19-2874; Rev 1; 7/03 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Features ♦ Ultra-Low Total Supply Current 0.85µA (MAX9019/MAX9020) 1.0µA (MAX9015A/MAX9016A) 1.2µA (MAX9017/MAX9018) ♦ Guaranteed Operation Down to 1.8V ♦ Precision VOS < 5mV (max) ♦ Internal 1.236V ±1% Reference (A Grade) ♦ Input Voltage Range Extends 200mV Beyond-the-Rails ♦ CMOS Push-Pull Output with ±6mA Drive Capability (MAX9015/MAX9017/MAX9019) ♦ Open-Drain Output Versions Available (MAX9016/MAX9018/MAX9020) ♦ Crowbar-Current-Free Switching ♦ Internal 4mV Hysteresis for Clean Switching ♦ No Phase Reversal for Overdriven Inputs ♦ Dual Versions in Space-Saving 8-Pin SOT23 Package Ordering Information Refer to the MAX9117–MAX9120 data sheet for similar single comparators with or without reference in a tiny SC70 package. Applications 2-Cell Battery Monitoring/Management Window Detectors Ultra-Low Power Systems Mobile Communications Notebooks and PDAs PINPACKAGE TOP MARK MAX9015AEKA-T -40°C to +85°C 8 SOT23-8 AEIW MAX9016AEKA-T -40°C to +85°C 8 SOT23-8 AEIX MAX9017AEKA-T -40°C to +85°C 8 SOT23-8 AEIQ MAX9017BEKA-T -40°C to +85°C 8 SOT23-8 AEIS Sensing at Ground or Supply Line Ordering Information continued at end of data sheet. Telemetry and Remote Systems Pin Configurations appear at end of data sheet. Beyond-the-Rails is a trademark of Maxim Integrated Products, Inc. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. Medical Instruments Threshold Detectors/ Discriminators TEMP RANGE PART Selector Guide PART MAX9015A COMPARATOR(S) INTERNAL REFERENCE (V) OUTPUT TYPE SUPPLY CURRENT (µA) 1 1.236 ±1% Push-pull 1 MAX9016A 1 1.236 ±1% Open drain 1 MAX9017A 2 1.236 ±1% Push-pull 1.2 MAX9017B 2 1.240 ±1.75% Push-pull 1.2 MAX9018A 2 1.236 ±1% Open drain 1.2 MAX9018B 2 1.240 ±1.75% Open drain 1.2 MAX9019 2 — Push-pull 0.85 MAX9020 2 — Open drain 0.85 ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX9015–MAX9020 General Description The single MAX9015/MAX9016 and dual MAX9017– MAX9020 nanopower comparators in space-saving SOT23 packages feature Beyond-the-Rails™ inputs and are guaranteed to operate down to 1.8V. The Agrade packages feature an on-board 1.236V ±1% reference, while the B-grade packages feature a 1.24V ±1.75% reference. An ultra-low supply current of 0.85µA (MAX9019/MAX9020), 1µA (MAX9015/MAX9016), or 1.2µA (MAX9017/MAX9018) makes the MAX9015– MAX9020 family of comparators ideal for all 2-cell battery monitoring/management applications. The unique design of the MAX9015–MAX9020 output stage limits supply-current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The MAX9015/MAX9017/MAX9019 have a push-pull output stage that sinks and sources current. Large internal output drivers allow Rail-to-Rail® output swing with loads up to 6mA. The MAX9016/MAX9018/MAX9020 have an open-drain output stage that makes them suitable for mixed-voltage system design. All devices are available in the ultra-small 8-pin SOT23 package. MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE) ....................................................6V IN+, IN-, INA+, INB+, INA-, INB-, REF/INA-, REF..................................(VEE - 0.3V) to (VCC + 0.3V) Output Voltage (OUT_) MAX9015A, MAX9017_, MAX9019....(VEE - 0.3V) to (VCC + 0.3V) MAX9016A, MAX9018_, MAX9020...................(VEE - 0.3V) to +6V Output Current (REF, OUT_, REF/INA-)............................±50mA Output Short-Circuit Duration (REF, OUT_, REF/INA-) ...........10s Continuous Power Dissipation (TA = +70°C) 8-Pin SOT23 (derate 9.1mW/°C above +70°C)............727mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Junction Temperature ......................................................