MAXIM MAX4467EKA+T

19-1950; Rev 2; 6/12
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
The MAX4465–MAX4469 are micropower op amps optimized for use as microphone preamplifiers. They provide the ideal combination of an optimized gain
bandwidth product vs. supply current, and low voltage
operation in ultra-small packages. The MAX4465/
MAX4467/MAX4469 are unity-gain stable and deliver a
200kHz gain bandwidth from only 24µA of supply current. The MAX4466/MAX4468 are decompensated for a
minimum stable gain of +5V/V and provide a 600kHz
gain bandwidth product. In addition, these amplifiers
feature Rail-to-Rail® outputs, high AVOL, plus excellent
power-supply rejection and common-mode rejection
ratios for operation in noisy environments.
The MAX4467/MAX4468 include a complete shutdown
mode. In shutdown, the amplifiers’ supply current is
reduced to 5nA and the bias current to the external
microphone is cut off for ultimate power savings. The
single MAX4465/MAX4466 are offered in the ultra-small
5-pin SC70 package, while the single with shutdown
MAX4467/MAX4468 and dual MAX4469 are available in
the space-saving 8-pin SOT23 package.
Features
o +2.4V to +5.5V Supply Voltage Operation
o Versions with 5nA Complete Shutdown Available
(MAX4467/MAX4468)
o Excellent Power-Supply Rejection Ratio: 112dB
o Excellent Common-Mode Rejection Ratio: 126dB
o High AVOL: 125dB (RL = 100kΩ)
o Rail-to-Rail Outputs
o Low 24µA Quiescent Supply Current
o Gain Bandwidth Product:
200kHz (MAX4465/MAX4467/MAX4469)
600kHz AV ≥ 5 (MAX4466/MAX4468)
o Available in Space-Saving Packages
5-Pin SC70 (MAX4465/MAX4466)
8-Pin SOT23 (MAX4467/MAX4468/MAX4469)
Ordering Information
PART
MAX4465EXK+T
Applications
Microphone Preamplifiers
TEMP RANGE
PIN-PACKAGE
-40°C to +85°C
5 SC70
MAX4465EUK+T
-40°C to +85°C
5 SOT23
MAX4466EXK+T
-40°C to +85°C
5 SC70
MAX4466EUK+T
-40°C to +85°C
5 SOT23
+Denotes a lead(Pb)-free/RoHS-compliant package.
Hearing Aids
Cellular Phones
Ordering Information continued at end of data sheet.
Voice-Recognition Systems
Typical Operating Circuit
Digital Dictation Devices
Headsets
Portable Computing
VCC
Pin Configurations
SHDN
RBIAS
MIC_BIAS
TOP VIEW
CBIAS
+
IN+ 1
GND 2
IN- 3
5
VCC
RDC
RBIAS
IN+
OUT
MAX4465
MAX4466
CIN
4
OUT
SC70/SOT23
Pin Configurations continued at end of data sheet.
