Maxim MAX4213EUA Miniature, 300mhz, single-supply, rail-to-rail op amps with enable Datasheet

19-1178; Rev 3; 10/03
L
MANUA
ION KIT
T
A
U
L
EVA
BLE
AVAILA
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
Features
♦ High Speed:
300MHz -3dB Bandwidth (MAX4212/MAX4213)
200MHz -3dB Bandwidth
(MAX4216/MAX4218/MAX4220)
50MHz 0.1dB Gain Flatness
(MAX4212/MAX4213)
600V/µs Slew Rate
♦ Single 3.3V/5.0V Operation
♦ Rail-to-Rail Outputs
♦ Input Common-Mode Range Extends Beyond VEE
♦ Low Differential Gain/Phase: 0.02%/0.02°
♦ Low Distortion at 5MHz:
-78dBc SFDR
-75dB Total Harmonic Distortion
♦ High-Output Drive: ±100mA
♦ 400µA Shutdown Capability (MAX4213/MAX4218)
♦ High-Output Impedance in Off State
(MAX4213/MAX4218)
♦ Space-Saving SOT23, µMAX, or QSOP Packages
Ordering Information
Applications
Battery-Powered Instruments
Video Line Driver
Analog-to-Digital Converter Interface
CCD Imaging Systems
Video Routing and Switching Systems
TEMP
RANGE
PIN
PACKAGE
TOP
MARK
MAX4212EUK-T
-40°C to +85°C
5 SOT23-5
ABAF
MAX4213ESA
-40°C to +85°C
8 SO
—
MAX4213EUA
-40°C to +85°C
8 µMAX
—
PART
Ordering Information continued at end of data sheet.
Pin Configurations
Typical Operating Circuit
RF
24Ω
TOP VIEW
RTO
50Ω
MAX4212
VOUT
OUT 1
5
VCC
ZO = 50Ω
RO
50Ω
IN
RTIN
50Ω
VEE 2
UNITY-GAIN LINE DRIVER
(RL = RO + RTO)
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
4
SOT23-5
EN
7
VCC
IN+ 3
6
OUT
VEE 4
5
N.C.
IN- 2
MAX4212
IN+ 3
8
N.C. 1
IN-
MAX4213
µMAX/SO
Pin Configurations continued at end of data sheet.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
General Description
The MAX4212/MAX4213 single, MAX4216 dual,
MAX4218 triple, and MAX4220 quad op amps are
unity-gain-stable devices that combine high-speed performance with Rail-to-Rail ® outputs. The MAX4213/
MAX4218 have a disable feature that reduces powersupply current to 400µA and places the outputs into a
high-impedance state. These devices operate from a
3.3V to 10V single supply or from ±1.65V to ±5V dual
supplies. The common-mode input voltage range
extends beyond the negative power-supply rail (ground
in single-supply applications).
These devices require only 5.5mA of quiescent supply
current while achieving a 300MHz -3dB bandwidth and
a 600V/µs slew rate. Input-voltage noise is only
10nV/√Hz and input-current noise is only 1.3pA/√Hz for
either the inverting or noninverting input. These parts
are an excellent solution in low-power/low-voltage systems that require wide bandwidth, such as video, communications, and instrumentation. In addition, when
disabled, their high-output impedance makes them
ideal for multiplexing applications.
The MAX4212 comes in a miniature 5-pin SOT23 package, while the MAX4213/MAX4216 come in 8-pin µMAX
and SO packages. The MAX4218/MAX4220 are available
in space-saving 16-pin QSOP and 14-pin SO packages.
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ..................................................12V
IN_-, IN_+, OUT_, EN_ .....................(VEE - 0.3V) to (VCC + 0.3V)
Output Short-Circuit Duration to VCC or VEE ............. Continuous
Continuous Power Dissipation (TA = +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ...........571mW
8-Pin SO (derate 5.9mW/°C above +70°C) .................471mW
8-Pin µMAX (derate 4.5mW/°C above +70°C) ............221mW
14-Pin SO (derate 8.3mW/°C above +70°C) ...............667mW
16-Pin QSOP (derate 8.3mW/°C above +70°C) ..........667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, EN_ = 5V, RL = 2kΩ to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.)