+150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF) (VCC= 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Supply Voltage Range SYMBOL VCC CONDITIONS Inferred from the PSRR test MAX9015A/ MAX9016A Supply Current ICC MAX9017_/ MAX9018_ MIN TYP 1.8 MAX UNITS 5.5 V VCC = 1.8V, TA = +25°C 1.0 1.5 VCC = 5.0V, TA = +25°C 1.1 1.7 VCC = 5.0V, TA = TMIN to TMAX 2.0 VCC = 1.8V, TA = +25°C 1.2 1.9 VCC = 5.0V, TA = +25°C 1.4 2.3 VCC = 5.0V, TA = TMIN to TMAX µA 2.8 Input Common-Mode Voltage Range (MAX9015A/MAX9016A) VCM Inferred from the output swing test, VEE - 0.2V < VCM < VCC + 0.2V VEE - 0.2 VCC + 0.2 V IN+ Voltage Range (MAX9017_/MAX9018_) VIN+ Inferred from the output swing test VEE - 0.2 VCC + 0.2 V Input Offset Voltage VOS VEE - 0.2V < VCM < VCC + 0.2V (Note 2) Input-Referred Hysteresis VHB VEE - 0.2V < VCM < VCC + 0.2V (Note 3) Input Bias Current (IN+, IN-, INA+, INB+, INB-) IB Power-Supply Rejection Ratio PSRR Output Voltage Swing High (MAX9015A/MAX9017_) Output Voltage Swing Low (MAX9015A/MAX9017_) 2 VCC - VOH VOL TA = +25°C 0.15 TA = TMIN to TMAX TA = +25°C 5 10 4 ±0.15 TA = TMIN to TMAX mV ±1 ±2 VCC = 1.8V to 5.5V 0.1 VCC = 1.8V, ISOURCE = 1mA TA = +25°C VCC = 5.0V, ISOURCE = 6mA TA = +25°C VCC = 1.8V, ISINK = 1mA TA = +25°C VCC = 5.0V, ISINK = 6mA TA = +25°C 100 TA = TMIN to TMAX 1 TA = TMIN to TMAX nA mV/V 200 300 250 mV 350 mV 450 105 TA = TMIN to TMAX 200 300 285 TA = TMIN to TMAX _______________________________________________________________________________________ 350 450 mV SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference (VCC= 5V, VEE = 0V, VIN- = VREF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Output Leakage Current (MAX9016A/MAX9018_) Output Short-Circuit Current High-to-Low Propagation Delay (Note 4) SYMBOL ILEAK ISC tPD- CONDITIONS VCC = 5.5V, VOUT = 5.5V TYP MAX UNITS 0.001 1 µA Sourcing, VOUT = VEE (MAX9015A/ MAX9017_ only) VCC = 1.8V 3 VCC = 5.0V 35 Sinking, VOUT = VCC VCC = 1.8V 3 VCC = 5.0V 33 VCC = 1.8V 7 VCC = 5.0V 6 VCC = 1.8V Low-to-High Propagation Delay (Note 4) MIN tPD+ VCC = 5.0V MAX9015A/MAX9017_ 11 MAX9016A/MAX9018_, RPULLUP = 100kΩ to VCC 12 MAX9015A/MAX9017_ 28 MAX9016A/MAX9018_, RPULLUP = 100kΩ to VCC 31 mA µs µs Rise Time tRISE CL = 15pF (MAX9015A/MAX9017_) 1.6 Fall Time tFALL CL = 15pF 0.2 µs 1.2 ms Power-Up Time tON MAX901_A Reference Voltage VREF MAX901_B Reference Voltage Temperature Coefficient TA = +25°C, 1.0% 1.224 TA = TMIN to TMAX, 2.5% 1.205 TA = +25°C, 1.75% 1.218 TA = TMIN to TMAX, 4.5% 1.184 TCREF µs 1.236 1.248 1.240 1.262 1.267 V 1.296 40 ppm/°C BW = 10Hz to 1kHz, CREF = 1nF 29 BW = 10Hz to 6kHz, CREF = 1nF 60 ∆VREF/ ∆VCC 1.8V ≤ VCC ≤ 5.5V 0.5 mV/V ∆VREF/ ∆IOUT IOUT = 0 to 100nA 0.03 mV/nA Reference Output Voltage Noise EN Reference Line Regulation Reference Load Regulation µVRMS _______________________________________________________________________________________ 3 MAX9015–MAX9020 ELECTRICAL CHARACTERISTICS—MAX9015–MAX9018 (Single and Duals with REF) (continued) MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF) (VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Supply Voltage Range Supply Current SYMBOL VCC ICC CONDITIONS TYP MAX UNITS 5.5 V VCC = 1.8V, TA = +25°C 0.85 1.50 VCC = 5.0V, TA = +25°C 1.1 1.70 Inferred from the PSRR test MAX9019/ MAX9020 VCM Inferred from the output swing test, VEE - 0.2V < VCM < VCC + 0.2V Input Offset Voltage VOS VEE - 0.2V < VCM < VCC + 0.2V (Note 2) Input-Referred Hysteresis VHB VEE - 0.2V < VCM < VCC + 0.2V (Note 3) Input Bias Current (INA-, INA+, INB+, INB-) IB Output Voltage Swing High (MAX9019 Only) Output Voltage Swing Low Output Leakage Current (MAX9020 Only) Output Short-Circuit Current PSRR VCC - VOH VOL ILEAK ISC tPD- VCC + 0.2 1 VCC = 1.8V, ISOURCE = 1mA VCC = 5.0V, ISOURCE = 6mA VCC = 1.8V, ISINK = 1mA VCC = 5.0V, ISINK = 6mA 4 0.1 TA = +25°C 55 TA = TMIN to TMAX TA = +25°C TA = TMIN to TMAX TA = +25°C TA = TMIN to TMAX TA = +25°C mV 1 nA mV/V 200 350 mV 450 55 200 300 190 TA = TMIN to TMAX 350 mV 450 0.001 VCC = 1.8V 3 VCC = 5.0V 35 VCC = 1.8V 3 VCC = 5.0V 33 VCC = 1.8V 7 VCC = 5.0V 6 tPD+ 1 300 190 V mV 2 VCC = 5.5V, VOUT = 5.5V Sourcing, VOUT = VEE (MAX9019 only) 5 10 0.15 VCC = 1.8V to 5.5V VCC = 5.0V 4 VEE - 0.2 TA = TMIN to TMAX VCC = 1.8V Low-to-High Propagation Delay (Note 4) TA = +25°C µA 2.0 TA = TMIN to TMAX TA = +25°C Sinking, VOUT = VCC High-to-Low Propagation Delay (Note 4) 1.8 VCC = 5.0V, TA = TMIN to TMAX Input Common-Mode Voltage Range Power-Supply Rejection Ratio MIN MAX9019 11 MAX9020, RPULLUP = 100kΩ to VCC 12 MAX9019 28 MAX9020, RPULLUP = 100kΩ to VCC 31 _______________________________________________________________________________________ 1 µA mA µs µs SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference (VCC = 5V, VEE = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Rise Time tRISE CL = 15pF (MAX9019 only) 1.6 µs Fall Time tFALL CL = 15pF 0.2 µs 1.2 ms Power-Up Time tON Note 1: All devices are 100% tested at TA = +25°C. Specifications over temperature (TA = TMIN to TMAX) are guaranteed by design, not production tested. Note 2: VOS is defined as the center of the hysteresis band at the input. Note 3: The hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of the band (i.e., VOS) (Figure 1). Note 4: Specified with an input overdrive (VOVERDRIVE) of 100mV, and a load capacitance of CL = 15pF. VOVERDRIVE is defined above and beyond the offset voltage and hysteresis of the comparator input. Typical Operating Characteristics (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) 2.0 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 1.5 MAX9015 toc04 VCC = 5V VCC = 3V VCC = 1.8V -40 -15 10 35 TEMPERATURE (°C) 60 2.0 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 85 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 VCC = 5V VCC = 1.8V -15 10 35 TEMPERATURE (°C) 60 MAX9015 toc03 TA = +25°C TA = -40°C 2.0 2.5 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.0 5.5 MAX9019/MAX9020 SUPPLY CURRENT vs. TEMPERATURE VCC = 3V -40 TA = +85°C 1.5 MAX9017/MAX9018 SUPPLY CURRENT vs. TEMPERATURE SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) MAX9015/MAX9016 SUPPLY CURRENT vs. TEMPERATURE 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 TA = -40°C SUPPLY CURRENT (µA) 1.5 TA = +25°C 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 85 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 MAX9015 toc06 TA = -40°C SUPPLY CURRENT (µA) TA = +25°C TA = +85°C MAX9015 toc05 TA = +85°C 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 MAX9019/MAX9020 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE MAX9015 toc02 MAX9015 toc01 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 MAX9017/MAX9018 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) MAX9015/MAX9016 SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE VCC = 5V VCC = 3V VCC = 1.8V -40 -15 10 35 TEMPERATURE (°C) 60 _______________________________________________________________________________________ 85 5 MAX9015–MAX9020 ELECTRICAL CHARACTERISTICS—MAX9019/MAX9020 (Duals without REF) (continued) Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) VCC = 1.8V 30 25 20 VCC = 3V 15 VCC = 5V 10 20 15 VCC = 3V 10 40 VCC = 5V 1 100 1k 10k 100k 25 20 VCC = 5V 15 VCC = 3V 0 10 100 1k 10k 100k 1 10 100 1k 10k OUTPUT TRANSITION FREQUENCY (Hz) OUTPUT TRANSITION FREQUENCY (Hz) OUTPUT TRANSITION FREQUENCY (Hz) OUTPUT VOLTAGE LOW vs. SINK CURRENT OUTPUT VOLTAGE LOW vs. SINK CURRENT AND TEMPERATURE OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT 500 0.7 0.6 VCC = 3V TA = +25°C VCC = 1.8V 0.5 VCC = 5V VCC - VOH (V) VOL (mV) 400 300 TA = +85°C 200 2 3 4 5 6 7 8 9 VCC = 5V 0.1 0 0 10 0.3 0.2 0 1 VCC = 1.8V 0.4 TA = -40°C 100 100k MAX9015 toc12 600 MAX9015 toc11 VCC = 3V 0 VCC = 1.8V 30 5 1 MAX9015 toc10 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0 10 35 10 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 SINK CURRENT (mA) SINK CURRENT (mA) SOURCE CURRENT (mA) OUTPUT VOLTAGE HIGH vs. SOURCE CURRENT AND TEMPERATURE SHORT-CIRCUIT TO VCC (SINK CURRENT) vs. TEMPERATURE SHORT-CIRCUIT TO GND (SOURCE CURRENT) vs.TEMPERATURE TA = +25°C 0.4 0.3 TA = +85°C 0.2 25 20 VCC = 3V 15 10 TA = -40°C 0.1 VCC = 5V 30 1 2 3 