmable as input or output (push-pull or open drain) or an external event-driven interrupt source. GPIO6 has a weak pulldown resistor to DGND when configured as an input. ______________________________________________________________________________________ 15 MAX3109 Pin Description (continued) MAX3109 Dual Serial UART with 128-Word FIFOs Pin Description (continued) PIN NAME 29 AGND Analog Ground FUNCTION 30 LDOEN LDO Enable Input. Drive LDOEN high to enable the internal 1.8V LDO. Drive LDOEN low to disable the internal LDO. Supply V18 with an external voltage source when LDOEN is low. 31 V18 Internal 1.8V LDO Output and 1.8V Power-Supply Input. Bypass V18 with a 0.1FF ceramic capacitor to DGND. 32 VCC Analog Power Supply. VCC powers the PLL and internal LDO. Bypass VCC with a 0.1FF ceramic capacitor to AGND. — EP Exposed Pad. Connect EP to AGND. Do not use EP as the main AGND connection. Detailed Description The MAX3109 dual universal asynchronous receivertransmitter (UART) bridges an SPI/MICROWIREK or I2C microprocessor bus to an asynchronous serial-data communication link, such as RS-485, RS-232, or IrDA. The MAX3109 is configured through 8-bit registers, which are accessed through the SPI or I2C interface. These registers are organized by related function as shown in the Register Map section. The host controller loads data into the Transmit Hold register (THR) through the SPI or I2C interface. This data is automatically pushed into the transmit FIFOs, formatted, and sent out at TX_. The MAX3109 adds START, STOP, and parity bits to the data before transmitting the data out at the selected baud rate. The clock configuration registers determine the baud rates, clock source selection, clock frequency prescaling, and fractional baudrate generator settings for each UART. The MAX3109 receivers detect a START bit as a highto-low transition on RX_. An internal clock samples this data at 16 times the baud rate. The received data is automatically placed in the receive FIFOs and can then be read out by the host controller through the Receiver Hold register (RHR). The device features two identical UARTs that are completely independent except for the input clock. Text in this data sheet references individual UART operation, unless otherwise noted. The MAX3109’s register set is compatible with the MAX3107. Refer to Application Note 4938: Differences Between Maxim's Advanced UART Devices for information on how to transfer firmware from the MAX3107 to the MAX3109. Receive and Transmit FIFOs Each UART’s receiver and transmitter has a 128-worddeep FIFOs, reducing the number of intervals that the host processor needs to dedicate for high-speed, highvolume data transfer to and from the device. As the data rates of the asynchronous RX_/TX_ interfaces increase and get closer to those of the host controller’s SPI/I2C data rates, UART management and flow-control can make up a significant portion of the host’s activity. By increasing FIFO size, the host is interrupted less often and can use data block transfers to and from the FIFOs. FIFO trigger levels can generate interrupts to the host controller, signaling that programmed FIFO fill levels have been reached. The transmitter and receiver trigger levels are programmed through the FIFOTrgLvl register with a resolution of eight FIFO locations. The receive FIFO trigger signals to the host either that the receive FIFO has a defined number of words waiting to be read out in a block or that a known number of vacant FIFO locations are available and ready to be filled. The transmit FIFO trigger generates an interrupt when the transmit FIFO fill level is above the programmed trigger level. The host then knows to throttle data writing to the transmit FIFO through THR. The host can read out the number of words present in each of the FIFOs through the TxFIFOLvl and RxFIFOLvl registers. The contents of the TxFIFO and RxFIFO are both cleared when the MODE2[1]: FIFORst bit is set high. MICROWIRE is a trademark of National Semiconductor Corp. 16 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs The current number of words in the TxFIFO can be read out by the host controller through the TxFIFOLvl register. The transmit FIFO fill level can be programmed to generate an interrupt when greater than or equal to a programmed number of words are present in the TxFIFO through the FIFOTrgLvl register. This TxFIFO interrupt trigger level is selectable by the FIFOTrgLvl[3:0] bits. DATA FROM SPI/I2C INTERFACE THR ISR[4] TxFIFOLvl TRIGGER LEVEL An interrupt is generated in ISR[5]: TFifoEmptyInt when the transmit FIFO is empty. ISR[5] goes high when the transmitter starts transmitting the last word in the TxFIFO. An additional interrupt is generated in STSInt[7]: TxEmptyInt when the transmitter completes transmitting the last word. To halt transmission, set the MODE1[1]: TxDisabl bit high. After TxDisabl is set, the transmitter completes the transmission of the current character and then ceases transmission. Turn the transmitter off prior to enabling auto software flow control and AutoRTS flow control. The TX_ output logic can be inverted through the IrDA[5]: TxInv bit. Unless otherwise noted, all transmitter logic described in this data sheet assumes that TxInv is set low. 128 FIFOTrgLvl[3:0] Receiver Operation The receiver expects the format of the data at RX_ to be as shown in Figure 4. The quiescent logic state is logic-high and the first bit (the START bit) is logic-low (RxInv = 0). The 8-bit data word expected to be received LSB first. The receiver samples the data near the midbit instant (Figure 4). The received words and their associated errors are deposited into the receive FIFO. Errors and status information are stored for every received word (Figure 5). The host reads the data out of the receive FIFO by reading RHR, which comes out oldest data first. After a word is read out of RHR, LSR contains the status information for that word. CURRENT FILL LEVEL TRANSMIT FIFO ISR[5] When the transmit FIFO fill level increases to at least the programmed trigger level, an interrupt is generated in ISR[4]: TxTrigInt. 3 2 1 EMPTY TRANSMITTER TX_ Figure 3. Transmit FIFO Signals LSB RECEIVED DATA START D0 MSB D1 D2 D3 D4 D5 D6 D7 PARITY STOP STOP MIDDATA SAMPLING NOTE: RxInv = 0. Figure 4. Receive Data Format ______________________________________________________________________________________ 17 MAX3109 Transmitter Operation Figure 3 shows the structure of the transmitter with the TxFIFO. The transmit FIFO can hold up to 128 words of data that are added by writing to the THR register. MAX3109 Dual Serial UART with 128-Word FIFOs RECEIVED DATA RX_ RECEIVER LSR[1] ISR[3] OVERRUN WORD TRIGGER The following three error conditions are checked for each received word: parity error, frame error, and noise on the line. Parity errors are detected by calculating either even or odd parity of the received word as programmed by register settings. Framing errors are detected when the received data frame does not match the expected frame format in length. Line noise is detected by checking the logical congruency of the three samples taken of each bit (Figure 6). ERROR 128 FIFOTrgLvl[7:4] The receiver can be turned off by setting the MODE1[0]: RxDisabl bit high. After this bit is set high, the MAX3109 turns the receiver off immediately following the current word and does not receive any further data. RECEIVE FIFO CURRENT FILL LEVEL I2C/SPI INTERFACE LSR[0] ISR[6] LSR[5:2] The RX_ input logic can be inverted by setting the IrDA[4]: RxInv bit high. Unless otherwise noted, all receiver logic described in this data sheet assumes that RxInv is set low. RxFIFOLvl 4 3 2 1 RHR Line Noise Indication When operating in standard or 2x (i.e., not 4x) rate mode, the MAX3109 checks that the binary logic level of the three samples per received bit are identical. If any of the three samples per received bit have differing logic levels, then noise on the transmission line has affected the received data and it is considered to be noisy. This noise indication is reflected in the LSR[5]: RxNoise bit for each received byte. Parity errors are another indication of noise, but are not as sensitive. TIMEOUT EMPTY ERRORS Figure 5. Receive FIFO ONE BIT PERIOD RX_ BAUD BLOCK A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 MAJORITY CENTER SAMPLER Figure 6. Midbit Sampling 18 ������������������������������������������������������������������������������������� 16 Dual Serial UART with 128-Word FIFOs XOUT XIN PLLBypass FRACTIONAL BAUD-RATE GENERATOR 0 CRYSTAL OSCILLATOR DIVIDER PLL FRACTIONAL BAUD-RATE GENERATOR 1 PLLEn Figure 7. Clock Selection Diagram Clock Selection The MAX3109 can be clocked by either an external crystal or an external clock source. Figure 7 shows a simplified diagram of the clock selection circuitry. When the MAX3109 is clocked by a crystal, the STSInt[5]: ClkReady bit indicates when the crystal oscillator has reached steady state and the baud-rate generator is ready for stable operation. Each UART baud rate can be individually programmed and both share the same reference clock input. The baud-rate clock can be routed to the RTS_ output by setting the CLKSource[7]: CLKtoRTS bit high. The clock rate is 16x the baud rate in standard operating mode, 8x the baud rate in 2x rate mode, and 4x the baud rate in 4x rate mode. If the fractional portion of the baud-rate generator is used, the clock is not regular and exhibits jitter. Crystal Oscillator The MAX3109 is equipped with a crystal oscillator to provide high baud-rate accuracy and low power consumption. Set the CLKSource[1]: CrystalEn bit high to enable and select the crystal oscillator. The on-chip crystal oscillator has integrated load capacitances of 16pF in both the XIN and XOUT pins. Connect only an external crystal or ceramic oscillator between XIN and XOUT. External Clock Source Connect an external single-ended clock source to XIN when not using the crystal oscillator. Leave XOUT unconnected. Set the CLKSource[1]: CrystalEn bit low to select external clocking. PLL and Predivider The internal predivider and PLL allow for compatibility with a wide range of external clock frequencies and baud rates. The PLL can be configured to multiply the input clock rate by a factor of 6, 48, 96, or 144 by the PLLConfig[7:6] bits. The predivider is located between the input clock and the PLL and allows division of the input clock by an integer factor between 1 and 63. This value is defined by the PLLConfig[5:0] bits. See the PLLConfig register description for more information. Use of the PLL requires VCC to be higher than 2.35V. Fractional Baud-Rate Generators Each UART has an internal fractional baud-rate generator that provides a high degree of flexibility and high resolution in baud-rate programming. The baud-rate generator has a 16-bit integer divisor and a 4-bit word for the fractional divisor. The fractional baud-rate generator can be used either with the crystal oscillator or external clock source. The integer and fractional divisors are calculated by the divisor, D: f × RateMode D = REF 16 × BaudRate where fREF is the reference frequency input to the baudrate generator, RateMode is the rate mode multiplier (1x default), BaudRate is the desired baud rate, and D is the ideal divisor. fREF must be less than 96MHz. RateMode is 1 in 1x rate mode, 2 in 2x rate mode, and 4 in 4x rate mode. The integer divisor portion, DIV, of the divisor, D, is obtained by truncating D: DIV = TRUNC(D) DIV can be a maximum of 16 bits (65,535) wide and is programmed into the two single-byte-wide registers DIVMSB and DIVLSB. The minimum allowed value for DIVLSB is 1. The fractional portion of the divisor, FRACT, is a 4-bit nibble that is programmed into BRGConfig[3:0]. The maximum value is 15, allowing the divisor to be programmed with a resolution of 0.0625. FRACT is calculated as: FRACT = ROUND(16 x (D - DIV)). ______________________________________________________________________________________ 19 MAX3109 CrystalEn MAX3109 Dual Serial UART with 128-Word FIFOs The following is an example of how to calculate the divisor. It is based on a required baud rate of 190kbaud and a reference input frequency of 28.23MHz and 1x (default) rate mode. The ideal divisor is calculated as: D = 28,230,000/(16 x 190,000) = 9.286 hence DIV = 9. FRACT = ROUND(16 x 0.286) = 5 so DIVMSB = 0x00, DIVLSB = 0x09, and BRGConfig[3:0] = 0x05. the usual three samples to determine the logic value of the received bit. This reduces the ability to detect line noise on the received data in 4x rate mode. The 2x and 4x rate modes are selectable through BRGConfig[5:4]. Note that IrDA encoding and decoding does not operate in 2x and 4x rate modes. When 2x rate mode is selected, the actual baud rate is twice the rate programmed into the baud-rate generator. If 4x rate mode is enabled, the actual baud rate on the line is quadruple that of the programmed baud rate (Figure 8). Low-Frequency Timer The resulting actual baud rate can be calculated as: f × RateMode BR ACTUAL = REF 16 × D ACTUAL For this example: DACTUAL = 9 + 5/16 = 9.3125, RateMode = 1, and BRACTUAL = 28,230,000/(16 x 9.3125) = 189463 baud. Thus, the actual baud rate is within 0.28% of the ideal rate. 2x and 4x Rate Modes To support higher baud rates than possible with standard operation using 16x sampling, the MAX3109 offers 2x and 4x rate modes. In these modes, the reference clock rate only needs to be either 8x or 4x higher than the baud rate, respectively. In 4x rate mode, each received bit is only sampled once at the midbit instant instead of Each UART has a general-purpose timer that can be used to generate a low-frequency clock at a GPIO output and can, for example, be used to drive external LEDs. The low-frequency clock is a divided replica of the given UART baud-rate clock. The timer for each UART is internally routed to the respective GPIO_ output when enabled by the TIMER2 register as follows: U UART0: GPIO1 U UART1: GPIO5 The clock pulses at the GPIOs are generated at a rate defined by the baud-rate generator and the timer divider (Figure 9). The baud-rate generator clock frequency is divided by (1024 x Timer[14:0]) to produce the GPIO_ clock, where Timer[14:0] is the 15-bit value programmed into the TIMER1 and TIMER2 registers. The timer output is 50% duty cycle clock. DIVLSB DIVMSB FRACT BRGConfig[5:4] fREF FRACTIONAL RATE GENERATOR 1x, 2x, 4x RATE MODES BAUD RATE NOTE: IrDA DOES NOT WORK IN 2x AND 4x MODES. Figure 8. 