PARAMETER
SYMBOL
Input Common-Mode
Voltage Range
VCM
Input Offset Voltage (Note 1)
VOS
Input Offset Voltage
Temperature Coefficient
Input Offset Current
Input Resistance
Common-Mode Rejection Ratio
Open-Loop Gain (Note 1)
Guaranteed by CMRR test
VEE 0.20
MAX
VCC 2.25
MAX4212EUK, MAX421_EUA
4
12
4
9
UNITS
V
mV
8
µV/°C
Any channels for MAX4216/MAX4218/
MAX4220
±1
mV
IB
(Note 1)
5.4
20
IOS
(Note 1)
0.1
4.0
Differential mode (-1V ≤ VIN ≤ +1V)
70
kΩ
Common mode (-0.2V ≤ VCM ≤ +2.75V)
3
MΩ
dB
RIN
CMRR
AVOL
(VEE - 0.2V) ≤ VCM ≤ (VCC - 2.25V)
70
100
0.25V ≤ VOUT ≤ 4.75V, RL = 2kΩ
55
61
0.5V ≤ VOUT ≤ 4.5V, RL = 150Ω
52
RL = 10kΩ
RL = 2kΩ
VOUT
RL = 150Ω
RL = 50Ω
2
TYP
MAX42_ _ES_, MAX42_ _EEE
1.0V ≤ VOUT ≤ 4V, RL = 50Ω
Output Voltage Swing
MIN
TCVOS
Input Offset Voltage Matching
Input Bias Current
CONDITIONS
59
µA
µA
dB
57
VCC - VOH
0.05
VOL - VEE
0.05
VCC - VOH
0.06
0.20
VOL - VEE
0.06
0.20
VCC - VOH
0.30
0.50
VOL - VEE
0.30
0.50
VCC - VOH
0.70
VOL - VEE
0.60
_______________________________________________________________________________________
V
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
(VCC = 5V, VEE = 0, EN_ = 5V, RL = 2kΩ to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.)
PARAMETER
Output Current
Output Short-Circuit Current
SYMBOL
CONDITIONS
IOUT
RL = 20Ω to VCC or
VEE
ISC
Sinking or sourcing
Open-Loop Output Resistance
ROUT
Power-Supply Rejection Ratio
(Note 2)
PSRR
MIN
TYP
TA = +25°C
±70
±120
TA = TMIN to TMAX
±60
VCC = 5V, VEE = 0, VCM = 2.0V
46
VCC = 5V, VEE = -5V, VCM = 0
54
VCC = 3.3V, VEE = 0, VCM = 0.90V
Operating Supply-Voltage
Range
Disabled Output Resistance
VS
ROUT (OFF)
EN_ Logic-Low Threshold
VIL
EN_ Logic-High Threshold
VIH
EN_ Logic Input Low Current
IIL
EN_ Logic Input High Current
IIH
Quiescent Supply Current
(per Amplifier)
IS
VCC to VEE
EN_ = 0, 0 ≤ VOUT ≤ 5V (Note 3)
MAX
UNITS
mA
±150
mA
8
Ω
57
dB
66
45
3.15
20
11.0
V
kΩ
35
VCC - 2.6
VCC - 1.6
V
V
(VEE + 0.2V) ≤ EN_ ≤ VCC
0.5
EN_ = 0
200
EN_ = 5V
0.5
10
Enabled
5.5
7.0
Disabled (EN_ = 0)
0.40
0.65
400
µA
µA
mA
_______________________________________________________________________________________
3
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
DC ELECTRICAL CHARACTERISTICS (continued)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
AC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, VCM = 2.5V, EN_ = 5V, RF = 24Ω, RL = 100Ω to VCC/2, VOUT = VCC/2, AVCL = +1, TA = +25°C, unless otherwise
noted.)