4 5 6 7 SOURCE CURRENT (mA) 8 9 10 40 VCC = 5V 35 30 25 20 VCC = 3V 15 VCC = 1.8V 5 0 0 45 10 VCC = 1.8V 5 0 50 SINK CURRENT (mA) SINK CURRENT (mA) 0.5 35 MAX9015toc15 40 MAX9015 toc13 0.6 MAX9015 toc14 VOL (mV) VCC = 1.8V 25 45 5 5 6 50 SUPPLY CURRENT (µA) 35 30 SUPPLY CURRENT (µA) 40 MAX9019/MAX9020 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY MAX9015 toc08 45 SUPPLY CURRENT (µA) 35 MAX9015 toc07 50 MAX9017/MAX9018 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY MAX9015 toc09 MAX9015/MAX9016 SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY VCC - VOH (V) MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference 0 -40 -15 10 35 TEMPERATURE (°C) 60 85 -40 -15 10 35 TEMPERATURE (°C) _______________________________________________________________________________________ 60 85 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference 1.2 VCC = 1.8V 0.8 VOS (mV) 5 4 0.4 0 VCC = 5V -0.4 3 -0.8 2 30 A GRADE 25 PERCENTAGE OF UNITS (%) 1.6 6 REFERENCE VOLTAGE DISTRIBUTION MAX9015 toc17 MAX9015 toc16 7 -1.2 1 10 5 0 -2.0 0.3 0.6 0.9 1.2 1.5 -40 -15 10 VOS (mV) 35 60 1.232 85 HYSTERESIS VOLTAGE vs. TEMPERATURE A GRADE 3.5 3.0 1.236 VCC = 3V 1.234 1.240 1.239 VCC = 5V 1.232 2.5 2.0 10 35 60 85 1.237 1.236 1.234 -40 -15 10 35 60 1.5 85 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 TEMPERATURE (°C) TEMPERATURE (°C) SUPPLY VOLTAGE (V) REFERENCE VOLTAGE vs. REFERENCE SOURCE CURRENT REFERENCE VOLTAGE vs. REFERENCE SINK CURRENT REFERENCE VOLTAGE vs. REFERENCE SINK CURRENT AND TEMPERATURE VCC = 3V VCC = 5V 1.229 1.244 VCC = 1.8V 1.242 1.240 VCC = 5V 1.238 1.236 VCC = 3V 80 120 160 REFERENCE SOURCE CURRENT (nA) 200 1.245 TA = +25°C 1.240 1.235 TA = -40°C 1.225 1.232 40 TA = +85°C 1.230 1.234 1.226 VCC = 3V 1.250 REFERENCE VOLTAGE (V) 1.235 1.255 MAX9015 toc23 1.246 REFERENCE VOLTAGE (V) VCC = 1.8V 1.232 1.248 MAX9015 toc22 1.238 0 1.238 1.235 1.230 -15 1.240 REFERENCE VOLTAGE vs. SUPPLY VOLTAGE REFERENCE VOLTAGE (V) 4.0 VCC = 1.8V 1.238 1.238 MAX9015 toc21 1.240 REFERENCE VOLTAGE (V) 4.5 1.236 VREF (V) REFERENCE VOLTAGE vs. TEMPERATURE MAX9015 toc19 5.0 -40 1.234 TEMPERATURE (°C) MAX9015 toc20 -1.5 -1.2 -0.9 -0.6 -0.3 0 VHB (mV) 15 -1.6 0 REFERENCE VOLTAGE (V) 20 MAX9015 toc24 PERCENTAGE OF UNITS (%) OFFSET VOLTAGE vs. TEMPERATURE 2.0 MAX9015 toc18 INPUT OFFSET VOLTAGE DISTRIBUTION 8 0 40 80 120 160 REFERENCE SINK CURRENT (nA) 200 0 40 80 120 160 200 REFERENCE SINK CURRENT (nA) _______________________________________________________________________________________ 7 MAX9015–MAX9020 Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) 0.600 14 40 12 VCC = 5V 10 -0.200 VCC = 1.8V tPD+ (µs) tPD- (µs) 0.200 8 6 -1.000 0.5 1.5 2.5 3.5 4.5 5.5 VCC = 3V 20 10 VCC = 5V VCC = 1.8V 0 0 -40 -15 10 35 60 85 -40 -15 10 35 TEMPERATURE (°C) TEMPERATURE (°C) PROPAGATION DELAY (tPD-) vs. CAPACITIVE LOAD PROPAGATION DELAY (tPD+) vs. CAPACITIVE LOAD PROPAGATION DELAY (tPD-) vs. INPUT OVERDRIVE 160 140 VCC = 3V 100 140 tPD+ (µs) 120 VCC = 5V 80 VCC = 1.8V 180 40 VCC = 3V 120 100 80 60 50 tPD- (µs) 160 200 VCC = 5V 30 20 VCC = 1.8V VCC = 5V 60 40 40 20 20 0 0 10 100 1000 VCC 20= 3V 0 0.01 CAPACITIVE LOAD (nF) PROPAGATION DELAY (tPD+) vs. INPUT OVERDRIVE 35 VCC = 5V 1 10 tPD- (µs) VCC = 3V 15 10 20 30 40 PROPAGATION DELAY (tPD+) vs. PULLUP RESISTANCE 200 160 VCC = 5V 50 VCC = 3V 8 25 0 PROPAGATION DELAY (tPD-) vs. PULLUP RESISTANCE VCC = 1.8V 9 1000 INPUT OVERDRIVE (mV) 30 20 100 CAPACITIVE LOAD (nF) 10 MAX9015 toc31 40 0.1 tPD+ (µs) 1 10 MAX9015 toc32 0.1 85 MAX9015 toc30 VCC = 1.8V MAX9015 toc29 180 0.01 60 INPUT BIAS VOLTAGE (IN-) (V) MAX9015 toc28 -0.5 30 VCC = 3V 4 -0.600 2 tPD- (µs) 50 MAX9015 toc33 IN+ = 2.5V PROPAGATION DELAY (tPD+) vs. TEMPERATURE MAX9015 toc26 16 MAX9015 toc25 INPUT BIAS CURRENT (IN-) (nA) 1.000 PROPAGATION DELAY (tPD-) vs. TEMPERATURE MAX9015 toc27 INPUT BIAS CURRENT vs. INPUT BIAS VOLTAGE tPD+ (µs) MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference 7 VCC = 5V 