RIN
CBYPASS
IN-
MAX4467
MAX4468
RDC
GND
MICROPHONE
CAPSULE
RFB
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
MAX4467/MAX4468 TYPICAL OPERATING CIRCUIT WITH
COMPLETE SHUTDOWN
For pricing, delivery, and ordering information, please contact Maxim Direct
at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX4465–MAX4469
General Description
MAX4465–MAX4469
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to GND)................................................+6V
All Other Pins to GND.................................-0.3V to (VCC + 0.3V)
Output Short-Circuit Duration
OUT Shorted to GND or VCC .................................Continuous
Continuous Power Dissipation (TA = +70°C)
5-Pin SC70 (derate 2.5mW/°C above +70°C) .............200mW
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ...........571mW
8-Pin SOT23 (derate 5.3mW/°C above +70°C) ...........421mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Junction Temperature ......................................................+150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = +5V, VCM = 0V, VOUT = VCC/2, RL = ∞ to VCC/2, SHDN = GND (MAX4467/MAX4468 only). TA = TMIN to TMAX, unless otherwise noted. Typical values specified at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
Supply Voltage Range
VCC
Supply Current
(Per Amplifier)
ICC
Supply Current in Shutdown
Input Offset Voltage
I SHDN
CONDITIONS
Inferred from PSRR test
MIN
TYP
2.4
TA = +25°C
24
TA = TMIN to TMAX
MAX
UNITS
5.5
V
48
60
SHDN = VCC (Note 2)
VOS
µA
5
50
nA
±1
±5
mV
IB
VCM = -0.1V
±2.5
± 100
nA
Input Offset Current Range
IOS
VCM = -0.1V
±1
± 15
nA
Input Common-Mode Range
VCM
Inferred from CMRR test
-0.1
VCC - 0.1
V
-0.1V ≤ VCM ≤ VCC - 1V
80
126
2.4V ≤ VCC ≤ 5.5V
80
112
Input Bias Current
Common-Mode Rejection Ratio
Power-Supply Rejection Ratio
Open-Loop Gain
CMRR
PSRR
AVOL
Output Voltage Swing High
VOH
Output Voltage Swing Low
VOL
MAX4465/MAX4467/MAX4469, f = 3.4kHz
75
MAX4466/MAX4468, f = 3.4kHz
80
RL = 100kΩ to VCC/2,
0.05V ≤ VOUT ≤ VCC - 0.05V
125
80
10
RL = 10kΩ
16
RL = 100kΩ
10
RL = 10kΩ
14
To either supply rail
Output Leakage Current
in Shutdown
SHDN = VCC, 0 ≤ VOUT ≤ VCC ;
(Notes 2, 3)
VIL
(Note 2)
SHDN Logic High
VIH
(Note 2)
SHDN Input Current
Gain Bandwidth Product
2
(Note 2)
GBWP
95
RL = 100kΩ
Output Short-Circuit Current
SHDN Logic Low
dB
dB
RL = 10kΩ to VCC/2,
0.1V ≤ VOUT ≤ VCC - 0.1V
IVCC - VOHI
dB
50
50
15
±0.5
mV
mV
mA
± 100
VCC ✕ 0.3
VCC ✕ 0.7
nA
V
V
2
MAX4465/MAX4467/MAX4469
200
MAX4466/MAX4468
600
25
nA
kHz
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
(VCC = +5V, VCM = 0V, VOUT = VCC/2, RL = ∞ to VCC/2, SHDN = GND (MAX4467/MAX4468 only), TA = TMIN to TMAX, unless otherwise noted. Typical values specified at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
Channel-to-Channel Isolation
Phase Margin
ØM
Gain Margin
MIN
TYP
SR
Input Noise Voltage Density
85
dB
RL = 100kΩ
70
degrees
20
dB
Output step = 4V
en
Total Harmonic Distortion
Capacitive Load Stability
MAX4465/MAX4467/
MAX4469,
AV = +1
45
MAX4466/MAX4468,
AV = +5
300
mV/µs
f = 1kHz
80
f = 1kHz, RL = 10kΩ,
VOUT = 2Vp-p
THD
CLOAD
UNITS
MAX4469 only, f = 1kHz
RL = 100kΩ
Slew Rate
MAX
MAX4465/MAX4467/
MAX4469
0.02
MAX4466/MAX4468
0.03
MAX4465/MAX4467/MAX4469, AV = +1
100
MAX4466/MAX4468, AV = +5
100
nV/√Hz
%
pF
SHDN Delay Time
t SHDN
(Note 2)
1
µs
Enable Delay Time
tEN
(Note 2)
50
µs
Power-On Time
tON
(Note 2)
40
Bias Switch On-Resistance
RS
IS = 5mA (Note 2)
20
µs
Ω
500
Note 1: All specifications are 100% production tested at TA = +25°C. All temperature limits are guaranteed by design.
Note 2: Shutdown mode is available only on the MAX4467/MAX4468.
Note 3: External feedback networks not considered.
Typical Operating Characteristics
(VCC = +5V, VCM = 0V, VOUT = VCC/2, RL= 100kΩ to VCC/2, SHDN = GND (MAX4467/MAX4468 only), TA = +25°C, unless otherwise
noted.)