2x and 4x Baud Rates DIVLSB DIVMSB FRACT TmrToGPIO fREF FRACTIONAL RATE GENERATOR ÷1024 ÷TIMERx GPIO_ GPIO_ Figure 9. GPIO_ Clock Pulse Generator 20 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs Multidrop Mode In multidrop mode, also known as 9-bit mode, the data word length is 8 bits and a 9th bit is used for distinguishing between an address word and a data word. Multidrop mode is enabled by the MODE2[6]: MultiDrop bit. The MultiDrop bit takes the place of the parity bit in the data word structure. Parity checking is disabled and an interrupt is generated in SpclCharInt[5]: MultiDropInt when an address (9th bit is 1) is received while in multidrop mode. It is up to the host processor to filter out the data intended for its address. Alternatively, the auto data-filtering feature can be used to automatically filter out the data not intended for the station’s specific 9-bit mode address. Auto Data Filtering in Multidrop Mode In multidrop mode, the MAX3109 can be configured to automatically filter out data that is not meant for its address. The address is user-definable either by programming a register value or a combination of a register value and GPIO hardware inputs. Use either the entire XOFF2 register or the XOFF2[7:4] bits in combination with GPIO_ inputs to define the address. Enable multidrop mode by setting the MODE2[6]: MultiDrop bit high and enable auto data filtering by setting the MODE2[4]: SpecialChr bit high. When using register bits in combination with GPIO_ inputs to define the address, the MSB of the address is written to the XOFF2[7:4] bits, while the LSBs of the address are defined by the GPIOs. To enable this address-definition method along with auto data filtering, set the FlowCtrl[2]: GPIAddr bit high in addition to the MODE2[4]: SpecialChr and MODE2[6]: MultiDrop bits. The GPIO_ inputs are automatically read when the FlowCtrl[2]: GPIAddr bit is set high, and the address is automatically updated on logic changes to any GPIO pin. When using auto data filtering, the MAX3109 checks each received address against the programmed station address. When an address is received that matches the station’s address, received data is stored in the RxFIFO. When an address is received that does not match the station’s address, received data is discarded. Addresses are not stored into the FIFO but an interrupt is still generated in SpclCharInt[5]: MultiDropInt upon receiving an address. An additional interrupt is generated in SpclCharInt[3]: XOFF2Int when the station address is received. Auto Transceiver Direction Control In some half-duplex communication systems, the transceiver’s transmitter must be turned off when data is being received in order to not load the bus. This is the case in half-duplex RS-485 communication. Similarly, in full-duplex multidrop communication such as RS-485 or RS-422 V.11, only one transmitter can be enabled at any one time while the others must be disabled. The MAX3109 can automatically enable/disable a transceiver’s transmitter and/or receiver at the hardware level by controlling its DE and RE pins. This feature relieves the host processor of this time-critical task. The RTS_ output is used to control the transceivers’ transmit-enable input and is automatically set high when the MAX3109’s transmitter starts transmission. This occurs as soon as data is present in the transmit FIFO. Auto transceiver direction control is enabled by the MODE1[4]: TrnscvCtrl bit. Figure 10 shows a typical MAX3109 connection in an RS-485 application using the auto transceiver direction control feature. The RTS output can be set high in advance of TX_ transmission by a programmable time period called the setup time (Figure 11). The setup time is programmed by the HDplxDelay[7:4]: Setupx bits. Similarly, the RTS_ output can be held high for a programmable period after the transmitter has completed transmission called the hold time. The hold time is programmed by the HDplxDelay[3:0] bits. Transmitter Triggering and Synchronization The MAX3109 allows synchronization of transmitters so that selected UARTs start transmitting data when a trigger command is received. Optional delays can also be programmed that delay the start of transmission after a trigger command is received. A UART’s transmitter can be assigned one of 16 possible SPI/I2C trigger commands. A trigger command is defined as any of the 16 special values written into the GloblComnd register (see the GloblComnd register description for more information). When a byte is written into the GloblComnd register, the UART select bit (U) is ignored by the MAX3109 and the GloblComnd applies to both UARTs. Transmission is initiated when the MAX3109 receives an assigned SPI/ I2C trigger command, the selected transmitter is initially disabled, and data has been loaded into its TxFIFO. ______________________________________________________________________________________ 21 MAX3109 UART Clock to GPIO The MAX3109 reference clock can be routed to the GPIO0 and/or GPIO4 outputs if a synchronous highfrequency clock is needed by another device. Enable routing a UART clock to GPIO0 and/or GPIO4 in the TxSynch register. This output clock could, for example, be used to clock another UART device. MAX3109 Dual Serial UART with 128-Word FIFOs TRANSMITTER DI TX_ D TxFIFO DE MAX3109 AUTO TRANSCEIVER CONTROL RxFIFO RECEIVER B RTS_ RE RX_ RO MAX14840E A R Figure 10. Auto Transceiver Direction Control RTS_ SETUP HOLD TX_ FIRST CHARACTER LAST CHARACTER Figure 11. Setup and Hold Times in Auto Transceiver Direction Control Enable and configure transmitter synchronization with the TxSynch register. Triggering and synchronization requires that the transmitters are disabled before the trigger is received. This can be done by setting the MODE1[1]: TxDisabl bit high or by using the auto transmitter disable function (TxSynch[4] is logic 1). Interchip transmitter triggering synchronizes UARTs in different MAX3109 devices. This type of synchronization is achievable in SPI mode only. Pull the CS input of all the MAX3109 devices on the bus low during the SPI master’s write trigger command so that the commands are received by all UARTs on the shared SPI bus. Transmitter Synchronization Synchronize multiple UARTs so that their transmitters start transmission simultaneously by assigning a common trigger command to the UARTs that should be synchronized. I2C protocol does not allow simultaneous addressing of multiple devices. Intrachip and Interchip Synchronization Intrachip transmitter triggering occurs when the two UARTs in a MAX3109 device are triggered by one command. This type of synchronization is supported in both SPI and I2C modes, as the trigger commands are global commands that are received by both UARTs simultaneously. Delayed Triggering A delay can be programmed to postpone the start of transmission after receiving an assigned trigger command. Set the delay by programming the SynchDelay1 and SynchDelay2 registers. Trigger Accuracy The delay between the time when the MAX3109 receives a trigger command and the time when the associated transmitter starts transmission is made up of a fixed, deterministic portion, and a variable, random component. 22 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs SCLK In I2C mode, this occurs on the final (i.e., the 8th) SCL low-to-high transition. When the fractional baud-rate generator is used, the random portion is larger than one UART clock period. Synchronization Accuracy When synchronizing multiple UART transmitters, the output skew of the TX_ transmitter outputs is based on the triggering delays of each UART (Figure 13). This skew has a baud rate dependent component, similar to the UNCERTAINTY INTERVAL TX_ tTRIG_MIN tTRIG_MAX Figure 12. Single Transmitter Trigger Accuracy SCLK TX0 tTX0_MIN tTX0_MAX TX1 tTX1_MIN tTX1_MAX tTRIGSKEW Figure 13. Multiple Transmitter Synchronization Accuracy ______________________________________________________________________________________ 23 MAX3109 Both portions of the delay are dependent on the UART’s clock. When the fractional divider is not used, the intrinsic trigger delay, tTRIG, is bounded by the following limits: 5 6 ≤ t TRIG ≤ UARTCLK UARTCLK where UARTCLK is the baud-rate divider output. The reference point is the time when the trigger command is received by the MAX3109. This occurs on the final (i.e., the 16th) SPI clock’s low-to-high transition (Figure 12). MAX3109 Dual Serial UART with 128-Word FIFOs trigger accuracy equation for a single transmitter output. Calculate the TX_ transmitter output skew using the following equation: 6 5 t TRIGSKEW ≤ − (UARTCLK) S (UARTCLK) F where (UARTCLK)S is the fractional divider output clock of the lower/slower baud rate UART, and (UARTCLK)F is the fractional divider output clock of the higher/faster baud rate UART. Auto Transmitter Disable The MAX3109 allows automatic disabling of the transmitter. Enable auto transmitter disabling functionality by setting the TxSynch[6]: TxAutoDis bit high. In this mode, the MAX3109 disables the specified transmitter by setting the MODE1[1]: TxDisabl bit high after it completes sending all the data in its TxFIFO. New data can then be loaded into the TxFIFO. A disabled transmitter does not send out data on the TX_ output when data is present in its TxFIFO. To enable transmission after a transmitter has been disabled automatically, either clear the TxAutoDis or toggle the TxDisabl bit. Echo Suppression The MAX3109 can suppress echoed data that is sometimes found in half-duplex communication networks, such as RS-485 and IrDA. If the transceiver’s receiver is not turned off while the transceiver is transmitting, copies (echoes) of the transmitted data are received by the UART. The MAX3109’s receiver can block the reception of this echoed data by enabling echo suppression. Figure 14 shows a typical RS-485 application using the TRANSMITTER TX_ echo suppression feature. Set the MODE2[7]: EchoSuprs bit high to enable echo suppression. The MAX3109 can also block echoes with a long round trip delay by disabling the transceiver’s receiver with the RTS_ output while the MAX3109 is transmitting. The transmitter can be configured to remain enabled after the end of the transmission for a programmable period of time called the hold time delay (Figure 15). The hold time delay is set by the HDplxDelay[3:0]: Holdx bits. See the HDplxDelay description in the Detailed Register Descriptions section for more information. Echo suppression can operate simultaneously with auto transceiver direction control. Auto Hardware Flow Control The MAX3109 is capable of auto hardware (RTS_ and CTS_) flow control without the need for host processor intervention. When AutoRTS control is enabled, the MAX3109 automatically controls the RTS_ handshake without the need for host processor intervention. AutoCTS flow control separately turns the MAX3109’s transmitter on and off based on the CTS_ input. AutoRTS and AutoCTS flow control modes are independently enabled by the FlowCtrl[1:0] bits. AutoRTS Control AutoRTS flow control ensures that the receive FIFO does not overflow by signaling to the far-end UART to stop data transmission. The MAX3109 does this automatically by controlling the RTS_ output. AutoRTS flow control is enabled by setting the FlowCtrl[0]: AutoRTS bit high. The HALT and RESUME programmable values determine the threshold RxFIFO fill levels at which RTS_ is asserted and deasserted. Set the HALT and RESUME DI D TxFIFO DE MAX3109 ECHO SUPPRESSION RxFIFO RECEIVER B RTS_ RE RX_ RO MAX14840E A R Figure 14. Half-Duplex with Echo Suppression 24 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs HOLD DELAY DI TO RO PROPAGATION DELAY RX_ RTS_ Figure 15. Echo Suppression Timing levels in the FlowLvl register. With differing HALT and RESUME levels, hysteresis of the RxFIFO level can be defined for RTS_ transitions. When the RxFIFO is filled to a level higher than the HALT level, the MAX3109 deasserts RTS_ and stops the farend UART from transmitting any additional data. RTS_ remains deasserted until the RxFIFO is emptied enough so that the number of words falls to below the RESUME level. Interrupts are not generated when the HALT and RESUME levels are reached. This allows the host controller to be completely disengaged from RTS_ flow control management. AutoCTS Control When AutoCTS flow control is enabled, the UART automatically starts transmitting data when the CTS_ input is logic-low and stops transmitting data when CTS_ is logic-high. This frees the host processor from managing this time-critical flow-control task. AutoCTS flow control is enabled by setting the FlowCtrl[1]: AutoCTS bit high. The ISR[7]: CTSInt interrupt works normally during AutoCTS flow control. Set the IRQEn[7]: CTSIntEn bit low to disable routing of CTS_ interrupts to IRQ and ensure that the host does not receive interrupts from CTS_ transitions. If CTS_ transitions from low to high during transmission of a data word, the MAX3109 completes the transmission of the current word and halts transmission afterwards. Turn the transmitter off by setting the MODE1[1]: TxDisabl bit high before enabling AutoCTS control. Auto Software (XON/XOFF) Flow Control When auto software flow control is enabled, the MAX3109 recognizes and/or sends predefined XON/XOFF characters to control the flow of data across the asynchronous serial link. The XON character signifies that there is enough room in the receive FIFO and transmission of data should continue. The XOFF character signifies that the receive FIFO is nearing overflow and that the transmission of data should stop. Auto software flow control works autonomously and does not require host intervention, similar to auto hardware flow control. To reduce the chance of receiving corrupted data that equals a singlebyte XON or XOFF character, the MAX3109 allows for double-wide (16-bit) XON/XOFF characters. The XON and XOFF characters are programmed into the XON1, XON2 and XOFF1, XOFF2 registers. The FlowCtrl[7:3] bits are used for enabling and configuring auto software flow control. An interrupt is generated in ISR[1]: SpCharInt whenever an XON or XOFF character is received and details are stored in the SpclCharInt register. Set the IRQEn[1]: SpclChrIEn bit low to disable routing of the interrupt to IRQ. Software flow control consists of transmit flow control and receive flow control, which operate independently of each other. Receiver Flow Control When auto receive flow control is enabled by the FlowCtrl[7:6] bits, the MAX3109 automatically controls the transmission of data by the far-end UART by sending XOFF and XON control characters. The HALT and RESUME levels determine the threshold RxFIFO fill levels ______________________________________________________________________________________ 