120 VCC = 3V 80 VCC = 1.8V 6 10 0 4 0 10 20 30 INPUT OVERDRIVE (mV) 8 40 5 VCC = 1.8V 5 40 50 0 10k 100k RPULLUP (Ω) 1M 10M 10k 100k RPULLUP (Ω) _______________________________________________________________________________________ 1M 10M SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference PROPAGATION DELAY (tPD-) (VCC = 5V) PROPAGATION DELAY (tPD+) (VCC = 5V) MAX9015 toc34 PROPAGATION DELAY (tPD-) (VCC = 3V) MAX9015 toc35 VIN+ 50mV/div VIN+ 50mV/div VOUT 2V/div 10µs/div PROPAGATION DELAY (tPD+) (VCC = 3V) 2µs/div PROPAGATION DELAY (tPD-) (VCC = 1.8V) MAX9015 toc37 PROPAGATION DELAY (tPD+) (VCC = 1.8V) MAX9015 toc38 MAX9015 toc39 VIN+ 50mV/div VIN+ 50mV/div VOUT 2V/div VOUT 1V/div 10µs/div 2µs/div 1kHz RESPONSE (VCC = 5V) VIN+ 50mV/div VOUT 2V/div VOUT 2V/div 2µs/div MAX9015 toc36 VOUT 1V/div 10µs/div SLOW POWER-UP/DOWN RESPONSE MAX9015 toc40 VIN+ 50mV/div POWER-UP RESPONSE MAX9015 toc41 MAX9015 toc42 VCC 2V/div IN+ 50mV/div AC-COUPLED VCC 1V/div VOUT 2V/div OUT 2V/div VREF 1V/div VOUT 1V/div 200µs/div 40µs/div 20µs/div _______________________________________________________________________________________ 9 MAX9015–MAX9020 Typical Operating Characteristics (continued) (VCC = 5V, VEE = 0V, CL = 15pF, VOVERDRIVE = 100mV, TA = +25°C, unless otherwise noted.) MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Pin Description PIN MAX9015/ MAX9016 MAX9017/ MAX9018 MAX9019/ MAX9020 NAME FUNCTION 1 — — REF 1.24V Reference Output 2 — — IN- Comparator Inverting Input 3 — — IN+ Comparator Noninverting Input 4 4 4 VEE Negative Supply Voltage 5, 8 — — N.C. No Connection. Not internally connected. 6 — — OUT Comparator Output Positive Supply Voltage 7 8 8 VCC — 1 1 OUTA Comparator A Output — 3 3 INA+ Comparator A Noninverting Input — 5 5 INB+ Comparator B Noninverting Input — 6 6 INB- Comparator B Inverting Input — 7 7 OUTB — — 2 INA- Comparator A Inverting Input — REF/ INA- 1.24V Reference Output. Internally connected to the inverting input of comparator A (MAX9017/MAX9018 only). — 2 Comparator B Output Functional Diagrams 7 8 VCC VCC 8 VCC 3 INA+ 3 INA+ 3 IN+ OUTA 1 OUT 6 2 OUTA 1 2 REF/INA- 2 INA- 5 INB+ 5 IN- MAX9015 MAX9016 1 REF REF 1.24V OUTB 7 OUTB 7 6 INB- 6 INB- VEE 4 MAX9019 MAX9020 INB+ MAX9017 MAX9018 REF 1.24V VEE 4 VEE 4 10 ______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference The MAX9015–MAX9018 feature an on-board 1.24V ±0.5% (±1.45% for the B grade) reference, yet draw an ultra-low supply current. The MAX9019/MAX9020 (duals without reference) consume just 850nA of supply current. All devices are guaranteed to operate down to 1.8V supply. Their common-mode input voltage range extends 200mV beyond-the-rails. An internal 4mV hysteresis ensures clean output switching, even with slowmoving input signals. Large internal output drivers swing rail-to-rail with up to ±6mA loads (MAX9015/ MAX9017/MAX9019). The output stage employs a unique design that minimizes supply-current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. The MAX9015/MAX9017/MAX9019 have a push-pull output stage that sinks as well as sources current. The MAX9016/MAX9018/MAX9020 have an open-drain output stage that can be pulled beyond VCC up to 5.5V above VEE. These open-drain versions are ideal for implementing wire-ORed output logic functions. Input Stage Circuitry The input common-mode voltage ranges extend from VEE - 0.2V to VCC + 0.2V. These comparators operate at any differential input voltage within these limits. Input bias current is typically ±150pA at the trip point, if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal ESD protection diodes connected to the supply rails. As the input voltage exceeds the supply rails, these ESD protection diodes become forward biased and begin to conduct increasing input bias current (see the Input Bias Current vs. Input Bias Voltage graph in the Typical Operating Characteristics). Output Stage Circuitry The MAX9015–MAX9020 feature a unique breakbefore-make output stage capable of driving ±8mA loads rail-to-rail. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with the MAX9015– MAX9020 family of comparators, the supply-current change during an output transition is extremely small. In the Typical Operating Characteristics, the Supply Current vs. Output Transition Frequency graphs show the minimal supply-current increase as the output switching frequency approaches 1kHz. This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. In battery-powered applications, this characteristic results in a substantial increase in battery life. Reference (MAX9015–MAX9018) The MAX9015–MAX9018s’ internal +1.24V reference has a typical temperature coefficient of 40ppm/°C over the full -40°C to +85°C temperature range. The reference is a very-low-power bandgap cell, with a typical 35kΩ output impedance. REF can source and sink up to 100nA to external circuitry. For applications needing increased drive, buffer REF with a low input-bias current op amp such as the MAX4162. Most applications require no REF bypass capacitor. For noisy environments or fast transients, connect a 1nF to 10nF ceramic capacitor from REF to GND. Applications Information Low-Voltage, Low-Power Operation The MAX9015–MAX9020 are ideally suited for use with most battery-powered systems. Table 1 lists a variety of battery types, capacities, and approximate operating times for the MAX9015–MAX9020, assuming nominal conditions. Table 1. Battery Applications Using the MAX9015–MAX9020 RECHARGEABLE VFRESH (V) VEND-OFLIFE (V) CAPACITY, AA SIZE (mA-hr) MAX9015A/ MAX9016A OPERATING TIME (hr) MAX9017/ MAX9018 OPERATING TIME (hr) MAX9019/ MAX9020 OPERATING TIME (hr) Alkaline (2 cells) No 3.0 1.8 2000 2000k 1540k 1333k Nickel-cadmium (2 cells) Yes 2.4 1.8 750 750k 570k 500k Nickel-metal-hydride (2 cells) Yes 2.4 1.8 1000 1000k 770k 660k Lithium-ion (1 cell) Yes 3.6 2.9 1000 1000k 770k 660k BATTERY TYPE ______________________________________________________________________________________ 11 MAX9015–MAX9020 Detailed Description MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Internal Hysteresis Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. Oscillations can occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX9015–MAX9020 have internal 4mV hysteresis to counter parasitic effects and noise. The hysteresis in a comparator creates two trip points: one for the rising input voltage (VTHR) and one for the falling input voltage (VTHF) (Figure 1). The difference between the trip points is the hysteresis (VHB). When the comparator’s input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. Figure 1 illustrates the case in which the comparator’s inverting input has a fixed voltage applied, and the noninverting input is varied. If the inputs were reversed, the figure would be the same, except with an inverted output. Additional Hysteresis (MAX9015/MAX9017/MAX9019) (Push-Pull Outputs) The MAX9015/MAX9017/MAX9019 feature a built-in 4mV hysteresis band (VHB). Additional hysteresis can be generated with three resistors using positive feedback (Figure 2). Use the following procedure to calculate resistor values: 1) Select R3. Input bias current at IN_+ is less than 2nA, so the current through R3 should be at least 0.2µA to minimize errors caused by input bias current. The current through R3 at the trip point is (VREF - VOUT)/R3. Considering the two possible output states in solving for R3 yields two formulas: R3 = VREF/IR3 or R3 = (VCC - VREF)/IR3. Use the smaller of the two resulting resistor values. For example, when using the MAX9017 (VREF = 1.24V) and VCC = 5V, and if we choose IR3 = 0.2µA, then the two resistor values are 6.2MΩ and 19MΩ. Choose a 6.2MΩ standard value for R3. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: THRESHOLDS IN+ VTHR HYSTERESIS INVTHF OUT Figure 1. Threshold Hysteresis Band VCC R3 R1 VIN VCC R2 50mV R1 = 6.2MΩ = 12kΩ 5V 12 OUT VEE VREF MAX9015 MAX9017 MAX9019 Figure 2. MAX9015/MAX9017/MAX9019 Additional Hysteresis 4) Choose the trip point for VIN rising (VTHR) such that: V VTHR > VREF 1 + HB VCC where VTHR is the trip point for VIN rising. This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V. 5) Calculate R2 as follows: R2 = V R1 = R3 HB VCC For this example, insert the values: BAND VHB R2 = 1 VTHR 1 1 − − VREF X R1 R1 R3 1 = 43.99kΩ 3.0 V 1 1 − − 6.2MΩ 62kΩ (1.24 V X 62kΩ) For this example, choose a 44.2kΩ standard value. ______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference 4) Choose the trip point for VIN rising (VTHR) such that: VIN rising: = 2.992V, which is equivalent to REF times R1 divided by the parallel combination of R1, R2: 1 1 1 VTHR = VREF x R1 + + R1 R2 R3 and R3. VIN falling: = 2.942V: V VTHR > VREF 1 + HB VCC (VTHR is the trip point for VIN rising). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V: 5) Calculate R2 as follows: R2 = R1 x VCC VTHF = VTHR − R3 1 VTHR 1 1 − − R1 R 3 VREF x R1 Hysteresis = VTHR - VTHF = 50mV. Additional Hysteresis (MAX9016/MAX9018/MAX9020) (Open-Drain Outputs) The MAX9016/MAX9018/MAX9020 feature a built-in 4mV hysteresis band. These devices have open-drain outputs and require an external pullup resistor (Figure 3). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX9015/MAX9017/MAX9019. Use the following procedure to calculate resistor values: 1) Select R3. Input bias current at IN_+ is less than 2nA, so the current through R3 should be at least 0.2µA to minimize errors caused by input bias current. The current through R3 at the trip point is (VREF - VOUT)/R3. Considering the two possible output states in solving for R3 yields two formulas: R3 = VREF/IR3 or R3 = [(VCC - VREF)/IR3] - R4. Use the smaller of the two resulting resistor values. For example, when using the MAX9018 (VREF = 1.24V) and VCC = 5V, and if we choose IR3 = 0.2µA, and R4 = 1MΩ, then the two resistor values are 6.2MΩ and 18MΩ. Choose a 6.2MΩ standard value for R3. R2 = 1 = 51.1kΩ 3.0V 1 1 − 72kΩ − 6.2MΩ 1.24 V x 72kΩ For this example, choose a 49.9kΩ standard value. 6) Verify the trip voltages and hysteresis as follows: 1 1 1 VIN risin g : VTHR = VREF x R1 + + R 3 R R 1 2 = 3.043V 1 1 1 VIN falling : VTHF = VREF x R1 + + R 3 R2 R1 − R1 x VCC = 2.993V R 3 + R4 Hysteresis = VTHR - VTHF = 50mV. VCC R3 2) Choose the hysteresis band required (VHB). 3) Calculate R1 according to the following equation. For this example, insert the values: V R1 = (R3 + R4) HB VCC 50mV R1 = (6.2MΩ + 1MΩ) = 72kΩ 5V R1 R4 VIN VCC R2 OUT VEE VREF MAX9016 MAX9018 MAX9020 Figure 3. MAX9016/MAX9018/MAX9020 Additional Hysteresis ______________________________________________________________________________________ 13 MAX9015–MAX9020 6) Verify the trip voltages and hysteresis as follows: MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference Board Layout and Bypassing The MAX9015–MAX9020 ultra-low supply current typically requires no power-supply bypass capacitors. However, when the supply has high output impedance, long lead lengths or excessive noise, or fast transients, bypass VCC to VEE with a 0.1µF capacitor placed as close to the VCC pin as possible. Minimize signal trace lengths to reduce stray capacitance. Use a ground plane and surface-mount components for best performance. If REF is decoupled, use a low-leakage ceramic capacitor. VIN V OTH = 4.2V VUTH = 2.9V R3 VCC INA+ OUTA The design procedure is as follows: 1) Select R1. The input bias current into INB- is normally less than 2nA, so the current through R1 should exceed 100nA for the thresholds to be accurate. In this example, choose R1 = 1.24MΩ (1.24V/1µA). 2) Calculate R2 + R3. The overvoltage threshold should be 4.2V when V IN is rising. The design equation is as follows: VOTH − 1 R2 + R3 = R1 x VREF + VHB 4.2V = 1.24MΩ x − 1 1.24V + 0.004 REF 1.24V R2 INB+ VEE MAX9018 OUTB INBR1 VEE Figure 4. Window Detector Circuit For this example, choose a 499kΩ standard value 1% resistor. 