0.1
1
10
100
1k
10k 100k
FREQUENCY (Hz)
1M
MAX4465/MAX4467/MAX4469
GAIN AND PHASE vs. FREQUENCY (CL = 100pF)
1
10
100
1k
10k
FREQUENCY (Hz)
100k
1M
140
120
100
80
60
40
20
0
-20
-40
-60
-80
-100
-120
-140
MAX4465-69 toc03
MAX4465-69 toc02
140
120
100
80
60
40
20
0
-20
-40
-60
-80
-100
-120
-140
-160
GAIN (dB)/PHASE (DEGREES)
MAX4466/MAX4468 GAIN AND PHASE
vs. FREQUENCY (NO LOAD)
GAIN (dB)/PHASE (DEGREES)
140
120
100
80
60
40
20
0
-20
-40
-60
-80
-100
-120
-140
MAX4465-69 toc01
GAIN (dB)/PHASE (DEGREES)
MAX4465/MAX4467/MAX4469
GAIN AND PHASE vs. FREQUENCY (NO LOAD)
0.1
1
10
100
1k
10k 100k
1M
FREQUENCY (Hz)
3
MAX4465–MAX4469
ELECTRICAL CHARACTERISTICS (continued)
Typical Operating Characteristics (continued)
(VCC = +5V, VCM = 0V, VOUT = VCC/2, RL= 100kΩ to VCC/2, SHDN = GND (MAX4467/MAX4468 only), TA = +25°C, unless otherwise
noted.)
SHUTDOWN SUPPLY CURRENT
vs. TEMPERATURE
-70
-90
1000
26
100
25
24
10
23
-110
-130
100
1k
10k
100k
1M
-40
-15
10
35
60
85
-40
10
35
60
TEMPERATURE (°C)
TEMPERATURE (°C)
OUTPUT LEAKAGE CURRENT
vs. TEMPERATURE
CHANNEL-TO-CHANNEL ISOLATION
vs. FREQUENCY
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
1
400
200
-40
-15
10
35
60
0
-60
-200
-80
-400
-100
0.1
-600
0.1
85
1
100
10
1000
-40
-15
10
35
60
TEMPERATURE (°C)
FREQUENCY (kHz)
TEMPERATURE (°C)
OUTPUT VOLTAGE SWING HIGH
vs. TEMPERATURE
OUTPUT VOLTAGE SWING LOW
vs. TEMPERATURE
COMMON-MODE REJECTION RATIO
vs. TEMPERATURE
4
-100
MAX4465-69 toc11
5
MAX4465-69 toc10
5
85
MAX4465-69 toc09
-20
VOS (µV)
10
600
MAX4465-69 toc08
100
0
CHANNEL-TO-CHANNEL ISOLATION (dB)
VSHDN = VCC
VOUT = VCC/2
-40
-15
FREQUENCY (Hz)
MAX4465-69 toc07
1000
ILEAK (pA)
22
1
10
4
85
MAX4465-69 toc12
PSRR (dB)
-50
VSHDN = VCC
MAX4465-69 toc06
SUPPLY CURRENT (pA)
-30
SUPPLY CURRENT vs. TEMPERATURE
27
SUPPLY CURRENT (µA)
-10
10,000
MAX4465-69 toc05
MAX4465-69 toc04
POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY
-102
-104
3
2
CMRR (dB)
VOUT - VSS (mV)
-106
VDD - VOUT (mV)
MAX4465–MAX4469
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
3
2
-108
-110
-112
-114
1
1
0
0
-116
-118
-40
-15
10
35
TEMPERATURE (°C)
4
60
85
-120
-40
-15
10
35
TEMPERATURE (°C)
60
85
-40
-15
10
35
TEMPERATURE (°C)
60
85
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
(VCC = +5V, VCM = 0V, VOUT = VCC/2, RL= 100kΩ to VCC/2, SHDN = GND (MAX4467/MAX4468 only), TA = +25°C, unless otherwise
noted.)