25 MAX3109 STOP BIT TX_ MAX3109 Dual Serial UART with 128-Word FIFOs at which the XOFF and XON characters are sent. HALT and RESUME are programmed in the FlowLvl register. With differing HALT and RESUME levels, hysteresis can be defined in the RxFIFO fill level for the receiver flow control activity. When the RxFIFO is filled to a level higher than the HALT level, the MAX3109 sends an XOFF character to stop data transmission. An XON character is sent when the RxFIFO is emptied enough so that the number of words falls to below the RESUME level. If double-wide (16-bit) XON/XOFF characters are selected by setting the FlowCtrl[7:6] bits to 11, then XON1/ XOFF1 are transmitted before XON2/XOFF2 whenever a control character is transmitted. Transmitter Flow Control If auto transmit control is enabled by the FlowCtrl[5:4] bits, the receiver compares all received words with the XOFF and XON characters. When an XOFF character is received, the MAX3109 halts the transmitter from sending further data following any currently transmitting word. The receiver is not affected and continues receiving. Upon receiving an XON character, the transmitter restarts sending data. The received XON and XOFF characters are filtered out and are not stored into the receive FIFO. An interrupt is not generated. If double-wide (16-bit) XON/XOFF characters are selected by setting the FlowCtrl[5:4] bits to 11, then a character matching XON1/XOFF1 must be received before a character matching XON2/XOFF2 in order to be interpreted as a control character. to transmit or receive data during the block read/write operations for uninterrupted data transmission on the bus. Low-Power Standby Modes The MAX3109 has sleep and shutdown modes that reduce power consumption during periods of inactivity. In both sleep and shutdown modes, the UART disables specific functional blocks to reduce power consumption. After sleep or shutdown mode is exited, the internal clock starts up and a period of time is needed for clock stabilization. The STSInt[5]: ClkReady bit indicates when the clocks are stable. When an external clock source is used, the ClkReady bit does not indicate clock stability. Forced-Sleep Mode In forced-sleep mode, all UART-related on-chip clocking is stopped. The following blocks are inactive: the crystal oscillator, the PLL, the predivider, the receiver, and the transmitter. The I2C/SPI interface and the registers remain active and the host controller can access them. To force the MAX3109 to enter sleep mode, set the MODE1[5]: ForcedSleep bit high. To exit forced-sleep mode, set the ForcedSleep bit low. Auto-Sleep Mode The MAX3109 can be configured to operate in auto-sleep mode by setting the MODE1[6]: AutoSleep bit high. In auto-sleep mode, the MAX3109 automatically enters sleep mode when all the following conditions are met: • Both FIFOs are empty. • There are no pending IRQ interrupts. Turn the transmitter off by setting the MODE1[1]: TxDisabl bit high before enabling software transmitter flow control. • There is no activity on any input pins for a period equal to 65,536 UART character lengths. FIFO Interrupt Triggering The same blocks are inactive when the UART is in autosleep mode as in forced-sleep mode. Receive and transmit FIFO fill-dependent interrupts are generated if FIFO trigger levels are defined. When the number of words in the FIFOs reach or exceed a trigger level programmed in the FIFOTrgLvl register, an interrupt is generated in ISR[3] or ISR[4]. The interrupt trigger levels operate independently from the HALT and RESUME flow control levels in AutoRTS or auto software flow control modes. The FIFO interrupt triggering can be used, for example, for a block data transfer. The trigger level interrupt gives the host an indication that a given block size of data is available for reading in the receive FIFO or available for transfer to the transmit FIFO. If the HALT and RESUME levels are outside of this range, then the UART continues The MAX3109 exits auto-sleep mode as soon as activity is detected on any of the GPIO_, RX_, or CTS_ inputs. To manually exit auto-sleep mode, set the MODE1[6]: AutoSleep bit low. Multiple UARTs in Sleep Mode The MAX3109's two UARTs enter and exit sleep mode separately. When only one UART is in sleep mode, the device stops routing the clock to this UART, reducing power consumption. All other clocking circuitry remains active if the other UART is still active. If both UARTs are in sleep mode, the clocking circuitry is switched off, further reducing power consumption. 26 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs operation. If the controller gets a valid response from the polled register, then the MAX3109 is ready for operation. Interrupt Structure Figure 16 shows the structure of the interrupt. There are four interrupt source registers: ISR, LSR, STSInt, and SpclCharInt. The interrupt sources are divided into toplevel and low-level interrupts. The top-level interrupts typically occur more often and can be read out by the host controller directly through ISR. The low-level interrupts typically occur less often and their specific source can be read out by the host controller through LSR, STSInt, or SpclCharInt. The three LSBs of ISR point to the low-level interrupt registers that contain the details of the interrupt source. When the RST input transitions from low to high, the MAX3109 exits shutdown mode and a hardware reset is initiated. The chip initialization is complete when the IRQ output is logic-high. The MAX3109 needs to be reprogrammed following a shutdown. Power-Up and IRQ The IRQ output has two functions. During normal operation (the MODE1[7]: IRQSel bit is 1), IRQ operates as a hardware active-low interrupt output; IRQ is asserted when an interrupt is pending. An IRQ interrupt is only possible during normal operation if at least one of the interrupt enable bits in the IRQEn register is set. Interrupt Enabling Every interrupt bit of the four interrupt registers can be enabled or masked through an associated interrupt enable register bit. These are the IRQEn, LSRIntEn, SpclChrIntEn, and STSIntEn registers. By default, all interrupts are masked. During power-up or following a hardware reset, IRQ has a different function: it is held low during initialization and deasserts when the MAX3109 is ready for programming. Once IRQ goes high, the MAX3109 is ready to be programmed through the I2C/SPI interface. Set the MODE1[7]: IRQSel bit high to enable normal IRQ interrupt operation following a power-up or reset. Interrupt Clearing When an interrupt is pending (i.e., IRQ is asserted) and ISR is read, both the ISR bits are cleared and the IRQ output is deasserted. Low-level interrupt information does not reassert IRQ for the same interrupt, but remains stored in the low-level interrupt registers until each is separately cleared. SpclCharInt and STSInt are clearon-read (COR). The LSR bits are only cleared when the source of the interrupt is removed, not when LSR is read. In polled mode, any register with a known reset value can be polled to check whether the MAX3109 is ready for IRQ [1] [0] GlobalIRQ 0 0 0 0 0 0 IRQ1 IRQ0 8 8 ISR 7 6 5 4 ISR 3 2 1 0 6 7 8 5 4 3 2 6 5 4 3 TOP-LEVEL INTERRUPTS 0 8 LOW-LEVEL INTERRUPTS STSInt 7 1 8 SpclCharInt 2 1 0 7 6 5 4 3 LSR 2 1 0 7 6 5 4 3 2 1 0 Figure 16. Simplified Interrupt Structure ______________________________________________________________________________________ 27 MAX3109 Shutdown Mode Drive the RST input to logic-low to enter shutdown mode. Shutdown mode consumes the least possible amount of power. In shutdown mode, all the MAX3109 circuitry is off except for the 1.8V LDO. This includes the I2C/ SPI interface, the registers, the FIFOs, and the clocking circuitry. MAX3109 Dual Serial UART with 128-Word FIFOs Register Map (Note: All default reset values are 0x00, unless otherwise noted. All registers are R/W, unless otherwise noted.) REGISTER ADDR FIFO DATA RHR1 0x00 THR1 0x00 INTERRUPTS IRQEn 0x01 ISR1, 2 0x02 LSRIntEn 0x03 LSR1, 2 0x04 SpclChrIntEn 0x05 SpclCharInt1 0x06 STSIntEn3 0x07 STSInt1, 2, 3 0x08 UART MODES MODE1 0x09 MODE2 0x0A LCR2 0x0B RxTimeOut 0x0C HDplxDelay 0x0D IrDA 0x0E FIFOs CONTROL FlowLvl 0x0F FIFOTrgLvl2 0x10 TxFIFOLvl1 0x11 RxFIFOLvl1 0x12 FLOW CONTROL FlowCtrl 0x13 XON1 0x14 XON2 0x15 XOFF1 0x16 XOFF2 0x17 GPIOs GPIOConfg3 0x18 GPIOData3 0x19 CLOCK CONFIGURATION PLLConfig2, 4 0x1A BRGConfig 0x1B DIVLSB2 0x1C DIVMSB 0x1D CLKSource2, 4 0x1E GLOBAL REGISTERS GlobalIRQ1, 2 0x1F GloblComnd1 0x1F SYNCHRONIZATION TxSynch5 0x20 SynchDelay15 0x21 SynchDelay25 0x22 TIMER REGISTERS TIMER15 0x23 TIMER25 0x24 REVISION RevID1, 2, 5 0x25 BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 RData7 TData7 RData6 TData6 RData5 TData5 RData4 TData4 RData3 TData3 RData2 TData2 RData1 TData1 RData0 TData0 CTSIEn CTSInt — RxEmtyIEn RxEmptyInt — — — — SleepIntEn SleepInt TFifoEmtyIEn TFifoEmptyInt NoiseIntEn RxNoise MltDrpIntEn MultiDropInt ClkRdyIntEn ClkReady TxTrgIEn TxTrgInt RBreakIEn RxBreak BREAKIntEn BREAKInt — — RxTrgIEn RxTrigInt FrameErrIEn FrameErr XOFF2IntEn XOFF2Int GPI3IntEn GPI3Int STSIEn STSInt ParityIEn RxParityErr XOFF1IntEn XOFF1Int GPI2IntEn GPI2Int SpChrIEn SpCharInt ROverrIEn RxOverrun XON2IntEn XON2Int GPI1IntEn GPI1Int LSRErrIEn LSRErrInt RTimoutIEn RTimeout XON1IntEn XON1Int GPI0IntEn GPI0Int RTSbit TimOut7 Setup3 — AutoSleep MultiDrop TxBreak TimOut6 Setup2 — ForcedSleep Loopback ForceParity TimOut5 Setup1 TxInv TrnscvCtrl SpecialChr EvenParity TimOut4 Setup0 RxInv RTSHiZ RFifoEmptyInv ParityEn TimOut3 Hold3 MIR TxHiZ RxTrgInv StopBits TimOut2 Hold2 — TxDisabl FIFORst Length1 TimOut1 Hold1 SIR RxDisabl RST Length0 TimOut0 Hold0 IrDAEn Resume3 RxTrig3 TxFL7 RxFL7 Resume2 RxTrig2 TxFL6 RxFL6 Resume1 RxTrig1 TxFL5 RxFL5 Resume0 RxTrig0 TxFL4 RxFL4 Halt3 TxTrig3 TxFL3 RxFL3 Halt2 TxTrig2 TxFL2 RxFL2 Halt1 TxTrig1 TxFL1 RxFL1 Halt0 TxTrig0 TxFL0 RxFL0 SwFlow3 Bit7 Bit7 Bit7 Bit7 SwFlow2 Bit6 Bit6 Bit6 Bit6 SwFlow1 Bit5 Bit5 Bit5 Bit5 SwFlow0 Bit4 Bit4 Bit4 Bit4 SwFlowEn Bit3 Bit3 Bit3 Bit3 GPIAddr Bit2 Bit2 Bit2 Bit2 AutoCTS Bit1 Bit1 Bit1 Bit1 AutoRTS Bit0 Bit0 Bit0 Bit0 GP3OD GPI3Dat GP2OD GPI2Dat GP1OD GPI1Dat GP0OD GPI0Dat GP3Out GPO3Dat GP2Out GPO2Dat GP1Out GPO1Dat GP0Out GPO0Dat PLLFactor1 — Div7 Div15 CLKtoRTS PLLFactor0 — Div6 Div14 — PreDiv5 4xMode Div5 Div13 — PreDiv4 2xMode Div4 Div12 — PreDiv3 FRACT3 Div3 Div11 PLLBypass PreDiv2 FRACT2 Div2 Div10 PLLEn PreDiv1 FRACT1 Div1 Div9 CystalEn PreDiv0 FRACT0 Div0 Div8 — 0 GlbCom7 0 GlbCom6 0 GlbCom5 0 GlbCom4 0 GlbCom3 0 GlbCom2 IRQ1 GlbCom1 IRQ0 GlbCom0 CLKtoGPIO SDelay7 SDelay15 TxAutoDis SDelay6 SDelay14 TrigDelay SDelay5 SDelay13 SynchEn SDelay4 SDelay12 TrigSel3 SDelay3 SDelay11 TrigSel2 SDelay2 SDelay10 TrigSel1 SDelay1 SDelay9 TrigSel0 SDelay0 SDelay8 Timer7 TmrToGPIO Timer6 Timer14 Timer5 Timer13 Timer4 Timer12 Timer3 Timer11 Timer2 Timer10 Timer1 Timer9 Timer0 Timer8 1 1 0 0 0 0 0 1 CTSbit — — TxEmptyIntEn TxEmptyInt IRQSel EchoSuprs 1 Denotes nonread/write mode: RHR = R, THR = W, ISR = COR, LSR = R, SpclCharInt = COR, STSInt = R/COR, TxFIFOLvl = R, RxFIFOLvl = R, GlobalIRQ = R, GloblComnd = W, RevID = R. 2 Denotes nonzero default reset value: ISR = 0x60, LCR = 0x05, FIFOTrgLvl = 0xFF, PLLConfig = 0x01, DIVLSB = 0x01, CLKSource = 0x18, GlobalIRQ = 0x03, RevID = 0xC1. 3 Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7. 4 Denotes a register that can only be programmed by accessing UART0. 5 Denotes a register that can only be directly addressed in I2C mode. Use extended addressing when operating in SPI mode. 28 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs The MAX3109 has 8-bit-wide registers. When using SPI control, the extended register location (0x20 through 0x25) can only be accessed by first enabling extended read/writing through GloblComnd. Each UART has an exclusive set of registers. Select a UART to write to by setting the U bit of the command byte in SPI mode or the unique I2C address in I2C mode (see the Serial Controller Interface section for more information). Receive Hold Register (RHR) ADDRESS: MODE: 0x00 R BIT 7 6 5 4 3 2 1 0 NAME RData7 RData6 RData5 RData4 RData3 RData2 RData1 RData0 RESET 0 0 0 0 0 0 0 0 Bits 7–0: RDatax The RHR is the bottom of the receive FIFO and is the register used for reading data out of the receive FIFO. It contains the oldest (first received) character in the receive FIFO. RHR[0] is the LSB of the character received at the RX_ input. It is the first data bit of the serial-data word received by the receiver. Reading RHR removes the read word from the receive FIFO, clearing space for more data to be received. Transmit Hold Register (THR) ADDRESS: MODE: 0x00 W BIT 7 6 5 4 3 2 1 0 NAME TData7 TData6 TData5 TData4 TData3 TData2 TData1 TData0 RESET 0 0 0 0 0 0 0 0 Bits 7–0: TDatax The THR is the register that the host controller writes data to for subsequent UART transmission. This data is deposited in the transmit FIFO. THR[0] is the LSB. It is the first data bit of the serial-data word that the transmitter sends out, immediately after the START bit. ______________________________________________________________________________________ 29 MAX3109 Detailed Register Descriptions MAX3109 Dual Serial UART with 128-Word FIFOs IRQ Enable Register (IRQEn) ADDRESS: MODE: 0x01 R/W BIT 7 6 5 4 3 2 1 0 NAME CTSIEn RxEmtyIEn TFifoEmtyIEn TxTrgIEn RxTrgIEn STSIEn SpChrIEn LSRErrIEn RESET 0 0 0 0 0 0 0 0 The IRQEn register is used to enable the IRQ physical interrupt. Any of the eight ISR interrupt sources can be enabled to generate an interrupt on IRQ. The IRQEn bits only influence the IRQ output and do not have any effect on the ISR contents or behavior. Every one of the IRQEn bits operates on a corresponding ISR bit. Bit 7: CTSIEn The CTSIEn bit enables IRQ interrupt generation when the CTSInt interrupt is set in ISR[7]. Set CTSIEn low to disable IRQ generation from CTSInt. Bit 6: RxEmtyIEn The RxEmtyIEn bit enables IRQ interrupt generation when the RxEmptyInt interrupt is set in ISR[6]. Set RxEmtyIEn low to disable IRQ generation from RxEmptyInt. Bit 5: TFifoEmtyIEn The TFifoEmtyIEn bit enables IRQ interrupt generation when the TFifoEmptyInt interrupt is set in ISR[5]. Set TFifoEmtyIEn low to disable IRQ generation from TFifoEmptyInt. Bit 4: TxTrgIEn The TxTrgIEn bit enables IRQ interrupt generation when the TxTrigInt interrupt is set in ISR[4]. Set TxTrgIEn low to disable IRQ generation from TxTrigInt. Bit 3: RxTrgIEn The RxTrgIEn bit enables IRQ interrupt generation when the RxTrigInt interrupt is set in ISR[3]. Set RxTrgIEn low to disable IRQ generation from RxTrigInt. Bit 2: STSIEn The STSIEn bit enables IRQ interrupt generation when the STSInt interrupt is set in ISR[2]. Set STSIEn low to disable IRQ generation from STSInt. Bit 1: SpChrIEn The SpChrIEn bit enables IRQ interrupt generation when the SpCharInt interrupt is set in ISR[1]. Set SpChrIEn low to disable IRQ generation from SpCharInt. Bit 0: LSRErrIEn The LSRErrIEn bit enables IRQ interrupt generation when the LSRErrInt interrupt is set in ISR[0]. Set LSRErrIEn low to disable IRQ generation from LSRErrInt. 