4) Calculate R3: R3 = (R2 + R3) - R2 = 2.95MΩ - 546kΩ = 240MΩ 5) Verify the resistor values. The equations are as follows, evaluated for the above example: Overvoltage threshold: VOTH = (VREF + VHB ) x = (1.24MΩ + 2.95MΩ) x = 546kΩ 14 (1.236) − 1.24MΩ 2.9 (R1 + R2 + R3) = 4.20V R1 Undervoltage threshold: =2.95MΩ 3) Calculate R2. The undervoltage threshold should be 2.9V when VIN is falling. The design equation is as follows: − VHB V R2 = (R1 + R2 + R3) x REF − R1 VUTH POWERGOOD REF/INA- Window Detector The MAX9018 is ideal for window detectors (undervoltage/overvoltage detectors). Figure 4 shows a window detector circuit for a single-cell Li+ battery with a 2.9V end-of-life charge, a peak charge of 4.2V, and a nominal value of 3.6V. Choose different thresholds by changing the values of R1, R2, and R3. OUTA provides an active-low undervoltage indication, and OUTB provides an active-low overvoltage indication. ANDing the two open-drain outputs provides an active-high, powergood signal. 5V VUTH = (VREF − VHB ) x (R1 + R2 + R3) = 2.97V (R1 + R2) where the internal hysteresis band, VHB, is 4mV. Zero-Crossing Detector Figure 5 shows a zero-crossing detector application. The MAX9015/MAX9016/MAX9019/MAX9020s’ inverting input is connected to ground, and its noninverting input is connected to a 100mVP-P signal source. As the signal at the noninverting input crosses zero, the comparator’s output changes state. ______________________________________________________________________________________ SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference TEMP RANGE PINPACKAGE TOP MARK MAX9018AEKA-T -40°C to +85°C 8 SOT23-8 AEIR MAX9018BEKA-T -40°C to +85°C 8 SOT23-8 AEIT MAX9019EKA-T -40°C to +85°C 8 SOT23-8 AEIU MAX9020EKA-T -40°C to +85°C 8 SOT23-8 AEIV PART VCC 100mVP-P IN+ OUT IN- VEE MAX9015 MAX9016 MAX9019 MAX9020 Typical Application Circuit VIN V OTH = 4.2V VUTH = 2.9V Figure 5. Zero-Crossing Detector 5V R3 VCC INA+ Logic-Level Translator The open-drain comparators can be used to convert 5V logic to 3V logic levels. The MAX9020 can be powered by the 5V supply voltage, and the pullup resistor for the MAX9020’s open-drain output is connected to the 3V supply voltage. This configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translations, connect the 3V supply voltage to VCC and the 5V supply voltage to the pullup resistor. OUTA UNDERVOLTAGE REF/INAREF 1.24V R2 INB+ VEE MAX9017 OUTB OVERVOLTAGE INB- Chip Information R1 TRANSISTOR COUNT: 349 PROCESS: BiCMOS VEE Pin Configurations TOP VIEW REF 1 ININ+ 2 3 MAX9015 MAX9016 VEE 4 SOT23 8 N.C. OUTA 7 VCC REF/INA- 2 6 OUT 5 N.C. INA+ 1 3 MAX9017 MAX9018 VEE 4 SOT23 8 VCC 7 OUTB 6 INB- 5 INB+ OUTA 1 INA- 2 INA+ 3 MAX9019 MAX9020 VEE 4 8 VCC 7 OUTB 6 INB- 5 INB+ SOT23 ______________________________________________________________________________________ 15 MAX9015–MAX9020 Ordering Information (continued) VCC Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages. SEE DETAIL "A" CL CL E MIN MAX A A1 A2 0.90 0.00 0.90 1.45 0.15 1.30 b 0.28 0.45 C D E 0.09 2.80 2.60 0.20 3.00 3.00 SYMBOL e b CL E1 E1 1.50 L 0.30 L2 e PIN 1 I.D. DOT (SEE NOTE 6) SOT23, 8L .EPS MAX9015–MAX9020 SOT23, Dual, Precision, 1.8V, Nanopower Comparators With/Without Reference 1.75 0.60 0.25 BSC. 0.65 BSC. 1.95 REF. e1 0 0 8 e1 D C CL L2 A A2 GAUGE PLANE A1 SEATING PLANE C 0 L NOTE: 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. FOOT LENGTH MEASURED FROM LEAD TIP TO UPPER RADIUS OF HEEL OF THE LEAD PARALLEL TO SEATING PLANE C. 3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR. 4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING. DETAIL "A" 5. COPLANARITY 4 MILS. MAX. 6. PIN 1 I.D. DOT IS 0.3 MM MIN. LOCATED ABOVE PIN 1. 7. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP. 8. MEETS JEDEC MO178. PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE, SOT-23, 8L BODY APPROVAL DOCUMENT CONTROL NO. 21-0078 REV. D 1 1 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.