PARAMETER
SYMBOL
CONDITIONS
Small-Signal -3dB Bandwidth
BWSS
VOUT = 20mVP-P
Large-Signal -3dB Bandwidth
BWLS
VOUT = 2VP-P
Bandwidth for 0.1dB Gain
Flatness
Slew Rate
Settling Time to 0.1%
MIN
TYP
MAX4212/MAX4213
300
MAX4216/MAX4218/
MAX4220
200
MAX
180
MAX4212/MAX4213
50
MAX4216/MAX4218/
MAX4220
35
UNITS
MHz
MHz
BW0.1dB
VOUT = 20mVP-P
SR
VOUT = 2V step
600
V/µs
tS
MHz
VOUT = 2V step
45
ns
Rise/Fall Time
tR, tF
VOUT = 100mVP-P
1
ns
Spurious-Free Dynamic
Range
SFDR
fC = 5MHz, VOUT = 2VP-P
-78
dBc
Harmonic Distortion
Two-Tone, Third-Order
Intermodulation Distortion
HD
IP3
Input 1dB Compression Point
2nd harmonic
-78
3rd harmonic
-82
Total harmonic
distortion
-75
dB
f1 = 10.0MHz, f2 = 10.1MHz, VOUT = 1VP-P
35
dBc
fC = 10MHz, AVCL = 2
11
dBm
degrees
fC = 5MHz,
VOUT = 2VP-P
dBc
Differential Phase Error
DP
NTSC, RL = 150Ω
0.02
Differential Gain Error
DG
NTSC, RL = 150Ω
0.02
%
Input Noise-Voltage Density
en
f = 10kHz
10
nV/√Hz
Input Noise-Current Density
in
f = 10kHz
1.3
pA/√Hz
1
pF
EN_ = 0
2
pF
f = 10MHz
6
Ω
Input Capacitance
Disabled Output Capacitance
Output Impedance
CIN
COUT (OFF)
ZOUT
Amplifier Enable Time
tON
100
ns
Amplifier Disable Time
tOFF
1
µs
MAX4216/MAX4218/MAX4220,
f = 10MHz, VOUT = 20mVP-P
0.1
dB
MAX4216/MAX4218/MAX4220,
f = 10MHz, VOUT = 2VP-P
-95
dB
Amplifier Gain Matching
Amplifier Crosstalk
XTALK
Note 1: Tested with VCM = 2.5V.
Note 2: PSR for single 5V supply tested with VEE = 0, VCC = 4.5V to 5.5V; for dual ±5V supply with VEE = -4.5V to -5.5V,
VCC = 4.5V to 5.5V; and for single 3.3V supply with VEE = 0, VCC = 3.15V to 3.45V.
Note 3: Does not include the external feedback network’s impedance.
4
_______________________________________________________________________________________
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
3
2
2
1
8
-1
-2
6
-1
-2
-3
5
4
3
-3
-4
2
-4
-5
1
-5
-6
0
-6
-7
-1
1M
10M
100M
1M
10M
100M
100k
1G
1M
10M
100M
FREQUENCY (Hz)
FREQUENCY (Hz)
FREQUENCY (Hz)
MAX4216/MAX4218/MAX4220
SMALL-SIGNAL GAIN vs. FREQUENCY
LARGE-SIGNAL GAIN vs. FREQUENCY
MAX4212/MAX4213
GAIN FLATNESS vs. FREQUENCY
7
3
VOUT = 2VP-P
VOUT BIAS = 1.75V
2
6
0.7
0.6
0.5
0.4
4
3
GAIN (dB)
GAIN (dB)
1
5
0
-1
-2
0.3
0.2
0.1
2
-3
0
1
-4
-0.1
0
-5
-0.2
-1
-6
1M
10M
100M
1G
-0.3
100k
1M
10M
100M
1M
10M
100M
1G
FREQUENCY (Hz)
FREQUENCY (Hz)
FREQUENCY (Hz)
MAX4216/MAX4218/MAX4220
GAIN FLATNESS vs. FREQUENCY
MAX4216/MAX4218/MAX4220
CROSSTALK vs. FREQUENCY
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
0.3
10
CROSSTALK (dB)
0.2
30
0.1
0
-0.1
-0.2
-0.3
-10
-30
-50
-70
-90
-0.4
-130
-150
1M
10M
100M
FREQUENCY (Hz)
1G
100
10
1
-110
-0.5
1000
IMPEDANCE (Ω)
0.4
MAX4212/3/6/8/20-09
50
MAX4212/3/6/8/20-07
0.5
0.1M
0.1M
1G
MAX4212/3/6/8/20-08
100k
1G
MAX4212/3/6/8/20-06
AVCL = 2
VOUT = 20mVP-P
MAX4212/3/6/8/20-05
4
MAX4212/3/6/8/20-04
9
8
100k
1G
AVCL = 2
VOUT = 20mVP-P
7
GAIN (dB)
GAIN (dB)
GAIN (dB)
0
100k
GAIN (dB)
9
0
1
GAIN (dB)