30 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x02 COR BIT 7 6 5 4 3 2 1 0 NAME CTSInt RxEmptyInt TFifoEmptyInt TxTrigInt RxTrigInt STSInt SpCharInt LSRErrInt RESET 0 1 1 0 0 0 0 0 The Interrupt Status register provides an overview of all interrupts generated by the MAX3109. Both the interrupt bits and any pending interrupts on IRQ are cleared after reading ISR. When the MAX3109 is operated in polled mode, ISR can be polled to establish the UART’s status. In interrupt-driven mode, IRQ interrupts are enabled by the appropriate IRQEn bits. The ISR contents either give direct information on the cause for the interrupt or point to other registers that contain more detailed information. Bit 7: CTSInt The CTSInt interrupt is generated when a logic state transition occurs at the CTS_ input. CTSInt is cleared after ISR is read. The current logic state of the CTS_ input can be read out through the LSR[7]: CTSbit bit. Bit 6: RxEmptyInt The RxEmptyInt interrupt is generated when the receive FIFO is empty. RxEmptyInt is cleared after ISR is read. Its meaning can be inverted by the MODE2[3]: RFifoEmptyInv bit. Bit 5: TFifoEmptyInt The TFifoEmptyInt interrupt is generated when the transmit FIFO is empty and the transmitter is transmitting the last character. Use STSInt[7]: TxEmptyInt to determine when the last character has completed transmission. TFifoEmptyInt is cleared after ISR is read. Bit 4: TxTrigInt The TxTrigInt interrupt is generated when the number of characters in the transmit FIFO is equal to or greater than the transmit FIFO trigger level defined in FIFOTrgLvl[3:0]. TxTrigInt is cleared when the transmit FIFO level falls below the trigger level or after ISR is read. TxTrigInt can be used as a warning that the transmit FIFO is nearing overflow. Bit 3: RxTrigInt The RxTrigInt interrupt is generated when the receive FIFO fill level reaches the receive FIFO trigger level defined in FIFOTrgLvl[7:4]. RxTrigInt can be used as an indication that the receive FIFO is nearing overrun. It can also be used to report that a known number of words are available that can be read out in one block. The meaning of RxTrigInt can be inverted by the MODE2[2]: RxTrigInv bit. RxTrigInt is cleared after ISR is read. Bit 2: STSInt The STSInt interrupt is generated when any interrupt in the STSInt register that is enabled by a STSIntEn bit is high. STSInt is cleared after ISR is read, but the interrupt in STSInt that caused this interrupt remains set. See the STSInt register description for details about this interrupt. Bit 1: SpCharInt The SpCharInt interrupt is generated when a special character is received, a line break is detected, or an address character is received in multidrop mode. SpCharInt is cleared after ISR is read, but the interrupt in SpclCharInt that caused this interrupt remains set. See the SpclCharInt register description for details about this interrupt. Bit 0: LSRErrInt The LSRErrInt interrupt is generated when any interrupts in LSR that are enabled by corresponding bits in LSRIntEn are set. This bit is cleared after ISR is read. See the LSR register description for details about this interrupt. ______________________________________________________________________________________ 31 MAX3109 Interrupt Status Register (ISR) MAX3109 Dual Serial UART with 128-Word FIFOs Line Status Interrupt Enable Register (LSRIntEn) ADDRESS: MODE: 0x03 R/W BIT 7 6 5 4 3 2 1 0 NAME — — NoiseIntEn RBreakIEn FrameErrIEn ParityIEn ROverrIEn RTimoutIEn RESET 0 0 0 0 0 0 0 0 LSRIntEn allows routing of LSR interrupts to ISR[0]. The LSRIntEn bits only influence the ISR[0]: LSRErrInt bit and do not have any effect on the LSR contents or behavior. Bits 5 to 0 of the LSRIntEn register operate on a corresponding LSR bit, while bits 7 and 6 are not used. Bits 7 and 6: No Function Bit 5: NoiseIntEn Set the NoiseIntEn bit high to enable routing the LSR[5]: RxNoise interrupt to ISR[0]. If NoiseIntEn is set low, RxNoise is not routed to ISR[0]. Bit 4: RBreakIEn Set the RBreakIEn bit high to enable routing the LSR[4]: RxBreak interrupt to ISR[0]. If RBreakIEn is set low, RxBreak is not routed to ISR[0]. Bit 3: FrameErrIEn Set the FrameErrIEn bit high to enable routing the LSR[3]: FrameErr interrupt to ISR[0]. If FrameErrIEn is set low, FrameErr is not routed to ISR[0]. Bit 2: ParityIEn Set the ParityIEn bit high to enable routing the LSR[2]: RxParityErr interrupt to ISR[0]. If ParityIEn is set low, RxParityErr is not routed to ISR[0]. Bit 1: ROverrIEn Set the ROverrIEn bit high to enable routing the LSR[1]: RxOverrun interrupt to ISR[0]. If ROverrIEn is set low, RxOverrun is not routed to ISR[0]. Bit 0: RTimoutIEn Set the RTimoutIEn bit high to enable routing the LSR[0]: RTimeout interrupt to ISR[0]. If RTimoutIEn is set low, RTimeout is not routed to ISR[0]. 32 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x04 R BIT NAME RESET 7 6 5 4 3 2 1 0 CTSbit X — RxNoise RxBreak FrameErr RxParityErr RxOverrun RTimeout 0 0 0 0 0 0 0 LSR contains all error information related to the word most recently read out from the RxFIFO through RHR. The LSR bits are not cleared after LSR is read; these bits stay set until the next character is read out of RHR, with the exception of LSR[1], which is cleared by reading either RHR or LSR. LSR also contains the current logic state of the CTS input. Bit 7: CTSbit The CTSbit bit reflects the current logic state of the CTS_ input. This bit is cleared when the CTS_ input is low and set when it is high. Following a power-up or reset, the logic state of CTSbit depends on the state of the CTS_ input. Bit 6: No Function Bit 5: RxNoise If noise is detected on the RX_ input during reception of a character, the RxNoise interrupt is generated for that character. LSR[5] corresponds to the character most recently read from RHR. RxNoise is cleared after the character following the “noisy character” is read out from RHR. RxNoise generates an interrupt in ISR[0] if enabled by LSRIntEn[5]. Bit 4: RxBreak If a line break (RX input low for a period longer than the programmed character duration) is detected, a break character is put in the RxFIFO and the RxBreak interrupt is generated for this character. A break character is represented by an all-zeros data character. The RxBreak interrupt distinguishes a regular character with all zeros from a break character. LSR[4] corresponds to the current character most recently read from RHR. RxBreak is cleared after the character following the break character is read out from RHR. RxBreak generates an interrupt in ISR[0] if enabled by LSRIntEn[4]. Bit 3: FrameErr The FrameErr interrupt is generated when the received data frame does not match the expected frame format in length. A frame error is related to errors in expected STOP bits. LSR[3] corresponds to the frame error of the character most recently read from RHR. FrameErr is cleared after the character following the affected character is read out from RHR. FrameErr generates an interrupt in ISR[0] if enabled by LSRIntEn[3]. Bit 2: RxParityErr The RxParityErr interrupt is generated when the parity computed on the character being received does not match the received character’s parity bit. LSR[2] indicates a parity error for the character most recently read from RHR. RxParityErr is cleared when the character following the affected character is read out from RHR. In 9-bit multidrop mode (MODE2[6] is logic 1) the receiver does not check parity and the 9th bit (address/data) is stored in LSR[2]. RxParityErr generates an interrupt in ISR[0] if enabled by LSRIntEn[2]. Bit 1: RxOverrun The RxOverrun interrupt is generated when the receive FIFO is full and additional data is received that does not fit into the receive FIFO. The receive FIFO retains the data that it already contains and discards all new data. RxOverrun is cleared after LSR is read or the RxFIFO level falls below its maximum. RxOverrun generates an interrupt in ISR[0] if enabled by LSRIntEn[1]. Bit 0: RTimeout The RTimeout interrupt indicates that stale data is present in the receive FIFO. RTimeout is set when all of the characters in the RxFIFO have been present for at least as long as the period programmed into the RxTimeOut register. ______________________________________________________________________________________ 33 MAX3109 Line Status Register (LSR) MAX3109 Dual Serial UART with 128-Word FIFOs The timeout counter restarts whenever RHR is read or a new character is received by the RxFIFO. If the value in RxTimeOut is zero, RTimeout is disabled. RTimeout is cleared after a word is read out of the RxFIFO or a new word is received. RTimeout generates an interrupt in ISR[0] if enabled by LSRIntEn[0]. Special Character Interrupt Enable Register (SpclChrIntEn) ADDRESS: MODE: 0x05 R/W BIT 7 6 5 4 3 2 1 0 NAME — — MltDrpIntEn BREAKIntEn XOFF2IntEn XOFF1IntEn XON2IntEn XON1IntEn RESET 0 0 0 0 0 0 0 0 SpclChrIntEn allows routing of SpclCharInt interrupts to ISR[1]. The SpclChrIntEn bits only influence the ISR[1]: SpCharInt bit and do not have any effect on the SpclCharInt contents or behavior. Bits 7 and 6: No Function Bit 5: MltDrpIntEn Set the MltDrpIntEn bit high to enable routing the SpclCharInt[5]: MultiDropInt interrupt to ISR[1]. If MltDrpIntEn is set low, MultiDropInt is not routed to ISR[1]. Bit 4: BREAKIntEn Set the BREAKIntEn bit high to enable routing the SpclCharInt[4]: BREAKInt interrupt to ISR[1]. If BREAKIntEn is set low, BREAKInt is not routed to ISR[1]. Bit 3: XOFF2IntEn Set the XOFF2IntEn bit high to enable routing the SpclCharInt[3]: XOFF2Int interrupt to ISR[1]. If XOFF2IntEn is set low, XOFF2Int is not routed to ISR[1]. Bit 2: XOFF1IntEn Set the XOFF1IntEn bit high to enable routing the SpclCharInt[2]: XOFF1Int interrupt to ISR[1]. If XOFF1IntEn is set low, XOFF1Int is not routed to ISR[1]. Bit 1: XON2IntEn Set the XON2IntEn bit high to enable routing the SpclCharInt[1]: XON2Int interrupt to ISR[1]. If XON2IntEn is set low, XON2Int is not routed to ISR[1]. Bit 0: XON1IntEn Set the XON1IntEn bit high to enable routing the SpclCharInt[0]: XON1Int interrupt to ISR[1]. If XON1IntEn is set low, XON1Int is not routed to ISR[1]. 34 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x06 COR BIT 7 6 5 4 3 2 1 0 NAME — — MultiDropInt BREAKInt XOFF2Int XOFF1Int XON2Int XON1Int RESET 0 0 0 0 0 0 0 0 SpclCharInt contains interrupts that are generated when a special character is received, an address is received in multidrop mode, or a line break occurs. Bits 7 and 6: No Function Bit 5: MultiDropInt The MultiDropInt interrupt is generated when the MAX3109 receives an address character in 9-bit multidrop mode, enabled in MODE2[6]. MultiDropInt is cleared after SpclCharInt is read. MultiDropInt generates an interrupt in ISR[1] if enabled by SpclChrIntEn[5]. Bit 4: BREAKInt The BREAKInt interrupt is generated when a line break (RX_ low for longer than one character length) is detected by the receiver. BREAKInt is cleared after SpclCharInt is read. BREAKInt generates an interrupt in ISR[1] if enabled by SpclChrIntEn[4]. Bit 3: XOFF2Int The XOFF2Int interrupt is generated when both an XOFF2 special character is received and special character detection is enabled by MODE2[4]. XOFF2Int is cleared after SpclCharInt is read. XOFF2Int generates an interrupt in ISR[1] if enabled by SpclChrIntEn[3]. Bit 2: XOFF1Int The XOFF1Int interrupt is generated when both an XOFF1 special character is received and special character detection is enabled by MODE2[4]. XOFF1Int is cleared after SpclCharInt is read. XOFF1Int generates an interrupt in ISR[1] if enabled by SpclChrIntEn[2]. Bit 1: XON2Int The XON2Int interrupt is generated when both an XON2 special character is received and special character detection is enabled by MODE2[4]. XON2Int is cleared after SpclCharInt is read. XON2Int generates an interrupt in ISR[1] if enabled by SpclChrIntEn[1]. Bit 0: XON1Int The XON1Int interrupt is generated when both an XON1 special character is received and special character detection is enabled by MODE2[4]. XON1Int is cleared after SpclCharInt is read. XON1Int generates an interrupt in ISR[1] if enabled by SpclChrIntEn[0]. ______________________________________________________________________________________ 35 MAX3109 Special Character Interrupt Register (SpclCharInt) MAX3109 Dual Serial UART with 128-Word FIFOs STS Interrupt Enable Register (STSIntEn) ADDRESS: MODE: 0x07 R/W BIT 7 6 5 4 3 2 1 0 NAME TxEmptyIntEn SleepIntEn ClkRdyIntEn — GPI3IntEn GPI2IntEn GPI1IntEn GPI0IntEn RESET 0 0 0 0 0 0 0 0 STSIntEn allows routing of STSInt interrupts to ISR[2]. The STSIntEn bits only influence the ISR[2]: STSInt bit and do not have any effect on the STSInt contents or behavior, with the exception of the GPIxIntEn interrupt enable bits, which control the generation of the STSInt. Bit 7: TxEmptyIntEn Set the TxEmptyIntEn bit high to enable routing the STSInt[7]: TxEmptyInt interrupt to ISR[2]. If TxEmptyIntEn is set low, TxEmptyInt is not routed to ISR[2]. Bit 6: SleepIntEn Set the SleepIntEn bit high to enable routing the STSInt[6]: SleepInt interrupt to ISR[2]. If SleepIntEn is set low, SleepInt is not routed to ISR[2]. Bit 5: ClkRdyIntEn Set the ClkRdyIntEn bit high to enable routing the STSInt[6]: ClkReady interrupt to ISR[2]. If ClkRdyIntEn is set low, ClkReady is not routed to ISR[2]. Bit 4: No Function Bits 3–0: GPIxIntEn Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7. For example, for UART1: GP0OD configures GPIO4, GP1OD configures GPIO5, GP2OD configures GPIO6 and GP3OD configures GPIO7. Set the GPIxIntEn bits high to enable generating the STSInt[3:0]: GPIxInt interrupts. If any of the GPIxIntEn bits are set low, the associated GPIxInt interrupts are not generated. 