MINIMUM OPERATING VOLTAGE
LARGE-SIGNAL GAIN
LARGE-SIGNAL GAIN
vs. TEMPERATURE
vs. TEMPERATURE
vs. OUTPUT VOLTAGE
120
125
115
1.5
GAIN (dB)
105
100
VMIN (V)
1.4
110
GAIN (dB)
1.6
MAX4465-69 toc15
125
MAX4465-69 toc14
130
MAX4465-69 toc13
130
120
1.3
1.2
95
115
90
1.1
85
80
-40
-15
10
35
60
-40
85
-15
10
35
60
85
VOUT (V)
TEMPERATURE (°C)
TEMPERATURE (°C)
MAX4465/MAX4467/MAX4469
TOTAL HARMONIC DISTORTION PLUS NOISE
vs. FREQUENCY
MAX4466/MAX4468
TOTAL HARMONIC DISTORTION
vs. FREQUENCY
MAX4465/MAX4467/MAX4469
TOTAL HARMONIC DISTORTION PLUS NOISE
vs. INPUT AMPLITUDE
RL = 10kΩ
0.1
RL = 10kΩ
1
0.1
MAX4465-69 toc18
MAX4465-69 toc17
100
f = 1kHz
AV = +1V/V
BW = 122kHz
10
THD + N (%)
1
VOUT = 2Vp-p
AV = +10V/V
BW = 22kHz
10
THD + N (%)
VOUT = 2Vp-p
AV = +1V/V
BW = 22kHz
10
100
MAX4465-69 toc16
100
THD + N (%)
1.0
110
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1
RL = 10kΩ
0.1
RL = 100kΩ
0.01
0.01
0.001
0.001
20
2k
20k
20
200
2k
0
20k
FREQUENCY (Hz)
MAX4466/MAX4468
TOTAL HARMONIC DISTORTION PLUS NOISE
vs. INPUT AMPLITUDE
NONINVERTING SMALL-SIGNAL
TRANSIENT RESPONSE
0.5
1.0
1.5
2.0
2.5
3.0
VIN (Vp-p)
NONINVERTING LARGE-SIGNAL
TRANSIENT RESPONSE
MAX4465-69 toc20
MAX4465-69 toc21
MAX4465-69 toc19
f = 1kHz
AV = +10V/V
BW = 22kHz
10
RL = 100kΩ
0.001
FREQUENCY (Hz)
100
THD + N (%)
200
0.01
RL = 100kΩ
1
2V/div
50mV/div
RL = 10kΩ
0.1
0.01
RL = 100kΩ
0.001
0
0.05
0.10
0.15
0.20
0.25
0.30
20µs/div
200µs/div
VIN (Vp-p)
5
MAX4465–MAX4469
Typical Operating Characteristics (continued)
Typical Operating Characteristics (continued)
MAX4465-69 toc22
30
AVCL = +1V/V
220
190
eNOISE (nV√Hz)
SUPPLY CURRENT (µA)
40
MAX4465-69 toc23
(VCC = +5V, VCM = 0V, VOUT = VCC/2, RL= 100kΩ to VCC/2, SHDN = GND (MAX4467/MAX4468 only), TA = +25°C, unless otherwise
noted.)
SUPPLY CURRENT
eNOISE vs. FREQUENCY
vs. SUPPLY VOLTAGE
20
160
130
100
10
70
40
0
0
1
2
3
4
100
5
100k
1M
FREQUENCY (Hz)
SINK CURRENT vs. OUTPUT VOLTAGE
SOURCE CURRENT vs. OUTPUT VOLTAGE
20
SOURCE CURRENT (mA)
20
MAX4465-69 toc25
25
MAX4465-69 toc24
25
VCC = +5V
15
10
VCC = +2.4V
5
10k
1k
SUPPLY VOLTAGE (V)
SINK CURRENT (mA)
MAX4465–MAX4469
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
15
VCC = +5V
10
VCC = +2.4V
5
0
0
0
0.5
1.0
1.5
2.0
2.5
3.0
0
0.5
OUTPUT VOLTAGE (V)
1.0
1.5
2.0
2.5
3.0
OUTPUT VOLTAGE (V)
Pin Description
PIN
NAME
MAX4467
MAX4468
MAX4469
4
6 (8)
—
OUT
—
—
1
OUTA
—
1 (4)
—
MIC_BIAS
3
2 (3)
—
IN-
Inverting Amplifier Input
1
3 (2)
—
IN+
Noninverting Amplifier Input
2
4 (1)
4
GND
Ground
( ) denotes S0T23 package of the MAX4467/MAX4468
6
FUNCTION
MAX4465
MAX4466
Amplifier Output
Amplifier Output A
External Microphone Bias Network Switch
Output
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
Pin Description (continued)
NAME
FUNCTION
8
VCC
Positive Supply. Bypass with a 0.1µF capacitor to
GND.