VOUT = 20mVP-P
MAX4212/3/6/8/20-03
VOUT = 20mVP-P
MAX4212/3/6/8/20-02
3
MAX4212/3/6/8/20-01
4
MAX4212/MAX4213
SMALL-SIGNAL GAIN vs. FREQUENCY
MAX4216/MAX4218/MAX4220
SMALL-SIGNAL GAIN vs. FREQUENCY
MAX4212/MAX4213
SMALL-SIGNAL GAIN vs. FREQUENCY
0.1
100k
1M
10M
100M
FREQUENCY (Hz)
1G
0.1M
1M
10M
100M
FREQUENCY (Hz)
_______________________________________________________________________________________
5
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
__________________________________________Typical Operating Characteristics
(VCC = 5V, VEE = 0, AVCL = 1, RF = 24Ω, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF = 24Ω, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
HARMONIC DISTORTION
vs. FREQUENCY (AVCL = 2)
-60
2ND HARMONIC
-80
-60
-100
100k
1M
10M
-80
3RD HARMONIC
-60
-70
2ND HARMONIC
-80
3RD HARMONIC
200
-30
-40
800
-60
-70
2ND HARMONIC
-80
3RD HARMONIC
0.5
-30
-40
-50
-60
-70
-80
6
-20
-30
-40
-50
100M
MAX4212/3/6/8/20-12
0.01
0.00
-0.01
100
OUTPUT SWING
vs. LOAD RESISTANCE (RL)
4.5
4.0
3.5
3.0
2.5
2.0
-60
-80
10M
VCM = 1.35V
0.02
0
MAX4212/3/6/8/20-17
-10
-100
FREQUENCY (Hz)
100
IRE
0.03
IRE
0
-70
1M
100M
0.00
2.0
10
-90
100k
1.0
1.5
OUTPUT SWING (VP-P)
20
POWER-SUPPLY REJECTION (dB)
-20
0.01
POWER-SUPPLY REJECTION
vs. FREQUENCY
MAX4212/3/6/8/20-16
0
VCM = 1.35V
0.02
0
COMMON-MODE REJECTION
vs. FREQUENCY
-10
10M
0.03
-50
1000
1M
-0.01
-100
400
600
LOAD (Ω)
100k
DIFFERENTIAL GAIN AND PHASE
MAX4212/3/6/8/20-14
-20
-90
-100
-80
FREQUENCY (Hz)
fO = 5MHz
-10
3RD
HARMONIC
-70
100M
0
HARMONIC DISTORTION (dBc)
MAX4212/3/6/8/20-13
-50
0
10M
HARMONIC DISTORTION
vs. OUTPUT SWING
-40
-90
1M
HARMONIC DISTORTION
vs. LOAD
-30
-60
-90
100k
2ND HARMONIC
-50
-100
FREQUENCY (Hz)
-20
-40
-100
100M
f = 5MHz
VOUT = 2VP-P
-30
-90
FREQUENCY (Hz)
0
-10
2ND HARMONIC
-70
3RD HARMONIC
-90
HARMONIC DISTORTION (dBc)
-50
-20
MAX4212/3/6/8/20-18
-70
-40
VOUT = 2VP-P
AVCL = 5
MAX4212/3/6/8/20-15
-50
-30
DIFF. GAIN (%)
-40
-20
0
-10
DIFF. PHASE (deg)
-30
VOUT = 2VP-P
AVCL = 2
-10
OUTPUT SWING (Vp-p)
-20
0
MAX4212/3/6/8/20-11
VOUT = 2VP-P
HARMONIC DISTORTION (dBc)
HARMONIC DISTORTION (dBc)
MAX4212/3/6/8/20-10
0
-10
HARMONIC DISTORTION
vs. FREQUENCY (AVCL = 5)
HARMONIC DISTORTION (dBc)
HARMONIC DISTORTION
vs. FREQUENCY (AVCL = 1)
CMR (dB)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
1.5
AVCL = 2
1.0
100k
1M
10M
FREQUENCY (Hz)
100M
25
50
75
100
125
LOAD RESISTANCE (Ω)
_______________________________________________________________________________________
150
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
SMALL-SIGNAL PULSE RESPONSE
(AVCL = 2)
SMALL-SIGNAL PULSE RESPONSE
(AVCL = 1)
SMALL-SIGNAL PULSE RESPONSE
(CL = 5pF, AVCL = 1)
MAX4212/3/6/8/20-20
IN
(25mV/
div)
IN
(50mV/
div)
VOLTAGE
VOLTAGE
MAX4212/3/6/8/20-21
VOLTAGE
MAX4212/3/6/8/20-19
OUT
(25mV/
div)
OUT
(25mV/
div)
OUT
(25mV/
div)
IN
(50mV/
div)
20ns/div
20ns/div