36 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x08 R/COR BIT 7 6 5 4 3 2 1 0 NAME TxEmptyInt SleepInt ClkReady — GPI3Int GPI2Int GPI1Int GPI0Int RESET 0 0 0 0 0 0 0 0 Bit 7: TxEmptyInt The TxEmptyInt interrupt is generated when both the TxFIFO is empty and the last character has completed transmission. TxEmptyInt is cleared after STSInt is read. TxEmptyInt generates an interrupt in ISR[2] if enabled by STSIntEn[7]. Bit 6: SleepInt The SleepInt status bit is generated when the MAX3109 enters sleep mode. SleepInt is cleared when the UART exits sleep mode. This status bit is also cleared when the UART clock is disabled and is not cleared by reading STSInt. SleepInt generates an interrupt in ISR[2] if enabled by STSIntEn[6]. Bit 5: ClkReady The ClkReady status bit is generated when the clock, the predivider, and the PLL have settled, signifying that the MAX3109 is ready for data communication. The ClkReady bit only works with the crystal oscillator. It does not work with external clocking through XIN. ClkReady is cleared when the clock is disabled and is not cleared after STSInt is read. ClkReady generates an interrupt in ISR[2] if enabled by STSIntEn[5]. Bit 4: No Function Bits 3–0: GPIxInt Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7. For example, for UART1: GP0OD configures GPIO4, GP1OD configures GPIO5, GP2OD configures GPIO6 and GP3OD configures GPIO7. The GPIxInt interrupts are generated when a change of logic state occurs on the associated GPIO input. The GPIxInt interrupts are cleared after STSInt is read. The GPIxInt interrupts generate an interrupt in ISR[2] if enabled by the corresponding bits in STSIntEn[3:0]. ______________________________________________________________________________________ 37 MAX3109 Status Interrupt Register (STSInt) MAX3109 Dual Serial UART with 128-Word FIFOs MODE1 Register ADDRESS: MODE: 0x09 R/W BIT 7 6 5 4 3 2 1 0 NAME IRQSel AutoSleep ForcedSleep TrnscvCtrl RTSHiZ TxHiZ TxDisabl RxDisabl RESET 0 0 0 0 0 0 0 0 Bit 7: IRQSel Depending on the logic level of the IRQSel bit, IRQ has different meanings. After a hardware (POR or RST) or software (MODE2[0]) reset, the IRQSel bit is set low and, after a short delay, the IRQ output signals the end of the power-up sequence. IRQ is low during power-up and transitions to high when the MAX3109 is ready to be programmed. Set IRQSel high to enable interrupt driven operation after the power-up sequence has completed. Essentially, IRQSel is a global enable for all interrupts that acts in addition to the interrupt enable registers. Bit 6: AutoSleep Set the AutoSleep bit high to set the MAX3109 to automatically enter low-power sleep mode after a period of no activity (see the Auto-Sleep Mode section). An interrupt is generated in STSInt[6]: SleepInt when the MAX3109 enters sleep mode. Bit 5: ForcedSleep Set the ForcedSleep bit high to force the MAX3109 into low-power sleep mode (see the Forced-Sleep Mode section). The current sleep state can be read out through the ForcedSleep bit, even when the UART is in sleep mode. Bit 4: TrnscvCtrl Set the TrnscvCtrl bit high to enable auto transceiver direction control mode. RTS_ automatically controls the transceiver’s transmit/receive enable/disable inputs in this mode. RTS_ is logic-low so that the transceiver is in receive mode with the transmitter disabled until the TxFIFO contains data available for transmission, at which point RTS_ is automatically set logic-high before the transmitter sends out the data. Once the transmitter is empty, RTS_ is automatically forced low again. Setup and hold times for RTS_ with respect to the TX_ output can be defined through the HDplxDelay register. A transmitter empty interrupt is generated in ISR[5] when the TxFIFO is empty. Bit 3: RTSHiZ Set the RTSHiZ bit high to three-state RTS_. Bit 2: TxHiZ Set the TxHiZ bit high to three-state the TX_ output. Bit 1: TxDisabl Set the TxDisabl bit high to disable transmission. If the TxDisabl bit is set high during transmission, the transmitter completes sending out the current character and then ceases transmission. Data still present in the transmit FIFO remains in the TxFIFO. The TX_ output is set to logic-high after transmission. In auto transceiver direction control mode, TxDisabl is high when the transmitter is completely empty. Bit 0: RxDisabl Set the RxDisabl bit high to disable the receiver of the selected UART so that the receiver stops receiving data. All data present in the receive FIFO remains in the RxFIFO. 38 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x0A R/W BIT 7 6 5 4 3 2 1 0 NAME EchoSuprs MultiDrop Loopback SpecialChr RFifoEmptyInv RxTrigInv FIFORst RST RESET 0 0 0 0 0 0 0 0 Bit 7: EchoSuprs Set the EchoSuprs bit high to discard any data that the MAX3109 receives when its transmitter is busy transmitting. In half-duplex communication such as RS-485 and IrDA, this allows blocking of the locally echoed data. The receiver can block data for an extended time after the transmitter ceases transmission by programming a hold time in HDplxDelay[3:0]. Bit 6: MultiDrop Set the MultiDrop bit high to enable the 9-bit multidrop mode. If this bit is set, parity checking is not performed by the receiver and parity generation is not done by the transmitter. The address/data indication takes the place of the parity bit in received and transmitted data words. The parity error interrupt in LSR[2] has a different meaning in multidrop mode: it represents the 9th bit (address/data indication) that is received with each 9-bit data character. Bit 5: Loopback Set the Loopback bit high to enable internal local loopback mode. This internally connects TX_ to RX_ and also RTS_ to CTS_. In local loopback mode, the TX_ output and the RX_ input are disconnected from the internal transmitter and receiver. The TX_ output is in three-state. The RTS_ output remains connected to the internal logic and reflects the logic state programmed in LCR[7]. The CTS_ input is disconnected from RTS_ and the internal logic. CTS_ thus remains in a high-impedance state. Bit 4: SpecialChr Set the SpecialChr bit high to enable special character detection. The receiver can detect up to four special characters, as selected in FlowCtrl[5:4] and defined in the XON1, XON2, XOFF1, and/or XOFF2 registers, optionally in combination with GPIO_ inputs if enabled through FlowCtrl[2]: GPIAddr. When a special character is received, it is put into the RxFIFO and a special character detect interrupt is generated in ISR[1]. Special character detection can be used in addition to auto XON/XOFF flow control if enabled by FlowCtrl[3]: SwFlowEn. In this case, XON/XOFF flow control is limited to single byte XON and XOFF characters (XON1 and XOFF1), and only two special characters can be defined (XON2 and XOFF2). Bit 3: RFifoEmtyInv Set the RFifoEmtyInv bit high to invert the meaning of the receiver empty interrupt in ISR[6]: RxEmptyInt. If RFifoEmtyInv is set low, RxEmptyInt is generated when the receive FIFO is empty. If RFifoEmtyInv is set high, RxEmptyInt is generated when data is put into the empty receive FIFO. Bit 2: RxTrigInv Set the RxTrigInv bit high to invert the meaning of the RxFIFO triggering. If the RxTrgInv bit is set low, an interrupt is generated in ISR[3]: RxTrigInt when the RxFIFO fill level is filled up to above the trigger level programmed into FIFOTrgLvl[7:4]. If RxTrigInv is set high, an interrupt is generated in ISR[3] when the RxFIFO is emptied to below the trigger level programmed into FIFOTrgLvl[7:4]. Bit 1: FIFORst Set the FIFORst bit high to clear all data contents from both the receive and transmit FIFOs. After a FIFO reset, set FIFORst low to continue normal operation. Bit 0: RST Set the RST bit high to initiate software reset for the selected UART in the MAX3109. The I2C/SPI bus stays active during this reset; communication with the MAX3109 is possible while RST is set. All register bits in the selected UART are reset to their reset state and all FIFOs are cleared during a reset. Set RST low to continue normal operation after a software reset. The MAX3109 requires reprogramming following a software reset. ______________________________________________________________________________________ 39 MAX3109 MODE2 Register MAX3109 Dual Serial UART with 128-Word FIFOs Line Control Register (LCR) ADDRESS: MODE: 0x0B R/W BIT 7 6 5 4 3 2 1 0 NAME RTSbit 0 TxBreak ForceParity EvenParity ParityEn StopBits Length1 Length0 0 0 0 0 1 0 1 RESET Bit 7: RTSbit The RTSbit bit provides direct control of the RTS_ output logic state. If RTSbit is logic 1, then RTS_ is logic 1; if it is logic 0, then RTS_ is logic 0. RTSbit only works when CLKSource[7]: CLKtoRTS is set low. Bit 6: TxBreak Set the TxBreak bit high to generate a line break whereby the TX_ output is held low. TX_ remains low until TxBreak is set low. Bit 5: ForceParity The ForceParity bit enables forced parity that overrides normal parity generation. Set both the LCR[3]: ParityEn and ForceParity bits high to use forced parity. In forced-parity mode, the parity bit is forced high by the transmitter if the LCR[4]: EvenParity bit is low. The parity bit is forced low if EvenParity is high. Forced parity mode enables the transmitter to control the address/data bit in 9-bit multidrop communication. Bit 4: EvenParity Set the EvenParity bit high to enable even parity for both the transmitter and receiver. If EvenParity is set low, odd parity is used. Bit 3: ParityEn Set the ParityEn bit high to enable the use of a parity bit on the TX_ and RX_ interfaces. Set the ParityEn bit low to disable parity usage. If ParityEn is set low, then no parity bit is generated by the transmitter or expected by the receiver. If ParityEn is set high, the transmitter generates the parity bit whose polarity is defined in LCR[4]: EvenParity, and the receiver checks the parity bit according to the same polarity. Bit 2: StopBits The StopBits bit defines the number of stop bits and depends on the length of the word programmed in LCR[1:0] (Table 1). For example, when StopBits is set high and the word length is 5, the transmitter generates a word with a stop bit length equal to 1.5 baud periods. Under these conditions, the receiver recognizes a stop bit length greater than a one-bit duration. Bits 1 and 0: Lengthx The Lengthx bits configure the length of the words that the transmitter generates and the receiver checks for at the asynchronous TX_ and RX_ interfaces (Table 2). Table 1. StopBits Truth Table Table 2. Lengthx Truth Table StopBits WORD LENGTH STOP BIT LENGTH Length1 Length0 WORD LENGTH 0 5, 6, 7, 8 1 0 0 5 1 5 1–1.5 0 1 6 1 6, 7, 8 2 1 0 7 1 1 8 40 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x0C R/W BIT 7 6 5 4 3 2 1 0 NAME TimOut7 TimOut6 TimOut5 TimOut4 TimOut3 TimOut2 TimOut1 TimOut0 RESET 0 0 0 0 0 0 0 0 Bits 7–0: TimOutx The RxTimeOut register allows programming a time delay from after the last (newest) character in the receive FIFO was received until a receive data timeout interrupt is generated in LSR[0]. The units of TimOutx are measured in complete character frames, which are dependent on the character length, parity, and STOP bit settings, and baud rate. If the value in RxTimeOut equals zero, a timeout interrupt is not generated. HDplxDelay Register ADDRESS: MODE: 0x0D R/W BIT 7 6 5 4 3 2 1 0 NAME Setup3 Setup2 Setup1 Setup0 Hold3 Hold2 Hold1 Hold0 RESET 0 0 0 0 0 0 0 0 The HDplxDelay register allows programming setup and hold times between RTS_ transitions and TX_ output activity in auto transceiver direction control mode, enabled by setting the MODE1[4]: TrnscvCtrl bit high. The hold time can also be used to ensure echo suppression in half-duplex communication. HDplxDelay functions in 2x and 4x rate modes. Bits 7–4: Setupx The Setupx bits define a setup time for RTS_ to transition high before the transmitter starts transmission of its first character in auto transceiver direction control mode, enabled by setting the MODE1[4]: TrnscvCtrl bit high. This allows the MAX3109 to account for skew times between the external transmitter’s enable delay and propagation delays. Setupx can also be used to fix a stable state on the transmission line prior to the start of transmission. The resolution of the HDplxDelay setup time delay is one bit interval, or one over the baud rate; this delay is baud-rate dependent. The maximum delay is 15 bit intervals. Bits 3–0: Holdx The Holdx bits define a hold time for RTS_ to be held high after the transmitter ends transmission of its last character in auto transceiver direction control mode, enabled by setting the MODE1[4]: TrnscvCtrl bit high. RTS_ transitions low after the hold time delay, which starts after the last STOP bit was sent. This keeps the external transmitter enabled during the hold time duration. The Holdx bits also define a delay in echo suppression mode, enabled by setting the MODE2[7]: EchoSuprs bit high. See the Echo Suppression section for more information. The resolution of the HDplxDelay hold time delay is one bit interval, or one over the baud rate. Thus, this delay is baudrate dependent. The maximum delay is 15 bit intervals. ______________________________________________________________________________________ 41 MAX3109 Receiver Timeout Register (RxTimeOut) MAX3109 Dual Serial UART with 128-Word FIFOs IrDA Register ADDRESS: MODE: 0x0E R/W BIT 7 6 5 4 3 2 1 0 NAME — — TxInv RxInv MIR — SIR IrDAEn RESET 0 0 0 0 0 0 0 0 The IrDA register allows selection of IrDA SIR- and MIR-compliant pulse shaping at the TX_ and RX_ interfaces. It also allows inversion of the TX_ and RX_ logic, separate from whether IrDA pulse shaping is enabled or not. Bits 7, 6, and 2: No Function Bit 5: TxInv Set the TxInv bit high to invert the logic at the TX_ output. This functionality is separate from IrDA operation. Bit 4: RxInv Set the RxInv bit high to invert the logic at the RX_ input. This functionality is separate from IrDA operation. Bit 3: MIR Set the MIR and IrDAEn bits high to select IrDA 1.1 (MIR) with 1/4th period pulse widths. Bit 1: SIR Set the SIR and IrDAEn bits high to select IrDA 1.0 pulses (SIR) with 3/16th period pulse widths. Bit 0: IrDAEn Set the IrDAEn bit high to program the MAX3109 to produce IrDA-compliant pulses at the TX_ output and expect IrDAcompliant pulses at the RX_ input. If IrDAEn is set low, normal (non-IrDA) pulses are generated by the transmitter and expected by the receiver. Use IrDAEn in conjunction with the SIR or MIR bits to select the pulse width. Flow Level Register (FlowLvl) ADDRESS: MODE: 0x0F R/W BIT 7 6 5 4 3 2 1 0 NAME Resume3 Resume2 Resume1 Resume0 Halt3 Halt2 Halt1 Halt0 RESET 0 0 0 0 0 0 0 0 FlowLvl is used for selecting the RxFIFO threshold levels used for auto software (XON/XOFF) and hardware (RTS_/ CTS_) flow control. Bits 7–4: Resumex The Resumex bits set the receive FIFO threshold at which an XON character is automatically sent in auto software flow control mode or RTS_ is automatically asserted in AutoRTS mode. These flow control actions occur once the RxFIFO is emptied to below the value in Resumex. This signals the far-end station to resume transmission. The threshold level is calculated as 8 x Resumex. The resulting possible threshold-level range is 0 to 120 (decimal). Bits 3–0: Haltx The Haltx bits set the receive FIFO threshold level at which an XOFF character is automatically sent in auto software flow control mode or RTS_ is automatically deasserted in AutoRTS mode. These flow control actions occur once the RxFIFO is filled to above the value in Haltx. This signals the far-end station to halt transmission. The threshold level is calculated as 8 x Haltx. The resulting possible threshold-level range is 0 to 120 (decimal). 