—
2
INA-
Inverting Amplifier Input A
—
—
3
INA+
Noninverting Amplifier Input A
—
—
6
INB-
Inverting Amplifier Input B
—
—
5
INB+
Noninverting Amplifier Input B
—
—
7
OUTB
Amplifier Output B
—
8 (6)
—
SHDN
Active-High Shutdown Input. Connect to GND
for normal operation. Connect to VCC for
shutdown. Do not leave unconnected.
—
5 (5)
—
N.C.
MAX4465
MAX4466
MAX4467
MAX4468
MAX4469
5
7 (7)
—
No Connection. Not internally connected.
( ) denotes SOT23 package of the MAX4467/MAX4468.
Detailed Description
The MAX4465–MAX4469 are low-power, micropower op
amps designed to be used as microphone preamplifiers. These preamplifiers are an excellent choice for
noisy environments because of their high commonmode rejection and excellent power-supply rejection
ratios. They operate from a single +2.4V to +5.5V supply.
The MAX4465/MAX4467/MAX4469 are unity-gain stable
and deliver a 200kHz gain bandwidth from only 24µA of
supply current. The MAX4466/MAX4468 have a minimum stable gain of +5V/V while providing a 600kHz
gain bandwidth product.
The MAX4467/MAX4468 feature a complete shutdown,
which is active-high, and a shutdown-controlled output
providing bias to the microphone. The MAX4465/
MAX4467/MAX4469 feature a slew rate suited to voice
channel applications. The MAX4466/MAX4468 can be
used for full-range audio, e.g., PC99 inputs.
Rail-to-Rail Output Stage
The MAX4465–MAX4469 can drive a 10kΩ load and still
typically swing within 16mV of the supply rails. Figure 1
shows the output voltage swing of the MAX4465 configured with AV = +10.
Switched Bias Supply
When used as a microphone amplifier for an electret
microphone, some form of DC bias for the microphone
is necessary. The MAX4467/MAX4468 have the ability to
turn off the bias to the microphone when the device is in
shutdown. This can save several hundred microamps of
supply current, which can be significant in low power
applications. The MIC_BIAS pin provides a switched
version of VCC to the bias components. Figure 3 shows
some typical values.
Driving Capacitive Loads
Driving a capacitive load can cause instability in many
op amps, especially those with low quiescent current.
The MAX4465/MAX4467/MAX4469 are unity-gain stable
for a range of capacitive loads up to 100pF. Figure 4
shows the response of the MAX4465 with an excessive
capacitive load.
Applications Information
Shutdown Mode
The MAX4467 and MAX4468 feature a low-power, complete shutdown mode. When SHDN goes high, the supply current drops to 5nA, the output enters a high
impedance state and the bias current to the microphone
is switched off. Pull SHDN low to enable the amplifier.
Do not leave SHDN unconnected. Figure 5 shows the
shutdown waveform.
Common-Mode Rejection Ratio
A microphone preamplifier ideally only amplifies the signal present on its input and converts it to a voltage
appearing at the output. When used in noninverting
mode, there is a small output voltage fluctuation when
both inputs experience the same voltage change in the
7
MAX4465–MAX4469
PIN
MAX4465–MAX4469
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
Power Supplies and Layout
common mode. The ratio of these voltages is called the
common-mode gain. The common-mode rejection ratio
is the ratio of differential-mode gain to common-mode
gain. The high CMRR properties of the
MAX4465–MAX4469 provide outstanding performances
when configured as a noninverting microphone preamplifier.