VCM = 1.75V, RL = 100Ω to GROUND
LARGE-SIGNAL PULSE RESPONSE
(AVCL = 2)
LARGE-SIGNAL PULSE RESPONSE
(AVCL = 1)
LARGE-SIGNAL PULSE RESPONSE
(CL = 5pF, AVCL = 2)
MAX4212/3/6/8/20-24
MAX4212/3/6/8/20-23
MAX4212/3/6/8/20-22
IN
(1V/
div)
VOLTAGE
VOLTAGE
VOLTAGE
IN
(500mV/
div)
IN
(1V/div)
OUT
(500mV/
div)
OUT
(1V/div)
OUT
(500mV/
div)
20ns/div
20ns/div
20ns/div
MAX4213
VOLTAGE-NOISE DENSITY
vs. FREQUENCY
MAX4218
CURRENT-NOISE DENSITY
vs. FREQUENCY
ENABLE RESPONSE TIME
MAX4212/3/6/8/20-27
5.0V
(ENABLE)
EN_
NOISE (pA/√Hz)
MAX4212/3/6/8/20-26
10
MAX4212/3/6/8/20-25
100
VCM = 1.75V, RL = 100Ω to GROUND
VCM = 0.9V, RL = 100Ω to GROUND
VCM = 1.75V, RL = 100Ω to GROUND
NOISE (nV/√Hz)
20ns/div
VCM = 1.25V, RL = 100Ω to GROUND
VCM = 2.5V, RL = 100Ω to GROUND
10
0
(DISABLE)
OUT
1V
0
1
1
1
10
100
1k
10k 100k
FREQUENCY (Hz)
1M
10M
1
10
100
1k
10k 100k
FREQUENCY (Hz)
1M
10M
1µs/div
VIN = 1.0V
_______________________________________________________________________________________
7
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF = 24Ω, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
____________________________Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF = 24Ω, RL = 100Ω to VCC/2, TA = +25°C, unless otherwise noted.)
CLOSED-LOOP BANDWIDTH
vs. LOAD RESISTANCE
30
20
300
250
200
150
100
1k
0
100
200 300 400 500
LOAD RESISTANCE (Ω)
100k
600
5
4
MAX4212/3/6/8/20-32
5.5
5.0
4.5
POWER-SUPPLY CURRENT
vs. POWER-SUPPLY VOLTAGE
-25
0
25
50
TEMPERATURE (°C)
75
6
4
2
0
4
3
2
4
5
6
7
8
9 10
POWER-SUPPLY VOLTAGE (V)
11
0.04
-50
-25
0
25
50
TEMPERATURE (°C)
75
100
5.0
RL = 150Ω TO VCC/2
4.8
4.6
4.4
4.2
1
4.0
0
3
0.08
VOLTAGE SWING vs. TEMPERATURE
MAX4212/3/6/8/20-35
5
INPUT OFFSET VOLTAGE (mV)
MAX4212/3/6/8/20-34
8
0.12
100
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
10
0.16
0
-50
100
100M
0.20
VOLTAGE SWING (Vp-p)
75
10M
FREQUENCY (Hz)
4.0
3
1M
INPUT OFFSET CURRENT
vs. TEMPERATURE
6.0
INPUT BIAS CURRENT (µA)
MAX4212/3/6/8/20-31
POWER-SUPPLY CURRENT (mA)
6
0
25
50
TEMPERATURE (°C)
-60
INPUT BIAS CURRENT
vs. TEMPERATURE
7
-25
-50
-80
POWER-SUPPLY CURRENT
vs. TEMPERATURE
-50
-40
MAX4212/3/6/8/20-33
400
600
800
LOAD RESISTANCE (Ω)
-30
-90
INPUT OFFSET CURRENT (µA)
200
-20
-70
50
0
0
8
0
-10
MAX4212/3/6/8/20-36
40
350
OFF-ISOLATION (dB)
50
OFF-ISOLATION vs. FREQUENCY
10
MAX4212/3/6/8/20-29
OPEN-LOOP GAIN (dB)
60
400
CLOSED-LOOP BANDWIDTH (MHz)
MAX4212/3/6/8/20-28
70
MAX4212/3/6/8/20-30
OPEN-LOOP GAIN
vs. LOAD RESISTANCE
POWER-SUPPLY CURRENT (mA)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
-50
-25
0
25
50
TEMPERATURE (°C)
75
100
-50
-25
0
25
50
TEMPERATURE (°C)
_______________________________________________________________________________________
75
100
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
PIN
MAX4212 MAX4213 MAX4216
SOT23 SO/µMAX SO/µMAX
MAX4218
MAX4220
SO
QSOP
SO
QSOP
NAME
FUNCTION
—
1, 5
—
—
8, 9
—
8, 9
N.C.