42 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x10 R/W BIT 7 6 5 4 3 2 1 0 NAME RxTrig3 RxTrig2 RxTrig1 RxTrig0 TxTrig3 TxTrig2 TxTrig1 TxTrig0 RESET 1 1 1 1 1 1 1 1 Bits 7–4: RxTrigx The RxTrigx bits allow definition of the receive FIFO threshold level at which the UART generates an interrupt in ISR[3]. This interrupt can be used to signal that either the receive FIFO is nearing overflow or a predefined number of FIFO locations are available for being read out in one block, depending on the state of the MODE2[2]: RxTrigInv bit. The selectable threshold resolution is eight FIFO locations, so the actual FIFO trigger level is calculated as 8 x RxTrigx. The resulting possible trigger-level range is 0 to 120 (decimal). Bits 3–0: TxTrigx The TxTrigx bits allow definition of the transmit FIFO threshold level at which the MAX3109 generates an interrupt in ISR[4]. This interrupt can be used to manage data flow to the transmit FIFO. For example, if the trigger level is defined near the bottom of the TxFIFO, the host knows that a predefined number of FIFO locations are available for being written to in one block. Alternatively, if the trigger level is set near the top of the FIFO, the host is warned when the transmit FIFO is nearing overflow. The selectable threshold resolution is eight FIFO locations, so the actual FIFO trigger level is calculated as 8 x TxTrigx. The resulting possible trigger-level range is 0 to 120 (decimal). Transmit FIFO Level Register (TxFIFOLvl) ADDRESS: MODE: 0x11 R BIT 7 6 5 4 3 2 1 0 NAME TxFL7 TxFL6 TxFL5 TxFL4 TxFL3 TxFL2 TxFL1 TxFL0 RESET 0 0 0 0 0 0 0 0 Bits 7–0: TxFLx The TxFIFOLvl register represents the current number of words in the transmit FIFO. Receive FIFO Level Register (RxFIFOLvl) ADDRESS: MODE: 0x12 R BIT 7 6 5 4 3 2 1 0 NAME RxFL7 RxFL6 RxFL5 RxFL4 RxFL3 RxFL2 RxFL1 RxFL0 RESET 0 0 0 0 0 0 0 0 Bits 7–0: RxFLx The RxFIFOLvl register represents the current number of words in the receive FIFO. ______________________________________________________________________________________ 43 MAX3109 FIFO Interrupt Trigger Level Register (FIFOTrgLvl) MAX3109 Dual Serial UART with 128-Word FIFOs Flow Control Register (FlowCtrl) ADDRESS: MODE: 0x13 R/W BIT 7 6 5 4 3 2 1 0 NAME SwFlow3 SwFlow2 SwFlow1 SwFlow0 SwFlowEn GPIAddr AutoCTS AutoRTS RESET 0 0 0 0 0 0 0 0 The FlowCtrl register configures hardware (RTS/CTS) and software (XON/XOFF) flow control as well as special characters detection. Bits 7–4: SwFlowx The SwFlowx bits select the XON and XOFF characters used for auto software flow control and/or special character detection in combination with the characters programmed in the XON1, XON2, XOFF2, and/or XOFF2 registers. See table 3. If auto software flow control is enabled (through FlowCtrl[3]:SwFlowEn) and special character detection is not enabled, SwFlowx allows selecting either single or dual XON/XOFF character flow control. When double character flow control is enabled, the transmitter sends out XON1/XOFF1 first followed by XON2/XOFF2 during receive flow control. For transmit flow control, the receiver only recognizes the received character sequence XON1/XOFF1 followed by XON2/ XOFF2 as a valid control sequence to resume/halt transmission. If only special character detection is enabled (through MODE2[4]: SpecialChr) while auto software flow control is disabled, the SwFlowx allows selecting either single or double character detection. Single character detection allows the detection of two characters: XON1 or XON2 and XOFF1 or XOFF2. Double character detection does not distinguish between the sequence of the two received XON1/XON2 or XOFF1/XOFF2 characters. The two characters have to be received in succession, but it is insignificant which of the two is received first. The special characters are deposited in the receive FIFO. An ISR[1]: SpCharInt interrupt is generated when special characters are received. Auto software flow control and special character detection can be enabled to operate simultaneously. If both are enabled, XON1 and XOFF1 define the auto flow control characters, while XON2 and XOFF2 constitute the special character detection characters. Bit 3: SwFlowEn Set the SwFlowEn bit high to enable auto software flow control. The characters used for automatic software flow control are selected by SwFlowx. If special character detection is enabled by setting the MODE2[4]: SpecialChr bit high in addition to automatic software flow control, XON1 and XOFF1 are used for flow control while XON2 and XOFF2 define the special characters. Bit 2: GPIAddr Set the GPIAddr bit high to enable the four GPIO_ inputs to be used in conjunction with XOFF2 for the definition of a special character. This can be used, for example, for defining the address of an RS-485 slave device through hardware. The GPIO_ input logic levels define the four LSBs of the special character, while the four MSBs are defined by the XOFF2[7:4] bits. The contents of the XOFF2[3:0] bits are neglected while the GPIO_ inputs are used in special character definition. Reading the XOFF2 register does not reflect the logic on GPIO_ in this mode. Bit 1: AutoCTS Set the AutoCTS bit high to enable AutoCTS flow control mode. In this mode, the transmitter stops and starts sending data at the TX_ interface depending on the logic state of the CTS_ input. See the Auto Hardware Flow Control section for more information about AutoCTS flow control mode. Logic changes at the CTS_ input result in an interrupt in ISR[7]: CTSInt. The transmitter must be turned off by setting the MODE1[1]: TxDisabl bit high before AutoCTS mode is enabled. Bit 0: AutoRTS Set the AutoRTS bit high to enable AutoRTS flow control mode. In this mode, the logic state of the RTS_ output is dependent on the receive FIFO fill level. The FIFO thresholds at which RTS_ changes state are set in FlowLvl. See the Auto Hardware Flow Control section for more information about AutoRTS flow control mode. 44 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs RECEIVE FLOW CONTROL TRANSMIT FLOW CONTROL/SPECIAL CHARACTER DETECTION MAX3109 Table 3. SwFlow[3:0] Truth Table DESCRIPTION SwFlow3 SwFlow2 SwFlow1 SwFlow0 0 0 0 0 No flow control/no special character detection. 0 0 X X No receive flow control. 1 0 X X Transmitter generates XON1, XOFF1. 0 1 X X Transmitter generates XON2, XOFF2. 1 1 X X Transmitter generates XON1, XON2, XOFF1, and XOFF2. X X 0 0 No transmit flow control. X X 1 0 Receiver compares XON1 and XOFF1 and controls the transmitter accordingly. XON1 and XOFF1 special character detection. X X 0 1 Receiver compares XON2 and XOFF2 and controls the transmitter accordingly. XON2 and XOFF2 special character detection. X X 1 1 Receiver compares XON1, XON2, XOFF1, and XOFF2 and controls the transmitter accordingly. XON1, XON2, XOFF1, and XOFF2 special character detection. X = Don’t care XON1 Register ADDRESS: MODE: 0x14 R/W BIT 7 6 5 4 3 2 1 0 NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RESET 0 0 0 0 0 0 0 0 The XON1 and XON2 register contents define the XON character used for automatic XON/XOFF flow control and/or the special characters used for special-character detection. See the FlowCtrl register description for more information. Bits 7–0: Bitx These bits define the XON1 character if single character XON auto software flow control is enabled in FlowCtrl[7:4]. If double-character flow control is selected in FlowCtrl[7:4], these bits constitute the least significant byte of the 2-byte XON character. If special character detection is enabled in MODE2[4] and auto flow control is not enabled, these bits define a special character. If both special character detection and auto software flow control are enabled, XON1 defines the XON flow control character. ______________________________________________________________________________________ 45 MAX3109 Dual Serial UART with 128-Word FIFOs XON2 Register ADDRESS: MODE: 0x15 R/W BIT 7 6 5 4 3 2 1 0 NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RESET 0 0 0 0 0 0 0 0 The XON1 and XON2 register contents define the XON character for automatic XON/XOFF flow control and/or the special characters used in special-character detection. See the FlowCtrl register description for more information. Bits 7–0: Bitx These bits define the XON2 character if single character auto software flow control is enabled in FlowCtrl[7:4]. If double-character flow control is selected in FlowCtrl[7:4], these bits constitute the most significant byte of the 2-byte XON character. If special character detection is enabled in MODE2[4] and auto software flow control is not enabled, these bits define a special character. If both special character detection and auto software flow control are enabled, XON2 defines a special character. XOFF1 Register ADDRESS: MODE: 0x16 R/W BIT 7 6 5 4 3 2 1 0 NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RESET 0 0 0 0 0 0 0 0 The XOFF1 and XOFF2 register contents define the XOFF character for automatic XON/XOFF flow control and/or the special characters used in special character detection. See the FlowCtrl register description for more information. Bits 7–0: Bitx These bits define the XOFF1 character if single character XOFF auto software flow control is enabled in FlowCtrl[7:4]. If double character flow control is selected in FlowCtrl[7:4], these bits constitute the least significant byte of the 2-byte XOFF character. If special character detection is enabled in MODE2[4] and auto software flow control is not enabled, these bits define a special character. If both special character detection and auto software flow control are both enabled, XOFF1 defines the XOFF flow control character. 46 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x17 R/W BIT 7 6 5 4 3 2 1 0 NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RESET 0 0 0 0 0 0 0 0 The XOFF1 and XOFF2 register contents define the XOFF character for automatic XON/XOFF flow control and/or the special characters used in special character detection. See the FlowCtrl register description for more information. Bits 7–0: Bitx These bits define the XOFF1 character if single character XOFF auto software flow control is enabled in FlowCtrl[7:4]. If double character flow control is selected in FlowCtrl[7:4], these bits constitute the least significant byte of the 2-byte XOFF character. If special character detection is enabled in MODE2[4] and auto software flow control is not enabled, these bits define a special character. If both special character detection and auto software flow control are both enabled, XOFF2 defines a special character. GPIO Configuration Register (GPIOConfg) ADDRESS: MODE: 0x18 R/W BIT 7 6 5 4 3 2 1 0 NAME GP3OD GP2OD GP1OD GP0OD GP3Out GP2Out GP1Out GP0Out RESET 0 0 0 0 0 0 0 0 Each UART has four GPIOs that can be configured as inputs or outputs and can be operated in push-pull or open-drain mode. The reference clock needs to be active for the GPIOs to work. Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7. Bits 7–4: GPxOD Set the GPxOD bits high to configure the associated GPIOs as open-drain outputs. Set the GPxOD bits low to configure the associated GPIOs as push-pull outputs. For example, for UART1: GP0OD configures GPIO4, GP1OD configures GPIO5, GP2OD configures GPIO6 and GP3OD configures GPIO7. The GPIxDat bits reflect the input logic on the associated GPIO_s. For example, for UART1: GP0Dat configures GPIO4, GP1Dat configures GPIO5, GP2Dat configures GPIO6 and GP3Dat configures GPIO7. Bits 3–0: GPxOut The GPxOut bits configure the associated GPIO_s to be either inputs or outputs. Set the GPxOut bits high to configure the associated GPIO_s as outputs. Set the GPxOut bits low to configure the associated GPIO_s as inputs. For example, for UART1: GP0Out configures GPIO4, GP1Out configures GPIO5, GP2Out configures GPIO6 and GP3Out configures GPIO7. ______________________________________________________________________________________ 47 MAX3109 XOFF2 Register MAX3109 Dual Serial UART with 128-Word FIFOs GPIO Data Register (GPIOData) ADDRESS: MODE: 0x19 R/W BIT 7 6 5 4 3 2 1 0 NAME GPI3Dat GPI2Dat GPI1Dat GPI0Dat GPO3Dat GPO2Dat GPO1Dat GPO0Dat RESET 0 0 0 0 0 0 0 0 Each UART has four individually assigned GPIO outputs as follows: UART0: GPIO0–GPIO3, UART1: GPIO4–GPIO7. Bits 7–4: GPIxDat The GPIxDat bits reflect the input logic on the associated GPIO_s. For example, for UART1: GP0Dat configures GPIO4, GP1Dat configures GPIO5, GP2Dat configures GPIO6 and GP3Dat configures GPIO7. When configured as inputs in GPxOut, the GPIO_s are high-impedance inputs with weak pulldown resistors, regardless of the state of GPxOD. Bits 3–0: GPOxDat The GPOxDat bits allow programming of the logic state of the GPIO_s when configured as outputs in GPIOConfg[3:0]. For open-drain operation, pullup resistors are needed on the GPIOs. For example, for UART1: GP0Dat configures GPIO4, GP1Dat configures GPIO5, GP2Dat configures GPIO6 and GP3Dat configures GPIO7. 