The MAX4465–MAX4469 operate from a single +2.4V to
+5.5V power supply. Bypass the power supply with a
0.1µF capacitor to ground. Good layout techniques are
necessary for the MAX4465–MAX4469 family. To
decrease stray capacitance, minimize trace lengths by
placing external components close to the op amp’s
pins. Surface-mount components are recommended. In
systems where analog and digital grounds are available, the MAX4465–MAX4469 should be connected to
the analog ground.
Power-Up
The MAX4465–MAX4469 outputs typically settle within
1µs after power-up. Figure 6 shows the output voltage
on power-up.
Test Circuits/Timing Diagrams
1V/div
100µs/div
Figure 1. Rail-to-Rail Output Operation
+5V
+5V
2kΩ
VCC = +5V
5
0.1µF
2kΩ
MAX4466
1MΩ
IN+ 1
0.01µF
4
1MΩ
IN- 3
ELECTRET
CAPSULE
10kΩ
2
GND
1µF
100kΩ
100pF
Figure 2. MAX4466 Typical Application Circuit
8
OUT
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
VCC
SHDN
MIC_BIAS
1kΩ
100kΩ
IN+
10µF
OUT
2.2kΩ
100kΩ
0.01µF
IN-
MAX4468
MICROPHONE
INPUT
GND
0.1µF
3.5mm SOCKET
200kΩ
20kΩ
47pF
Figure 3. Bias Network Circuit
RL = 10kΩ
CL = 10pF
CL = 2000pF
SHDN
2V/div
50mV/div
OUT
40µs/div
Figure 4. Small-Signal Transient Response with Excessive
Capacitive Load
400µs/div
Figure 5. MAX4467/MAX4468 Shutdown Waveform
9
MAX4465–MAX4469
Test Circuits/Timing Diagrams (continued)
MAX4465–MAX4469
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
Test Circuits/Timing
Diagrams (continued)
Chip Information
PROCESS: BiCMOS
Ordering Information (continued)
PART
VCC
2V/div
OUT
1V/div
TEMP RANGE
PIN-PACKAGE
MAX4467EKA+T
-40°C to +85°C
8 SOT23
MAX4468EKA+T
-40°C to +85°C
8 SOT23
MAX4469EKA+T
-40°C to +85°C
8 SOT23
+Denotes a lead(Pb)-free/RoHS-compliant package.
20µs/div
Figure 6. Power-Up/Power-Down Waveform
Selector Guide
PART
MINIMUM STABLE
GAIN
EXTERNAL
MICROPHONE
SHDN
GBWP
(kHz)
PIN-PACKAGE
MAX4465
+1
No
200
5 SC70/5 SOT23
MAX4466
+5
No
600
5 SC70/5 SOT23
MAX4467
+1
Yes
200
8 SOT23
MAX4468
+5
Yes
600
8 SOT23
MAX4469
+1
No
200
8 SOT23
Pin Configurations (continued)
+
GND
1
IN+
2
IN-
3
MIC_BIAS
4
+
MAX4467
MAX4468
SOT23
10
8
OUT
OUTA 1
7
VCC
INA- 2
6
SHDN
5
N.C.
8
VCC
7
OUTB
INA+ 3
6
INB-
GND 4
5
INB+
MAX4469
SOT23
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
PACKAGE TYPE
PACKAGE CODE
OUTLINE NO.
LAND
PATTERN NO.
SOT23-5
U5+1
21-0057
90-0174
SC70
X5+1
21-0076
90-0188
SOT23-8
K8+5
21-0078
90-0176
11
MAX4465–MAX4469
Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Low-Cost, Micropower, SC70/SOT23-8, Microphone
Preamplifiers with Complete Shutdown
MAX4465–MAX4469
Revision History
REVISION
NUMBER
REVISION
DATE
2
6/12
DESCRIPTION
Added lead-free packaging information, removed SO packaging information
PAGES
CHANGED
1, 2, 10
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
12
_______________Maxim Integrated Products, Inc. 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000
© 2012 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.