No Connection. Not internally connected.
Tie to ground or leave open.
1
6
—
—
—
—
—
OUT
Amplifier Output
2
4
4
11
13
11
13
VEE
Negative Power Supply or Ground (in
single-supply operation)
3
3
—
—
—
—
—
IN+
Noninverting Input
4
2
—
—
—
—
—
IN-
Inverting Input
5
7
8
4
4
4
4
VCC
Positive Power Supply
—
—
1
7
7
1
1
OUTA
—
—
2
6
6
2
2
INA-
Amplifier A Inverting Input
—
—
3
5
5
3
3
INA+
Amplifier A Noninverting Input
—
—
7
8
10
7
7
OUTB
Amplifier B Output
—
—
6
9
11
6
6
INB-
Amplifier B Inverting Input
—
—
5
10
12
5
5
INB+
Amplifier B Noninverting Input
—
—
—
14
16
8
10
OUTC
Amplifier C Output
—
—
—
13
15
9
11
INC-
Amplifier C Inverting Input
—
—
—
12
14
10
12
INC+
Amplifier C Noninverting Input
—
—
—
—
—
14
16
OUTD
Amplifier D Output
—
—
—
—
—
13
15
IND-
Amplifier D Inverting Input
—
—
—
—
—
12
14
IND+
Amplifier D Noninverting Input
—
8
—
—
—
—
—
EN
—
—
—
1
1
—
—
ENA
Enable Amplifier A
—
—
—
3
3
—
—
ENB
Enable Amplifier B
—
—
—
2
2
—
—
ENC
Enable Amplifier C
Amplifier A Output
Enable Amplifier
_______________________________________________________________________________________
9
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
______________________________________________________________Pin Description
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
_______________Detailed Description
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to
achieve 600V/µs slew rates and 300MHz bandwidths.
Excellent harmonic distortion and differential gain/
phase performance make these amplifiers an ideal
choice for a wide variety of video and RF signalprocessing applications.
The output voltage swing comes to within 50mV of each
supply rail. Local feedback around the output stage
assures low open-loop output impedance to reduce
gain sensitivity to load variations. This feedback also
produces demand-driven current bias to the output
transistors for ±100mA drive capability, while constraining total supply current to less than 7mA. The input
stage permits common-mode voltages beyond the negative supply and to within 2.25V of the positive supply rail.
__________Applications Information
Choosing Resistor Values
Unity-Gain Configuration
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
are internally compensated for unity gain. When configured for unity gain, the devices require a 24Ω resistor
(R F ) in series with the feedback path. This resistor
RG
improves AC response by reducing the Q of the parallel
LC circuit formed by the parasitic feedback capacitance and inductance.
Inverting and Noninverting Configurations
Select the gain-setting feedback (RF) and input (RG)
resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier’s input and PC board capacitance. This can
generate undesirable poles and zeros and decrease
bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using 1kΩ
resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole
at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the 1kΩ resistors to 100Ω extends the pole frequency to 1.59GHz,
but could limit output swing by adding 200Ω in parallel
with the amplifier’s load resistor. Table 1 shows suggested feedback, gain resistors, and bandwidth for
several gain values in the configurations shown in
Figures 1a and 1b.
Layout and Power-Supply Bypassing
These amplifiers operate from a single 3.3V to 11V power
supply or from dual supplies to ±5.5V. For single-supply
operation, bypass VCC to ground with a 0.1µF capacitor
as close to the pin as possible. If operating with dual supplies, bypass each supply with a 0.1µF capacitor.
RF
RF
RG
IN
RTO
IN
VOUT = [1+ (RF / RG)] VIN
RTIN
Figure 1a. Noninverting Gain Configuration
10
VOUT
RTIN
RTO
RO
VOUT = -(RF / RG) VIN
RS
Figure 1b. Inverting Gain Configuration
______________________________________________________________________________________
VOUT
RO
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
• Use surface-mount instead of through-hole components for better high-frequency performance.
• Use a PC board with at least two layers; it should be
as free from voids as possible.
• Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners.