48 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x1A R/W BIT 7 6 5 4 3 2 1 0 NAME PLLFactor1 PLLFactor0 PreDiv5 PreDiv4 PreDiv3 PreDiv2 PreDiv1 PreDiv0 RESET 0 0 0 0 0 0 0 1 Bits 7–6: PLLFactorx The PLLFactorx bits allow programming the PLL multiplication factor. The input and output frequencies of the PLL must be limited to the ranges shown in Table 4. Enable the PLL in CLKSource[2]. Bits 5–0: PreDivx The PreDivx bits allow programming of the divisor in the PLL’s predivider. The divisor must be chosen such that the output frequency of the predivider, which is the PLL’s input frequency, is limited to the ranges shown in Table 4. The PLL input frequency is calculated as: fPLLIN = fCLK/PreDiv where fCLK is the input frequency of the crystal oscillator or external clock source (Figure 17), and PreDiv is an integer in the range of 1 to 63. fCLK PREDIVIDER fPLLIN PLL fREF FRACTIONAL BAUD-RATE GENERATOR Figure 17. PLL Signal Path Table 4. PLLFactorx Selection Guide fPLLIN fREF PLLFactor1 PLLFactor0 MULTIPLICATION FACTOR MIN MAX MIN MAX 0 0 6 500kHz 800kHz 3MHz 4.8MHz 0 1 48 850kHz 1.2MHz 40.8MHz 56MHz 1 0 96 425kHz 1MHz 40.8MHz 96MHz 1 1 144 390kHz 667kHz 56MHz 96MHz ______________________________________________________________________________________ 49 MAX3109 PLL Configuration Register (PLLConfig) MAX3109 Dual Serial UART with 128-Word FIFOs Baud-Rate Generator Configuration Register (BRGConfig) ADDRESS: MODE: 0x1B R/W BIT 7 6 5 4 3 2 1 0 NAME — — 4xMode 2xMode FRACT3 FRACT2 FRACT1 FRACT0 RESET 0 0 0 0 0 0 0 0 Bits 7 and 6: No Function Bit 5: 4xMode Set the 4xMode bit high to quadruple the regular (16x sampling) baud rate. Set the 2xMode bit low when 4xMode is enabled. See the 2x and 4x Rate Modes section for more information. Bit 4: 2xMode Set the 2xMode bit high to double the regular (16x sampling) baud rate. Set the 4xMode bit low when 2xMode is enabled. See the 2x and 4x Rate Modes section for more information. Bits 3–0: FRACTx The FRACTx bits are the fractional portion of the baud-rate generator divisor. Set FRACTx to 0000b if not used. See the Fractional Baud-Rate Generator section for calculations of how to set this value to select the baud rate. Baud-Rate Generator LSB Divisor Register (DIVLSB) ADDRESS: MODE: 0x1C R/W BIT 7 6 5 4 3 2 1 0 NAME Div7 Div6 Div5 Div4 Div3 Div2 Div1 Div0 RESET 0 0 0 0 0 0 0 1 DIVLSB and DIVMSB define the baud-rate generator integer divisor. The minimum value for DIVLSB is 1. See the Fractional Baud-Rate Generator section for more information. Bits 7–0: Divx The Divx bits are the eight LSBs of the integer divisor portion (DIV) of the baud-rate generator. 50 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x1D R/W BIT 7 6 5 4 3 2 1 0 NAME Div15 Div14 Div13 Div12 Div11 Div10 Div9 Div8 RESET 0 0 0 0 0 0 0 0 DIVLSB and DIVMSB define the baud-rate generator integer divisor. The minimum value for DIVLSB is 1. See the Fractional Baud-Rate Generator section for more information. Bits 7–0: Divx The Divx bits are the eight MSBs of the integer divisor portion (DIV) of the baud-rate generator. Clock Source Register (CLKSource) ADDRESS: MODE: 0x1E R/W BIT 7 6 5 4 3 2 1 0 NAME CLKtoRTS — — — PLLBypass PLLEn CrystalEn — RESET 0 0 0 1 1 0 0 0 Bit 7: CLKtoRTS Set the CLKtoRTS bit high to route the baud-rate generator (16x baud rate) output clock to RTS_. The RTS_ clock frequency is a factor of 16x, 8x, or 4x of the baud rate in 1x, 2x, and 4x rate modes, respectively. Bits 6, 5, 4, and 0: No Function Bit 3: PLLBypass Set the PLLBypass bit high to bypass the internal PLL and predivider. Bit 2: PLLEn Set the PLLEn bit high to enable the internal PLL. Set PLLEn low to disable the internal PLL. Bit 1: CrystalEn Set the CrystalEn bit high to enable the crystal oscillator. When using an external clock source at XIN, set CrystalEn low. ______________________________________________________________________________________ 51 MAX3109 Baud-Rate Generator MSB Divisor Register (DIVMSB) MAX3109 Dual Serial UART with 128-Word FIFOs Global IRQ Register (GlobalIRQ) ADDRESS: MODE: 0x1F R BIT 7 6 5 4 3 2 1 0 NAME — — — — — — RESET 0 0 0 0 0 0 IRQ1 1 IRQ0 1 Bit 7–2: No Function Bits 1-0: IRQx The MAX3109 has a single IRQ output. The GlobalIRQ register bits report which of the UARTs have an interrupt pending, as enabled in the ISRIntEn registers. The GlobalIRQ register can be read in two ways: either by reading register 0x1F of any of the two UARTs or by sampling the two bits sent to the master on MISO during the command byte of a read cycle (full-duplex SPI) (see the Fast Read Cycle section for more information). The IRQx bits are set high when the associated UARTs have an IRQ interrupt pending. The IRQx bits are cleared when the associated UART interrupt is cleared. UART interrupts are cleared by reading the UART ISR register. 52 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x1F W BIT 7 6 5 4 3 2 1 0 NAME GlbCom7 GlbCom6 GlbCom5 GlbCom4 GlbCom3 GlbCom2 GlbCom1 GlbCom0 Bits 7–0: GlbComx The GloblComnd register is the only global write register in the MAX3109. Every byte written to GloblComnd is sent simultaneously to both UARTs. Every byte sent by the SPI/I2C master to register 0x1F is interpreted as a global command by both internal UARTs, regardless of which UART it was written to. The MAX3109 logic supports the following commands (Table 5): • Global Tx Synchronization • Extended Addressing Space Enable (to enable access to registers beyond address 0x1F) • Extended Addressing Space Disable (to disable access to registers beyond address 0x1F) The last two commands (0xCE/0xCD) enable or disable access to registers in the extended space of the register map when the MAX3109 operates in SPI mode. The SPI command byte has only 5 bits to address a given register so that the registers beyond 0x1F could not be addressed using the standard access method. In I2C mode, there is no need to explicitly enable and disable the extended register map access as I2C allows up to 7 bits for register addressing. To extend the addressing capability of the SPI command byte, send a 0xCE to location 0x1F. The internal SPI address in extended access mode is generated as 0010 A3A2A1A0, where A3A2A1A0 is the least significant nibble of the command byte. Bit A4 of the command byte is disregarded when the extended space of the register map is enabled and only the least significant nibble is used for addressing purposes (Table 6). The U bit of the command byte maintains its meaning in the extended mode. See the SPI Interface section for more information. To return to standard addressing mode, the SPI master sends the 0xCD command to register 0x1F. In this case, the internal SPI address will be generated as follows (default): 000A4 A3A2A1A0. Table 5. GloblComnd Command Descriptions GloblComndx 0xE0 0xE1 0xE2 0xE3 0xE4 0xE5 0xE6 0xE7 0xE8 0xE9 0xEA 0xEB 0xEC 0xED 0xEE 0xEF 0xCE 0xCD COMMAND DESCRIPTION Tx Command 0 Tx Command 1 Tx Command 2 Tx Command 3 Tx Command 4 Tx Command 5 Tx Command 6 Tx Command 7 Tx Command 8 Tx Command 9 Tx Command 10 Tx Command 11 Tx Command 12 Tx Command 13 Tx Command 14 Tx Command 15 Enable extended register map access Disable extended register map access Table 6. Extended Mode Addressing (SPI Only) REGISTER SPI MODE ADDRESS I2C MODE ADDRESS TxSynch 0x00 0x20 SynchDelay1 0x01 0x21 SynchDelay2 0x02 0x22 TIMER1 0x03 0x23 TIMER2 0x04 0x24 RevID 0x05 0x25 ______________________________________________________________________________________ 53 MAX3109 Global Command Register (GloblComnd) MAX3109 Dual Serial UART with 128-Word FIFOs Transmitter Synchronization Register (TxSynch) ADDRESS: MODE: 0x20 R/W BIT 7 6 5 4 3 2 1 0 NAME CLKtoGPIO TxAutoDis TrigDelay SynchEn TrigSel3 TrigSel2 TrigSel1 TrigSel0 RESET 0 0 0 0 0 0 0 0 The TxSynch register is used to configure transmitter synchronization with a global SPI or I2C command. One of 16 trigger commands (Table 5) can be selected to be the synchronization trigger source individually for each UART. This allows simultaneous start of transmission of multiple UARTs that are associated with the same global trigger command. The synchronized UARTs can be on either a single MAX3109 or multiple devices if they are controlled by a common SPI interface. The UARTs start transmission when a global trigger command is received. Start of transmission is considered to be the falling edge of the START bit at the TX_ output. A delay can optionally be programmed through the SynchDelay1 and SynchDelay2 registers. TX synchronization is managed through software by transmitting the broadcast trigger Tx command (Table 5) to the MAX3109 through the SPI or I2C interface. To selectively synchronize ports that are on the same MAX3109 (intrachip synchronization) or on different MAX3109 (interchip synchronization) devices, up to 16 trigger Tx commands have been defined (see the Global Command Register (GloblComnd) section for more information). Bit 7: CLKtoGPIO The CLKtoGPIO bit is used to provide a buffered replica of the UARTs system clock (i.e., the fractional baud-rate generator input) to a GPIO. UART0’s clock is routed to GPIO0 and UART1’s clock is routed to GPIO4. Bit 6: TxAutoDis Set the TxAutoDis bit high to enable automatic transmitter disabling. When TxAutoDis is set high, the transmitter is automatically disabled when all data in the TxFIFO has been transmitted. After the transmitter is disabled, the TxFIFO can then be filled with data that will be transmitted when its assigned trigger command is received, as defined by the TrigSelx bits. Bit 5: TrigDelay Set the TrigDelay bit high to enable delayed start of transmission when a trigger command is received. The UART starts transmitting data following a delay programmed in SynchDelay1 and SynchDelay2 after receiving the assigned trigger command. Bit 4: SynchEn Set the SynchEn bit high to enable software TX synchronization mode. If SynchEn is set high, the UART starts transmitting data when the assigned trigger command is received and the TxFIFO contains data. Setting SynchEn high forces the MODE1[1]: TxDisabl bit high and thereby disables the UART’s transmitter. This prevents the transmitter from sending data as soon as the TxFIFO is loaded. Once the TxFIFO has been loaded, the UART starts transmitting data only upon receiving the assigned trigger command. Set the SynchEn bit low to disable transmitter synchronization for that UART. If SynchEn is set low, that UART’s transmitter does not start transmission through any trigger command. Bits 3–0: TrigSelx The TrigSelx bits assign the trigger command for that UART’s transmitter synchronization when SynchEn is set high. For example, set TxSynch[3:0] to 0x08 for the UART to be triggered by TX command 8 (0xE8, Table 5). 54 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs ADDRESS: MODE: 0x21 R/W BIT 7 6 5 4 3 2 1 0 NAME SDelay7 SDelay6 SDelay5 SDelay4 SDelay3 SDelay2 SDelay1 SDelay0 RESET 0 0 0 0 0 0 0 0 The SynchDelay1 and SynchDelay2 register contents define the time delay between when the UART receives an assigned transmitter trigger command and when the UART begins transmission. Bits 7–0: SDelayx The SDelayx bits are the 8 LSBs of the delay between when the UART receives an assigned transmitter trigger command and when the UART begins transmission. The delay is expressed in number of UART bit intervals (1/BaudRate). The maximum delay is 65,535 bit intervals. For example, given a baud rate of 230.4kbps, the bit time is 4.34Fs, so the maximum delay is 284ms. Synchronization Delay Register 2 (SynchDelay2) ADDRESS: MODE: 0x22 R/W BIT 7 6 5 4 3 2 1 0 NAME SDelay15 SDelay14 SDelay13 SDelay12 SDelay11 SDelay10 SDelay9 SDelay8 RESET 0 0 0 0 0 0 0 0 The SynchDelay1 and SynchDelay2 register contents define the time delay between when the UART receives an assigned transmitter trigger command and when the UART begins transmission. Bits 7–0: SDelayx The SDelayx bits are the 8 MSBs of the delay between when the UART receives an assigned transmitter trigger command and when the UART begins transmission. The delay is expressed in number of UART bit intervals (1/BaudRate). The maximum delay is 65,535 bit intervals. For example, given a baud rate of 230.4kbps, the bit time is 4.34Fs, so the maximum delay is 284ms. ______________________________________________________________________________________ 55 MAX3109 Synchronization Delay Register 1 (SynchDelay1) MAX3109 Dual Serial UART with 128-Word FIFOs Timer Register 1 (TIMER1) ADDRESS: MODE: 0x23 R/W BIT 7 6 5 4 3 2 1 0 NAME Timer7 Timer6 Timer5 Timer4 Timer3 Timer2 Timer1 Timer0 RESET 0 0 0 0 0 0 0 0 The TIMER1 and TIMER2 register contents can be used to generate a low-frequency clock signal on a GPIO_ output. The low-frequency clock is a divided replica of the fractional baud-rate generator output. If TIMER1 and TIMER2 are both 0x00, the low-frequency clock is off. Bits 7–0: Timerx The TIMER1[7:0] bits are the 8 LSBs of the 15-bit timer divisor. See the TIMER2 register description. Timer Register 2 (TIMER2) ADDRESS: MODE: 0x24 R/W BIT 7 6 5 4 3 2 1 0 NAME TmrToGPIO Timer14 Timer13 Timer12 Timer11 Timer10 Timer9 Timer8 RESET 0 0 0 0 0 0 0 0 The TIMER1 and TIMER2 register contents can be used to generate a low-frequency clock signal on a GPIO_ output. The low-frequency clock is a divided replica of the fractional baud-rate generator output. If TIMER1 and TIMER2 are both 0x00, the low-frequency clock is off. Bit 7: TmrToGPIO Set the TmrToGPIO bit high to enable clock generation at a GPIO output. The clock signal is routed to GPIO1 for UART0 and GPIO5 for UART1. The output clock has a 50% duty cycle. Bits 6–0: Timerx The TIMER2[6:0] bits are the 7 MSBs of the 15-bit timer divisor. The clock frequency is calculated using the following formula: fTIMER_CLK = UARTClk/(1024 x Timerx) where UARTClk is the fractional baud-rate generator output (i.e., 16 x Baud Rate). Revision Identification Register (RevID) ADDRESS: MODE: 0x25 R BIT 7 6 5 4 3 2 1 0 NAME Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RESET 1 1 0 0 0 0 0 1 Bits 7–0: Bitx The RevID register indicates the revision number of the MAX3109 silicon starting with 0xC0. This can be used during software development as a known reference. 56 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs To access the registers with addresses 0x20 or higher in SPI mode, enable extended register map access. See the GloblComnd register description for more information. The MAX3109 can be controlled through I2C or SPI as defined by the logic on SPI/I2C. See the Pin Description for further details. SPI Single-Cycle Access Before a specific UART has been addressed, both UARTs could attempt to drive MISO. To avoid this contention, the MISO line is held in high impedance during a write cycle (Figure 18). SPI Interface The SPI supports both single-cycle and burst read/write access. The SPI master must generate clock and data signals in SPI MODE0 (i.e., with clock polarity CPOL = 0 and clock phase CPHA = 0). During a read cycle, MISO is high impedance for the first four clock cycles of the command byte. Once the SPI address has been properly decoded, the addressed SPI drives the MISO line (Figure 19). Each of the two UARTs is addressed using 1 bit (U) in the command byte (Table 7). Table 7. SPI Command Byte Configuration SPI COMMAND BYTE BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 W/R 0 U A4 A3 A2 A1 A0 Ax = Register address. CS SCLK MOSI W 0 U A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 HIGH-Z MISO Ax = REGISTER ADDRESS Dx = 8-BIT REGISTER CONTENTS Figure 18. SPI Write Cycle CS SCLK MOSI R 0 U HIGH-Z MISO A4 A3 A2 A1 A0 0 0 IRQ1 IRQ0 D7 D6 D5 D4 D3 D2 D1 D0 Ax = REGISTER ADDRESS Dx = 8-BIT REGISTER CONTENTS Figure 19. SPI Ready Cycle ______________________________________________________________________________________ 57 MAX3109 Serial Controller Interface MAX3109 Dual Serial UART with 128-Word FIFOs CS SCLK R MOSI 0 U A4 A3 A2 0 0 A1 A0 IRQ1 IRQ0 HIGH-Z MISO Ax = REGISTER ADDRESS Figure 20. SPI Fast Read Cycle SPI Burst Access Burst access allows writing and reading multiple data bytes in one block by defining only the initial register address in the SPI command byte. Multiple characters can be loaded into the TxFIFO by using the THR (0x00) as the initial burst write address. Similarly, multiple characters can be read out of the RxFIFO by using the RHR (0x00) as the SPI’s burst read address. If the SPI burst address is different from 0x00, the MAX3109 automatically increments the register address after each SPI data byte. Efficient programming of multiple consecutive registers is thus possible. The chip-select input, CS/A0, must be held low during the whole cycle. The SCLK/SCL clock continues clocking throughout the burst access cycle. The burst cycle ends when the SPI master pulls CS/A0 high. For example, writing 128 bytes into the TxFIFO can be achieved by a burst write access using the following sequence: 1) Pull CS/A0 low. 2) Send SPI write command to address 0x00. 