Rail-to-Rail Outputs,
Ground-Sensing Input
The input common-mode range extends from
(VEE - 200mV) to (VCC - 2.25V) with excellent commonmode rejection. Beyond this range, the amplifier output
is a nonlinear function of the input, but does not undergo phase reversal or latchup.
The output swings to within 50mV of either powersupply rail with a 10kΩ load. The input ground-sensing
and the rail-to-rail output substantially increase the
dynamic range. With a symmetric input in a single 5V
application, the input can swing 2.95VP-P, and the output can swing 4.9VP-P with minimal distortion.
Enable Input and Disabled Output
The enable feature (EN_) allows the amplifier to be
placed in a low-power, high-output-impedance state.
Typically, the EN_ logic low input current (IIL) is small.
However, as the EN voltage (VIL) approaches the negative supply rail, IIL increases (Figure 2). A single resistor connected as shown in Figure 3 prevents the rise in
the logic-low input current. This resistor provides a
feedback mechanism that increases VIL as the logic
input is brought to VEE. Figure 4 shows the resulting
input current (IIL).
When the MAX4213/MAX4218 are disabled, the amplifier’s output impedance is 35kΩ. This high resistance
and the low 2pF output capacitance make these parts
ideal in RF/video multiplexer or switch applications. For
larger arrays, pay careful attention to capacitive loading. See the Output Capacitive Loading and Stability
section for more information.
Table 1. Recommended Component Values
GAIN (V/V)
COMPONENT
+1
-1
+2
-2
+5
-5
+10
-10
+25
-25
RF (Ω)
24
500
500
500
500
500
500
500
500
1200
RG (Ω)
∞
500
500
250
124
100
56
50
20
50
RS (Ω)
—
0
—
0
—
0
—
0
—
0
RTIN (Ω)
49.9
56
49.9
62
49.9
100
49.9
∞
49.9
∞
RTO (Ω)
49.9
49.9
49.9
49.9
49.9
49.9
49.9
49.9
49.9
49.9
Small-Signal -3dB Bandwidth (MHz)
300
90
105
60
25
33
11
25
6
10
Note: RL = RO + RTO; RTIN and RTO are calculated for 50Ω applications. For 75Ω systems, RTO = 75Ω; calculate RTIN from the
following equation:
R TIN =
75
Ω
75
1RG
______________________________________________________________________________________
11
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC
board does not degrade the amplifier’s performance,
design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following guidelines
when designing the board:
• Don’t use wire-wrap boards because they are too
inductive.
• Don’t use IC sockets because they increase parasitic
capacitance and inductance.
20
ENABLE
0
INPUT CURRENT (µA)
-20
10kΩ
-40
IN-
EN_
-60
MAX42_ _
-80
OUT
IN+
-100
-120
-140
-160
0
50 100 150 200 250 300 350 400 450 500
Figure 3. Circuit to Reduce Enable Logic-Low Input Current
mV ABOVE VEE
Output Capacitive Loading and Stability
Figure 2. Enable Logic-Low Input Current vs. VIL
0
-1
-2
INPUT CURRENT (µA)
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
-3
-4
-5
-6
-7
-8
-9
-10
0
50 100 150 200 250 300 350 400 450 500
mV ABOVE VEE
Figure 4. Enable Logic-Low Input Current vs. VIL with 10kΩ
Series Resistor
12
The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
are optimized for AC performance. They are not
designed to drive highly reactive loads, which decreases phase margin and may produce excessive
ringing and oscillation. Figure 5 shows a circuit that
eliminates this problem. Figure 6 is a graph of the optimal isolation resistor (RS) vs. capacitive load. Figure 7
shows how a capacitive load causes excessive peaking of the amplifier’s frequency response if the capacitor is not isolated from the amplifier by a resistor. A
small isolation resistor (usually 20Ω to 30Ω) placed
before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is
controlled by the interaction of the load capacitance
and the isolation resistor. Figure 8 shows the effect of a
27Ω isolation resistor on closed-loop response.
Coaxial cable and other transmission lines are easily
driven when properly terminated at both ends with their
characteristic impedance. Driving back-terminated
transmission lines essentially eliminates the line’s
capacitance.
______________________________________________________________________________________
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
RF
RG
RISO
VOUT
MAX42_ _
VIN
CL
50Ω
RTIN
ISOLATION RESISTANCE, RISO (Ω)
30
25
20
15
10
5
0
0
Figure 5. Driving a Capacitive Load through an Isolation Resistor
100
150
200
CAPACITIVE LOAD (pF)
250
Figure 6. Capacitive Load vs. Isolation Resistance
6
3
5
2
CL = 15pF
4
RISO = 27Ω
CL = 47pF
1
3
0
CL = 10pF
2
GIAN (dB)
GIAN (dB)
50
1
0
CL = 5pF
-1
-2
-4
-5
-3
-6
-4
1M
10M
100M
CL = 120pF
-3
-2
100k
CL = 68pF
-1
1G
FREQUENCY (Hz)
Figure 7. Small-Signal Gain vs. Frequency with Load
Capacitance and No Isolation Resistor
-7
100k
1M
10M
100M
1G
FREQUENCY (Hz)
Figure 8. Small-Signal Gain vs. Frequency with Load
Capacitance and 27Ω Isolation Resistor
______________________________________________________________________________________
13
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Pin Configurations (continued)
TOP VIEW
ENA 1
14 OUTC
OUTA 1
14 OUTD
ENC 2
ENB 3
13 INC-
INA- 2
13 IND-
12 INC+
INA+ 3
12 IND+
11 VEE
VCC 4
INA+ 5
10 INB+
INB+ 5
10 INC+
INA- 6
9
INB-
INB- 6
9
INC-
OUTA 7
8
OUTB
OUTB 7
8
OUTC
VCC 4
MAX4218
SO
OUTA 1
INA-
2
INA+ 3
MAX4216
VEE 4
ENA 1
16 OUTC
ENC 2
ENB 3
MAX4218
VCC
7
OUTB
6
INB-
5
INB+
11 VEE
SO
OUTA 1
16 OUTD
15 INC-
INA- 2
15 IND-
14 INC+
INA+ 3
14 IND+
MAX4220
13 VEE
VCC 4
INA+ 5
12 INB+
INB+ 5
12 INC+
INA- 6
11 INB-
INB- 6
11 INC-
OUTA 7
10 OUTB
OUTB 7
10 OUTC
N.C. 8
9 N.C.
N.C. 8
9 N.C.
VCC 4
QSOP
14
µMAX/SO
8
MAX4220
13 VEE
QSOP
______________________________________________________________________________________
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
Chip Information
MAX4216ESA
-40°C to +85°C
8 SO
—
MAX4212/MAX4213 TRANSISTOR COUNT: 95
MAX4216 TRANSISTOR COUNT: 190
MAX4218 TRANSISTOR COUNT: 299
MAX4216EUA
-40°C to +85°C
8 µMAX
—
MAX4220 TRANSISTOR COUNT: 362
MAX4218ESD
-40°C to +85°C
14 SO
—
MAX4218EEE
-40°C to +85°C
16 QSOP
—
MAX4220ESD
-40°C to +85°C
14 SO
—
MAX4220EEE
-40°C to +85°C
16 QSOP
—
PART
TEMP
RANGE
PIN
PACKAGE
TOP
MARK
Package Information
SOT-23 5L .EPS
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
PACKAGE OUTLINE, SOT-23, 5L
21-0057
E
1
1
______________________________________________________________________________________
15
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
_Ordering Information (continued)
Package Information (continued)
4X S
8
8
INCHES
DIM
A
A1
A2
b
E
ÿ 0.50±0.1
H
c
D
e
E
H
0.6±0.1
L
1
1
α
0.6±0.1
S
BOTTOM VIEW
D
MIN
0.002
0.030
MAX
0.043
0.006
0.037
0.014
0.010
0.007
0.005
0.120
0.116
0.0256 BSC
0.120
0.116
0.198
0.188
0.026
0.016
6∞
0∞
0.0207 BSC
8LUMAXD.EPS
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
MILLIMETERS
MAX
MIN
0.05
0.75
1.10
0.15
0.95
0.25
0.36
0.13
0.18
2.95
3.05
0.65 BSC
2.95
3.05
4.78
5.03
0.41
0.66
0∞
6∞
0.5250 BSC
TOP VIEW
A1
A2
A
α
c
e
b
L
SIDE VIEW
FRONT VIEW
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, 8L uMAX/uSOP
APPROVAL
DOCUMENT CONTROL NO.
21-0036
REV.
J
1
1
QSOP.EPS
MAX4212/MAX4213/MAX4216/MAX4218/MAX4220
Miniature, 300MHz, Single-Supply,
Rail-to-Rail Op Amps with Enable
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2003 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
Similar pages