3) Send 128 bytes. 4) Release CS/A0. This takes a total of (1 + 128) x 8 clock cycles. Fast Read Cycle The two UART interrupts on the MAX3109 share the single IRQ output. When operating in interrupt-based mode, the microcontroller needs to locate the source of the interrupt (i.e., which of the UARTs generated the interrupt) and clear the interrupt. In order to locate the source of an interrupt more quickly, the MAX3109 implements the SPI fast read cycle. This means that the microcontroller can determine which UART is the source of the interrupt (UART0 or UART1) using only 8 clock cycles (Figure 20). The U bit is ignored during the fast read cycle. I2C Interface 2 The MAX3109 contains an I C-compatible interface for data communication with a host processor (SCL and SDA). The interface supports a clock frequency of up to 1MHz. SCL and SDA require pullup resistors that are connected to a positive supply. START, STOP, and Repeated START Conditions When writing to the MAX3109 using I2C, the master sends a START condition (S) followed by the MAX3109 I2C address. After the address, the master sends the register address of the register that is to be programmed. The master then ends communication by issuing a STOP condition (P) to relinquish control of the 58 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs first byte of information sent to the MAX3109 after the START condition. Slave Address The MAX3109 includes a configurable 7-bit I2C slave address, allowing up to 16 MAX3109 devices to share the same I2C bus. The address is defined by connecting the MOSI/A1 and CS/A0 inputs to DGND, VL, SCL, or SDA (Table 5). Set the R/W bit high to configure the MAX3109 to read mode. Set the R/W bit low to configure the MAX3109 to write mode. The address is the Bit Transfer One data bit is transferred on the rising edge of each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high and stable are considered control signals (see the START, STOP, and Repeated START Conditions section). Both SDA and SCL remain high when the bus is not active. Table 8. I2C Address Map MOSI/A1 CS/A0 DGND DGND UART0 UART1 WRITE READ WRITE READ DGND 0xD8 0xD9 0xB8 0xB9 VL 0xC2 0xC3 0xA2 0xA3 DGND SCL 0xC4 0xC5 0xA4 0xA5 DGND SDA 0xC6 0xC7 0xA6 0xA7 VL DGND 0xC8 0xC9 0xA8 0xA9 VL VL 0xCA 0xCB 0xAA 0xAB VL SCL 0xCC 0xCD 0xAC 0xAD VL SDA 0xCE 0xCF 0xAE 0xAF SCL DGND 0xD0 0xD1 0xB0 0xB1 SCL VL 0xD2 0xD3 0xB2 0xB3 SCL SCL 0xD4 0xD5 0xB4 0xB5 0xB7 SCL SDA 0xD6 0xD7 0xB6 SDA DGND 0xC0 0xC1 0xA0 0xA1 SDA VL 0xDA 0xDB 0xBA 0xBB SDA SCL 0xDC 0xDD 0xBC 0xBD SDA SDA 0xDE 0xDF 0xBE 0xBF S Sr P SCL SDA Figure 21. I2C START, STOP, and Repeated START Conditions ______________________________________________________________________________________ 59 MAX3109 bus, or a repeated START condition (Sr) to communicate to another I2C slave. See Figure 21. MAX3109 Dual Serial UART with 128-Word FIFOs WRITE SINGLE BYTE S DEVICE SLAVE ADDRESS - W A 8 DATA BITS A FROM MASTER TO STAVE REGISTER ADDRESS A P FROM SLAVE TO MASTER Figure 22. Write Byte Sequence BURST WRITE S DEVICE SLAVE ADDRESS - W A REGISTER ADDRESS A 8 DATA BITS - 1 A 8 DATA BITS - 2 A 8 DATA BITS - N A FROM MASTER TO STAVE P FROM SLAVE TO MASTER Figure 23. Burst Write Sequence Single-Byte Write In this operation, the master sends an address and two data bytes to the slave device (Figure 22). The following procedure describes the single-byte write operation: 1) The master sends a START condition. 2) The master sends the 7-bit slave address plus a write bit (low). 3) The addressed slave asserts an ACK on the data line. 4) The master sends the 8-bit register address. 5) The slave asserts an ACK on the data line only if the address is valid (NACK if not). 6) The master sends 8 data bits. 7) The slave asserts an ACK on the data line. 8) The master generates a STOP condition. Burst Write In this operation, the master sends an address and multiple data bytes to the slave device (Figure 23). The slave device automatically increments the register address after each data byte is sent, unless the register being accessed is 0x00, in which case the register address remains the same. The following procedure describes the burst write operation: 1) The master sends a START condition. 2) The master sends the 7-bit slave address plus a write bit (low). 3) The addressed slave asserts an ACK on the data line. 4) The master sends the 8-bit register address. 5) The slave asserts an ACK on the data line only if the address is valid (NACK if not). 6) The master sends 8 data bits. 7) The slave asserts an ACK on the data line. 8) Repeat 6 and 7 N-1 times. 9) The master generates a STOP condition. 60 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs 10)The master asserts a NACK on the data line. 11)The master generates a STOP condition. Burst Read In this operation, the master sends an address plus two data bytes and receives multiple data bytes from the slave device (Figure 25). The following procedure describes the burst byte read operation: 1) The master sends a START condition. 2) The master sends the 7-bit slave address plus a write bit (low). 1) The master sends a START condition. 3) The addressed slave asserts an ACK on the data line. 4) The master sends the 8-bit register address. 2) The master sends the 7-bit slave address plus a write bit (low). 5) The active slave asserts an ACK on the data line only if the address is valid (NACK if not). 3) The addressed slave asserts an ACK on the data line. 4) The master sends the 8-bit register address. 6) The master sends a repeated START condition. 5) The slave asserts an ACK on the data line only if the address is valid (NACK if not). 7) The master sends the 7-bit slave address plus a read bit (high). 6) The master sends a repeated START condition. 8) The addressed slave asserts an ACK on the data line. 7) The master sends the 7-bit slave address plus a read bit (high). 9) The slave sends 8 data bits. READ SINGLE BYTE S DEVICE SLAVE ADDRESS - W A REGISTER ADDRESS A Sr DEVICE SLAVE ADDRESS - R A 8 DATA BITS NA FROM MASTER TO STAVE P FROM SLAVE TO MASTER Figure 24. Read Byte Sequence BURST READ S DEVICE SLAVE ADDRESS - W A REGISTER ADDRESS A Sr DEVICE SLAVE ADDRESS - R A 8 DATA BITS - 1 A 8 DATA BITS - 2 A 8 DATA BITS - 3 A 8 DATA BITS - N NA FROM MASTER TO STAVE P FROM SLAVE TO MASTER Figure 25. Burst Read Sequence ______________________________________________________________________________________ 61 MAX3109 Single-Byte Read In this operation, the master sends an address plus two data bytes and receives one data byte from the slave device (Figure 24). The following procedure describes the single-byte read operation: MAX3109 Dual Serial UART with 128-Word FIFOs 8) The slave asserts an ACK on the data line. 9) The slave sends 8 data bits. 10)The master asserts an ACK on the data line. 11)Repeat 9 and 10 N-2 times. 12)The slave sends the last 8 data bits. 13)The master asserts a NACK on the data line. 14)The master generates a STOP condition. Applications Information S SCL Acknowledge Bits Data transfers are acknowledged with an acknowledge bit (ACK) or a not-acknowledge bit (NACK). Both the master and the MAX3109 generate ACK bits. To generate an ACK, pull SDA low before the rising edge of the ninth clock pulse and hold it low during the high period of the ninth clock pulse (Figure 26). To generate a NACK, leave SDA high before the rising edge of the ninth clock pulse and leave it high for the duration of the ninth clock pulse. Monitoring for NACK bits allows for detection of unsuccessful data transfers. 1 2 8 9 NOT-ACKNOWLEDGE SDA ACKNOWLEDGE Startup and Initialization The MAX3109 can be initialized following power-up, a hardware reset, or a software reset as shown in Figure 27. To verify that the MAX3109 is ready for operation after a power-up or reset in an interrupt-driven operation, wait for the IRQ output to deassert. In polled mode, repeatedly read a known register until the expected contents are returned. Figure 26. Acknowledge ENABLE INTERRUPTS POWER-UP/ RST INPUT PULLED HIGH CONFIGURE FIFO CONTROL IS IRQ HIGH? OR DIVLSB READ SUCCESSFULLY N CONFIGURE FLOW CONTROL Y CONFIGURE CLOCKING CONFIGURE GPIOs CONFIGURE MODES START COMMUNICATION Figure 27. Startup and Initialization Flowchart 62 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs 3.3V 2.5V VL VCC VDD VEXT RST MICROCONTROLLER MAX3109 SPI/I2C IRQ AGND VCC TX_ DI RX_ RO RTS_ DE MAX14840E TRANSCEIVER DGND Figure 28. Logic-Level Translation Low-Power Operation To reduce the power consumption during normal operation, the following techniques can be adopted: • Do not use the internal PLL. This saves the most power of the options listed here. Disable and bypass the PLL. With the PLL enabled, the current to the VCC supply is in the range of a few mA (depending on clock frequency and multiplication factor), while it drops to below 1mA if disabled. • Use an external clock source. The lowest power clocking mode is when an external clock signal is used. This drops the power consumption to about half that of an external crystal. • Keep the internal clock rates as low as possible. • Use a low voltage on the VCC supply. • Use an external 1.8V supply. This saves the power dissipated by the internal 1.8V linear regulator for the 1.8V core supply. Connect an external 1.8V supply to V18 and disable the internal regulator by connecting LDOEN to DGND. Interrupts and Polling Monitor the MAX3109 by polling the ISR register or by monitoring the IRQ output. In polled mode, the IRQ physical interrupt output is not used and the host controller polls the ISR register at frequent intervals to establish the state of the MAX3109. Alternatively, the physical IRQ interrupt can be used to interrupt the host controller after specified events, making polling unnecessary. The IRQ output is an open-drain output that requires a pullup resistor to VL. Logic-Level Translation The MAX3109 can be directly connected to transceivers and controllers that have different supply voltages. The VL input defines the logic voltage levels of the controller interface, while the VEXT voltage defines the logic of the transceiver interface. This ensures flexibility when selecting a controller and transceiver. Figure 28 shows an example of a configuration where the controller, transceiver, and the MAX3109 are powered by three different supplies. ______________________________________________________________________________________ 63 MAX3109 1.8V MAX3109 Dual Serial UART with 128-Word FIFOs Power-Supply Sequencing The device’s power supplies can be turned on in any order. Each supply can be present over the entire specified range regardless of the presence or level of the others. Ensure the presence of the interface supplies VL and VEXT before sending input signals to the controller and transceiver interfaces. TX_ MAX3109 SHARED CONNECTOR RX_ RS-232 5x3 Application TX/D+ The four GPIOs can be used to implement the other flow control signals defined in ITU V.24. Figure 30 shows how the GPIOs create the DSR, DTR, DCD, and RI signals found on some RS-232/V.28 interfaces. RX/D- D+ OE MAX13481E Connector Sharing The TX_ and RTS_ outputs can be programmed to be high impedance. This feature is used in cases where the MAX3109 shares a common connector with other communications devices. Set the output of the MAX3109 to high impedance when the other communication devices are active. Set the MODE1[2]: TxHiZ bit high to set TX_ to a high-impedance state. Set the MODE1[3]: RTSHiZ bit high to set RTS_ to a high-impedance state. Figure 29 shows an example of connector sharing with a USB transceiver. Set the FlowCtrl[1:0] bits high to enable automatic hardware RTS_/CTS_ flow control. D- Figure 29. Connector Sharing with a USB Transceiver MAX3245 SPI/I2C MAX3109 RST MICROCONTROLLER IRQ TX0 T1IN RX0 R1OUT RTS0 T2IN CTS0 R2OUT GPIO0 T3IN GPIO1 R3OUT GPIO2 R4OUT GPIO3 R5OUT Tx Rx RTS CTS DTR DSR LDOEN DCD RI Figure 30. RS-232 Application 64 ������������������������������������������������������������������������������������� Dual Serial UART with 128-Word FIFOs MAX3109 3.3V 0.1µF VCC LDOEN VEXT VL TX0 SPI/I2C RTS0 10kΩ MAX3109 RX0 IRQ DI A1 DE B1 RO RE SPI MAX14840E MICROCONTROLLER XIN XOUT TX1 RST RTS1 AGND RX1 DGND V18 DI A2 DE B2 RO RE 0.1µF MAX14840E Figure 31. RS-485 Half-Duplex Application Typical Application Circuit Figure 31 shows the MAX3109 being used in a halfduplex RS-485 application. The microcontroller, the RS-485 transceiver, and the MAX3109 are powered by a single 3.3V supply. SPI is used as the controller’s communication interface. The microcontroller provides an external clock source to clock the UART. The MAX14840 receiver is always enabled, so echoing occurs. Enable auto echo suppression in the MAX3109 by setting the MODE2[7]: EchoSuprs bit high. Set the MODE1[4]: TranscvCtrl bit high to enable auto transceiver direction control in order to automatically control the DE input of the transceiver. Chip Information PROCESS: BiCMOS Package Information For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 32 TQFN-EP T3255+1 21-0180 90-0012 ______________________________________________________________________________________ 65 MAX3109 Dual Serial UART with 128-Word FIFOs Revision History REVISION NUMBER REVISION DATE 0 3/11 DESCRIPTION Initial release PAGES CHANGED — Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 66 © 2011 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.